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Abstract
We give an overview over the application of functional equations, namely
the classical Poincaré and renewal equations, to the study of the spectrum of
Laplace operators on self-similar fractals. We compare the techniques used
to those used in the Euclidean situation. Furthermore, we use the obtained
information on the spectral zeta function to compute the Casimir energy of
fractals. We give numerical values for this energy for the Sierpiński gasket.

PACS numbers: 05.45.Df, 44.30.+v, 05.60.−k
Mathematics Subject Classification: 28A80, 30D05, 11M41, 60J60, 35P20

1. Introduction

The initial interest in stochastic processes and analysis on fractals came from physicists
working in the theory of disordered media. It turns out that heat and wave transfer in disordered
media (such as polymers, fractured and porous rocks, amorphous semiconductors, etc) can be
adequately modelled by means of fractals and random walks on them. (See the initial papers
by Alexander and Orbach [1] and Rammal and Toulouse [2]. See also the survey by Havlin
and Ben-Avraham [3] and the book by the same authors [4] for an overview of the now very
substantial physics literature and bibliography.)

Motivated by these works, mathematicians became interested in developing the ‘analysis
on fractals’. For instance, in order to analyse how heat diffuses in a material with fractal
structure, one needs to define a ‘heat equation’ and a ‘Laplacian’ on a fractal. The problem
contains somewhat contradictory factors. Indeed, fractals like the Sierpiński gasket, or the von
Koch curve, do not have any smooth structures and one cannot define differential operators on
them directly.
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Figure 1. The Sierpiński gasket; the points of V0 are the vertices of the triangle.

The fractals studied in the context of analysis on fractals are all self-similar. Moreover,
we deal here mainly with finitely ramified fractals, i.e. fractals that can be disconnected by
removing a specific finite number of points. As general references for fractals, we refer the
reader to the books by Mandelbrot [5] and Falconer [6].

Objectives. There is now a number of excellent books, lecture notes and surveys on different
aspects of analysis and probability on fractals [7–14, 4]. It is next to impossible to describe all
activities in this area. Therefore, we restrict ourselves to a brief overview of various approaches
in the study of the Laplacian and its spectral properties on certain self-similar fractals. On the
other hand, we put much emphasis on the deep connection between the latter problem and the
functional equations with rescaling, such as the classical Poincaré and renewal equations, in
particular. Moreover, we concentrate mainly on those problems of diffusion on fractals, where
this connection plays a keynote.

The spectral theory of the Laplace operator on a Riemannian manifold is very well
understood and reveals beautiful connections between analysis, geometry and differential
equations. It is one of the driving forces in the analysis on fractals to obtain a comparable
understanding in the fractal situation (cf [8, 9]). Thus, we give comparative descriptions of
the Euclidean and the fractal case, wherever possible. However, in some instances, a very
detailed comparison would take us too far away from our main road. In such cases, we were
bounded to restrict ourselves to a short informal discussion only. For a detailed description of
the Euclidean situation, we refer the reader to the books by Kirsten [15], Berline et al [16] and
Rosenberg [17]. Note also that the tight link between the spectral properties of the Laplacian
and the functional equations is a specific feature of the fractal case only. It has no analogies in
the Euclidean case.

Probabilistic approach. In the mid 1980s probabilists constructed ‘Brownian motion’ on
the Sierpiński gasket (see figure 1). Goldstein [18], Kusuoka [19] and, a bit later, Barlow
and Perkins [20] independently took the first step in the mathematical development of the
theory. Their method of construction is now called the probabilistic approach. Namely, they
considered a sequence of random walks X (n) on graphs Gn, which approximate the Sierpiński
gasket G and showed that by taking an appropriate time scaling factor, those random walks
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Figure 2. The Lindstrøm snowflake with the corresponding set V0.

converge to a diffusion process Xt on the Sierpiński gasket. The Laplace operator on the fractal
is then defined as the infinitesimal generator of the process Xt (see sections 3.2 and 3.3).

Lindstrøm [21] extended the construction of the Brownian motion from the Sierpiński
gasket to more general nested fractals (which are finitely ramified self-similar fractals with
strong symmetry). The Lindstrøm snowflake is a typical example of a nested fractal (see
figure 2). The reader may refer to Barlow’s lecture notes [7] for a self-contained survey of this
approach.

Barlow and Perkins [20] made the following important observation: let Zn be the first
hitting time by X (n) on G0. Then, Zn is a simple branching process. Its off-spring distribution
has the generating function q(z) = z2/(4 − 3z) and, in particular, q′(1) = 5. Thus, Zn is
a super-critical branching process. It is known (see [22]) that in this case 5−nZn tends to a
limiting random variable Z∞. The moment-generating function f (z) = Ee−zZ∞ of this random
variable satisfies the functional equation f (λz) = q( f (z)), the Poincaré equation (see also
section 5), that will play an important role throughout this paper.

Anomalous diffusion. It has been discovered in an early stage already (see [1, 2, 18–20]) that
diffusion on fractals is anomalous. For a regular diffusion, or (equivalently) a simple random
walk in all integer dimensions d, the mean-square displacement is proportional to the number
of steps n: E

x‖Xn −x‖2 = cn (Fick’s law, 1855). On the other hand, in the case of the Sierpiński
gasket, E

x‖Xn − x‖2 � n2/β , where β = lg 5/ lg 2, is called the walk dimension (� means
that the ratio between the two sides is bounded above and below by positive constants). This
slowing down of the diffusion is caused, roughly speaking, by the removal of large parts of
the space.

De Gennes [23] was amongst the first to realize the broad importance of anomalous
diffusion and coined the suggestive term ‘the ant in the labyrinth’, describing the meandering
of a random walker in percolation clusters.

Analytic approach. The second approach, based on difference operators, is due to Kigami
[24]. Instead of a sequence of random walks, one can consider a sequence of discrete Laplacians
on a sequence of graphs, approximating the fractal. It is possible to prove that under a proper
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scaling these discrete Laplacians would converge to a ‘well-behaved’ operator with dense
domain, called the Laplacian on the Sierpiński gasket. This alternative approach is usually
called the analytic approach (see section 3.4).

Later, it was extended by Kigami [8, 25, 26] to a more general class of fractals—post-
critically finite (p.c.f.) self-similar sets, which roughly correspond to finitely ramified self-
similar fractals.

The two approaches described above are complementary to each other. The advantage of
the analytic approach is that one gets concrete and direct description of harmonic functions,
Laplacians, Dirichlet forms, etc. (See also [27, 28] and section 3.5.)

On the other hand, however, the probabilistic approach is better suited for the study of
heat kernels. Moreover, this approach can be applied to infinitely ramified self-similar fractals,
which include the Sierpiński carpet, as a typical example (cf [29]).

The Poincaré equation in the analysis on fractals. In the course of his studies on the theory
of automorphic functions, Poincaré introduced [30] the nonlinear functional equation

f (λz) = R( f (z)), z ∈ C,

where R(z) is a rational function (or polynomial) and λ ∈ C. Remarkably, nowadays the
Poincaré equation finds numerous applications in different mathematical areas very distant
from the original one. Among them are applications in the analysis on fractals, the subject of
this paper.

One such example, already has been mentioned: the description of a super-critical
branching process (for the first hitting moment of the random walk on the Sierpiński gasket).

Further applications of functional equations in this field are related to the phenomenon
of spectral decimation for spectral zeta function ζ� of the Sierpiński gasket and other (more
general) fractals. This phenomenon was first observed and studied by Bellissard [31, 32] and
Fukushima and Shima [27, 33, 34], and further progress has been made by Malozemov and
Teplyaev [35] and Strichartz [36].

The precise definition of spectral decimation is given in section 4.2. It implies, in particular,
that eigenvalues of the Laplacian � on a fractal, which admits spectral decimation, can be
calculated by computing iterated preimages of a certain polynomial p(z), or rational function
R(z). Hence, the spectral zeta function ζ� may be defined by means of iterations p(n) of p, or
R(n) of R (see [37]).

The above-mentioned iteration process, as is well known in iteration theory, may be
conveniently described by the corresponding Poincaré equation:

�(λz) = p(�(z)) and �(0) = 0, (1)

where λ = p′(0) > 1 and p(0) = 0 (see, e.g., [38] or [39]).
Using that, in section 4.4, we obtain the meromorphic continuation of the zeta function ζ�

to the whole complex plane. The method we use for that is based on the precise knowledge of
the asymptotic behaviour of the Poincaré function � in certain angular regions. The poles of
the spectral zeta function are called the complex dimensions (see [40, 41, 10]). For the physical
consequences of complex dimensions of fractals, see [42, 43].

In section 4.5.1, we use the Poincaré function � for the calculation of Casimir (or vacuum)
energy on the Sierpiński gasket. For the underlying physical theory, we refer the reader to the
monographs by Elizalde [44] and Elizalde et al [45], the paper by Elizalde et al [46] and the
minicourse by Elizalde [47].

Logarithmic periodicity phenomena are quite common in the study of self-similar
structures, especially if the ratios of the self-similarities form a discrete subgroup of the
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positive reals. In the context discussed in this paper the sources for this behaviour are functional
equations like the Poincaré and renewal equations, which exhibit such behaviour of their
solutions. Let us mention here that the question about log periodic oscillations of first-passage
observables in fractals is intensively discussed in the physics literature (see [48]).

In section 4.6, we discuss the approach of Kigami and Lapidus [49] to the asymptotic
behaviour of the eigenvalue counting function for general p.c.f. fractals using the classical
renewal equation. This yields a different method to derive an analytic continuation of the zeta
function to the half-plane �s > 0.

In section 5, we collected some basic facts about the Poincaré equation scattered in
the literature. Since the equations occurring in the applications in the analysis on fractals
are purely real, we restrict our discussion to that case. We discuss the special case of the
Poincaré equation with a quadratic polynomial on the right-hand side. Such equations arise in
several applications related to the diffusion on fractals and we give a criterion for the reality
of the Julia set (see section 5.1) in this case.

Finally, one can expect that functional equations with rescaling naturally come about
from problems, where renormalization-type arguments are used to study self-similarity.
Furthermore, functional equations, in contrast to differential equations, do not require
any smoothness of solutions; they are well suited to describe non-smooth (e.g., nowhere
differentiable) solutions (see, e.g., [50])

In this overview, we do not or only cursorily touch the following important topics.

• The analysis on infinitely ramified fractals such as the Sierpiśki carpet [29, 51]. The very
recent progress that has been made in proving the uniqueness of the diffusion on the
Sierpiński carpets [52] provided a unification of the different approaches to diffusion on
this class of fractals (cf [29, 53]).

• Heat kernel long-time behaviour and Harnack inequalities on general underlying spaces,
including Riemannian manifolds, graphs and fractals, as special cases [54–57]

• The analysis on fractals by means of potential theory and function space (Sobolev or Besov
spaces) techniques [11, 58, 61–63].

We refer the interested reader to the above-mentioned original papers.

2. Fractals and iterated function systems

Let us first recall that for any finite set of linear contractions on R
d

Fi(x) = bi + Ai(x − bi), i = 1, . . . , m,

with fixed points bi and contraction matrices Ai (‖Ai‖ < 1, i = 1, . . . , m), there exists a
unique compact set K ⊂ R

d satisfying

K =
m⋃

i=1

Fi(K). (2)

In general, the set K obtained as a fixed point in (2) is a ‘fractal’ set (cf [64, 65]). If the
matrices Ai are only assumed to be contracting, finding the Hausdorff dimension of K is a
rather delicate problem (cf [66, 67]).

For this paper, we will make the following additional assumptions on the family of
contractions F = {Fi | i = 1, . . . , m}.
(i) The matrices Ai are similitudes with factors αi < 1:

∀ x ∈ R
d : ‖Aix‖ = αi‖x‖.
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(ii) F satisfies the open-set-condition (cf [64, 68]), namely there exists a bounded open set
O such that

m⋃
i=1

Fi(O) ⊂ O

with the union disjoint.

Assuming that the maps in F are similitudes and satisfy the open-set-condition, the
Hausdorff dimension dimH (K) of the compact set K given by (2) equals the unique positive
solution s = ρ of the equation

m∑
i=1

αs
i = 1. (3)

The projection map

π : {1, . . . , m}N → K
(ε1, ε2, . . .) �→ limn→∞ Fε1 ◦ Fε2 ◦ · · · ◦ Fεn (x)

(4)

(the limit is independent of x ∈ R
d) defines a ‘parametrization’ of K. If {1, . . . , m}N is endowed

with the infinite product measure μ given by

μ ({(ε1, ε2, . . .) | ε1 = i1, ε2 = i2, . . . , εk = ik}) = (αi1αi2 · · · αik )
ρ, (5)

and then π is a μ-almost sure bijection. The normalized ρ-dimensional Hausdorff measure on
K is then given by

Hρ
K (E ) := Hρ (E ∩ K)

Hρ (K)
= π∗(μ)(E ) = μ(π(−1)(E )). (6)

This is the unique normalized measure satisfying (cf [68, theorem 28])

Hρ
K (E ) =

m∑
i=1

α
ρ
i H

ρ
K

(
F (−1)

i (E )
)
. (7)

The set K together with the address space � = {1, . . . , m}N and the maps Fi (i = 1, . . . , m)
defines a self-similar structure (K, �, (Fi)

m
i=1). For K fixed and ρ = dimH (K), we write H for

Hρ
K .

In order to allow a sensible analysis on the fractal set K, we need some further properties.
In particular, since we will later study diffusion processes, we need K to be connected. On the
other hand, the techniques introduced later require a finite ramification property usually called
post-critical finiteness (p.c.f.).

Connectivity of K is characterized by the fact that for any pair (i, j), there exist
i1, i2, . . . , in ∈ {1, . . . , m} with i = i1 and j = in such that Fi� (K) ∩ Fi�+1 (K) �= ∅ for
� = 1, . . . , n − 1 (cf [69]).

Definition 1. Let (K, �, (Fi)
m
i=1) be a self-similar structure. Then, the set

C = π−1

⎛
⎝⋃

i�= j

Fi(K) ∩ Fj(K)

⎞
⎠

is called the critical set of K. The post-critical set of K is defined by

P =
∞⋃

n=1

σ n(C),

where σ : � → � denotes the shift map on the address space �. If P is a finite set, then
(K, �, (Fi)

m
i=1) is called post-critically finite (p.c.f.). This is equivalent to the finiteness of C

together with the fact that all points of C are ultimately periodic.

6



J. Phys. A: Math. Theor. 45 (2012) 463001 Topical Review

The following sequence Vm of finite sets will be used in section 3.5 to define a sequence
of electrical networks giving a harmonic structure on K. For more details, we refer the reader
to [8, chapter 1].

Definition 2. Let (K, �, (Fi)
m
i=1) be a p.c.f. self-similar structure and P its post-critical set.

Let V0 = π(P) and define Vm iteratively by

Vn+1 =
m⋃

i=1

Fi(Vn).

The sets Vn are then finite, increasing (Vn ⊂ Vn+1) and

K =
⋃
n�0

Vn.

3. Laplace operators on fractals

Before we introduce the Laplace operator on certain classes of self-similar fractals, let us
briefly discuss the situation on manifolds, because this gives the motivation for the different
approaches in the case of fractals.

3.1. Laplace operators on compact manifolds

Let M be a compact Riemannian manifold with a Riemannian metric g given as a quadratic
form gx on the tangent space TxM for x ∈ M. As usual, we assume that the dependence of
gx on x is differentiable. Then, the quadratic form gx defines an isomorphism αg between the
tangent space TxM and its dual T ∗

x M (and thus on the tangent bundle T M and the cotangent
bundle T ∗M) by αg(v)w = gx(v,w) for v,w ∈ TxM. This defines the gradient of a function f
as grad f = α−1

g (df ). Define the divergence of a vector field X as the negative formal adjoint
of grad with respect to the scalar product 〈X,Y 〉L2(M) = ∫

M gx(X,Y ) d vol(x):

〈X, grad f 〉L2(M) = −〈div X, f 〉L2(M).

The Laplace operator is then defined as (cf [17, 70])

� f = div grad f . (8)

By definition, this operator is self-adjoint and, thus, has only non-positive real eigenvalues by
〈� f , f 〉L2(M) = −〈grad f , grad f 〉L2(M) � 0.

Based on the above approach, a corresponding energy form (‘Dirichlet form’, cf [71]) can
be defined

E (u, v) =
∫

M
gx(grad u, grad v) d vol(x) =

∫
M

gx(du, dv) d vol(x),

which lends itself to a further way of defining a Laplace operator via the relation

E (u, v) = −〈� u, v〉L2(M). (9)

Geometrically, the Laplace operator measures the deviation of the function f from the mean
value. More precisely, let S(x, r) = {y ∈ M | d(x, y) = r} denote the ball of radius r in M (in
the Riemannian metric). Then,

� f = 2n lim
r→0+

1

r2σ (S(x, r))

∫
S(x,r)

( f (y) − f (x)) dσ (y), (10)

7
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where n denotes the dimension of the manifold M and σ is the surface measure on S(x, r). This
also motivates the definition of the Laplace operator as a limit of finite difference operators

� f (x) = lim
r→0

1

r2

⎛
⎝ ∑

p∈Nr(x)

wp f (p) − f (x)

⎞
⎠ ,

where Nr(x) is a finite set of points at distance r from x, and wp are suitably chosen weights.
Such approximations to the Laplace operator are the basis of the method of finite differences
in numerical mathematics.

The Laplace operator can then be used to define a diffusion on M via the heat equation
� u = ∂tu. The solution u(t, x) of the initial value problem u(0, x) = f (x) defines a semi-group
of operators Pt by

Pt f (x) = u(t, x).

The semi-group property Ps+t = PsPt comes from the uniqueness of the solution u and
translation invariance with respect to t of the heat equation. From the heat semi-group Pt , the
Laplace operator can be recovered as the infinitesimal generator

� f = lim
t→0+

Pt f − f

t
, (11)

which exists on a dense subspace of L2(M) under suitable continuity assumptions on the
semi-group (Pt )t�0 (cf [72]).

In the fractal situation, none of the above approaches can be used directly to define a
Laplace operator. The main reason for this is that there is no natural definition of derivative on
a fractal. But the above approaches to the Laplace operator on a manifold can be used in the
opposite direction.

• Starting from a diffusion process that can be defined on fractals by approximating random
walks. Then, the Laplace operator can be defined as the infinitesimal generator. This is
described in sections 3.2 and 3.3.

• Taking the limit of finite-difference operators on graphs approximating the fractal gives a
second possible approach to the Laplace operator, which is explained in section 3.4.

• Starting with a Dirichlet form E gives a third possible approach, which is presented in
section 3.5.

3.2. Random walks on graphs and diffusion on fractals

The first idea to obtain a diffusion on a fractal was to define a sequence of random walks on
approximating graphs and to synchronize time so that the limiting process is non-constant and
continuous. This was the first approach to the diffusion process on the Sierpiński gasket given
in [18–20] and later generalized to other ‘nested fractals’ in [21]. Because of its importance
for our exposition, we explain it in some detail in this section. We will follow the lines of
definition of self-similar graphs given in [73, 74] and adapt it for our purposes.

We consider a graph G = (V (G), E(G)) with vertices V (G) and undirected edges E(G)

denoted by {x, y}. We assume throughout that G does not contain multiple edges nor loops. For
C ⊂ V (G), we call ∂C the vertex boundary, which is given by the set of vertices in V (G) \ C,
which are adjacent to a vertex in C. For F ⊂ V (G), we define the reduced graph GF by
V (GF ) = F and {x, y} ∈ E(GF ), if x and y are in the boundary of the same component of
V (G) \ F .

Definition 3. A connected infinite graph G is called self-similar with respect to F ⊂ V (G)

and ϕ : V (G) → V (GF ), if

8
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Figure 3. Transition between Y (n)
k and Y (n+1)

k .

(i) no vertices in F are adjacent in G,
(ii) the intersection of the boundaries of two different components of V (G) \ F does not

contain more than one point,
(iii) ϕ is an isomorphism of G and GF .

A random walk on G is given by the transition probabilities p(x, y), which are positive, if
and only if {x, y} ∈ E(G). For a trajectory (Yn)n∈N0 of this random walk with Y0 = x ∈ F , we
define stopping times recursively by

Tm+1 = min
{
k > Tm | Yk ∈ F \ {YTm}} , T0 = 0.

Then, (YTm )m∈N0 is a random walk on GF . Since the underlying graphs G and GF are isomorphic,
it is natural to require that (ϕ−1(YTm ))m∈N0 is the same stochastic process as (Yn)n∈N0 . This
requires the validity of equations for the basic transition probabilities

P(YTn+1 = ϕ(y) | YTn = ϕ(x)) = P(Yn+1 = y | Yn = x) = p(x, y). (12)

These are usually nonlinear rational equations for the transition probabilities p(x, y). The
existence of solutions of these equations has been the subject of several investigations, and we
refer the reader to [75–78].

The process (Yn)n∈N0 on G and its ‘shadow’ (YTn )n∈N0 on GF are equal, but they
are on a different time scale. Every transition YTn → YTn+1 on GF comes from a path
YTn → YTn+1 · · · → YTn+1−1 → YTn+1 in a component of V (G) \ F (see figure 3). The time
scaling factor between these processes is given by

λ = E(Tn+1 − Tn) = E(T1).

This factor is � 2 by assumption (i) on F . More precisely, the relation between the transition
time on GF and the transition time on G is given by a super-critical (λ > 1) branching process,
which replaces an edge {ϕ(x), ϕ(y)} ∈ GF by a path in G connecting the points x and y without
visiting a point in V (G) \ F (except for x and for y in the last step).

In order to obtain a process on a fractal in R
d , we assume further that G is embedded

in R
d (i.e. V (G) ⊂ R

d). The self-similarity of the graph is carried over to the embedding by
assuming that there exists β > 1 (the space scaling factor) such that F = V (GF ) = βV (G).
The fractal limiting structure is then given by

YG =
∞⋃

n=0

β−nV (G).

9
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Iterating this graph decimation, we obtain a sequence of (isomorphic) graphs Gn =
(β−nV (G), E(G)) on different scales. The random walks (Y (n)

k )k∈N0 on Gn are connected
by time scales with the scaling factor λ. From the theory of branching processes (cf [22]), it
follows that the time on level n scaled by λ−n tends to a random variable. From this, it follows
that β−nY[tλn] weakly tends to a (continuous time) stochastic process (Xt )t�0 on the fractal YG.

Under the assumption that the graph G has an automorphism group acting doubly
transitively on the points of the boundary of every component of G \ F (cf [73, 74]), we
consider the generating function of the transition probabilities pn(x, y) = P(Yn = y | Y0 = x),
the so-called Green function of the random walk

G(z | x, y) =
∞∑

n=0

pn(x, y)zn,

which can also be seen as the resolvent (I−zP)−1 of the transition operator P. The replacement
rules connecting the random walks on the graphs G and GF result in a functional equation for
the Green function

G(z | ϕ(x), ϕ(y)) = f (z)G(ψ(z) | x, y), (13)

where the rational function ψ(z) is the probability-generating function of the paths connecting
two points v1, v2 ∈ ϕ(V (G)) without reaching any point in ϕ(V (G)) \ {v1}. Then, the time
scaling factor is the expected number of steps needed for the paths counted by ψ , so we have

λ = ψ ′(1).

The rational function f (z) is the probability-generating function of the paths starting and
ending in v1 ∈ ϕ(V (G)) without reaching any other point in ϕ(V (G)). Equation (13) becomes
especially simple for a fixed point x of the map ϕ:

G(z | x, x) = f (z)G(ψ(z) | x, x). (14)

It was proved in [74] that under our conditions on the set F the map ϕ can have at most one
fixed point. Equation (14) can be used to obtain the asymptotic behaviour of G(z | x, x) for
z → 1 (cf [74, 79]). From this, the asymptotic behaviour of the transition probabilities pn(x, x)

can be derived. In many examples, these transition probabilities exhibit periodic fluctuations

pn(x, x) ∼ n−γ (σ (logλ n) + O(n−1)),

where σ is a continuous, periodic, non-constant function of period 1 with γ =
1 − log f (1)/ log λ (cf [74]).

A first example of such graphs is the Sierpiński graph studied as an approximation to
the fractal Sierpiński gasket. In this case, we have for the probability-generating function
ψ(z) = z2

4−3z and λ = 5. The random walk on this graph was studied in [20] in order to define
a diffusion on a fractal set. Self-similarity of the graph and the fractal have been exploited
further, to give a more precise description of the random walk [80] and the diffusion [81].
In [74], a precise description of the class of graphs in terms of their symmetries is given,
which allow a similar construction. In [82], this analysis was carried further to obtain results
for the transition probabilities under less symmetry assumptions using multivariate generating
functions.

In some examples (for instance the Sierpiński graph) it occurred that the function ψ was
conjugate to a polynomial p, i.e.

ψ(z) = 1

p
(

1
z

) ,

10
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Figure 4. The Sierpiński carpet, an example of an infinitely ramified fractal.

which allowed a study of the properties of the random walk by referring to the classical
Poincaré equation. Properties of the Poincaré equation have been used in [83] to study the
analytic properties of the zeta function of the Laplace operator given by the diffusion on certain
self-similar fractals. For more details, we refer the reader to section 4.4.

Remark 3.1. The Sierpiński carpet (see figure 4) is a typical example of an infinitely ramified
fractal. In [53], approximations by graphs are used to define a diffusion on this fractal. By the
infinite ramification, this approach is more intricate than the procedure described here. By the
very recent result on the uniqueness of Brownian motion on the Sierpiński carpet (cf [52]), this
yields the same process as constructed by rescaling the classical Brownian motion restricted
to finite approximations of the Sierpiński carpet in [29, 51].

3.3. The Laplace operator as the infinitesimal generator of a diffusion

Given a diffusion process (Xt )t�0 on a fractal K, we can now define a corresponding Laplace
operator. At first we define a semi-group of operators At by

At f (x) = E
x f (Xt )

for functions f ∈ L2(K). The semi-group property

AsAt = As+t

of the operators comes from the Markov property of the underlying stochastic process Xt .
By [72, chapter 9], this semi-group has an infinitesimal generator given as

� f = lim
t→0+

At f − f

t
.

This limit exists on a dense subspace F of L2(K) and is called Laplace operator on K. This
name comes from the fact that for the usual Brownian motion on a manifold this procedure
yields the classical Laplace–Beltrami operator (see section 3.1). The function u(x, t) = At f (x)

satisfies the heat equation

� u = ∂tu, u(x, 0) = f (x).

11
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For a comprehensive survey of the probabilistic approach to the heat equation and properties
of the heat kernel, we refer the reader to [84].

It was observed in the early beginnings of the development of the theory of diffusion of
fractals that the domain of � does not contain the restriction of any non-constant differentiable
function (cf [85]).

3.4. The Laplace operator as a limit of difference operators on graphs

A totally different and more direct approach to the Laplace operator on self-similar fractals
has been given by Kigami in [24]. The operator � is approximated by difference operators on
the approximating graphs Gn. The graph Laplacians are given by

�n f (x) =
∑

y∼x,y∈Gn

p(x, y) f (y) − f (x)

as a weighted sum over the neighbours of x in Gn (y ∼ x describes the neighbourhood relation
in the graph Gn). In order to make this construction compliant with the approach via stochastic
processes, these operators have to be rescaled appropriately. The correct rescaling is then given
by the time scaling factor λ introduced before, namely

� f (x) = lim
n→∞ λn�n f (x).

3.5. Laplace operators via Dirichlet forms

Following the exposition in [8, chapters 2 and 3], we define a sequence of quadratic forms on
the finite sets Vm given in definition 2.

Definition 4. Let V be a finite set. Then, a bilinear form E on �(V ), the real functions on V , is
called a Dirichlet form, if the following conditions hold:

(i) ∀u ∈ �(V ) : E (u, u) � 0,
(ii) E (u, u) = 0 implies that u is constant on V ,

(iii) for u ∈ �(V ) and u(x) = max(0, min(u(x), 1)), the inequality E (u, u) � E (u, u) holds.

Definition 5. Let E be a Dirichlet form on the finite set V and let U be a proper subset of V .
Then, the restriction of E to U is defined as

RV,U (E )(u, u) = min {E (v, v) | v ∈ �(V ), v|U = u} . (15)

On the level of the coefficient matrices of the Dirichlet forms, the operation of restriction
is given by the Schur complement (cf [8]).

Definition 6. Let (Vn, En)n be a sequence of increasing finite sets Vn and Dirichlet forms En on
Vn. The sequence is called compatible, if

RVn+1,Vn (En+1) = En

holds for all n.

For a compatible sequence (Vn, En)n and a function f on K, the sequence (En( f |Vn, f |Vn ))n

is increasing by definition and thus converges to a value in [0,∞]. This makes the following
definition natural.

12
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Definition 7. Let (Vn, En)n be a compatible sequence of Dirichlet forms. Let

D = big{ f : K → R | lim
n→∞ En( f |Vn , f |Vn ) < ∞}

.

Then, for all f ∈ D,

E ( f , f ) = lim
n→∞ En( f |Vn, f |Vn )

defines a Dirichlet form on K, and D is its domain.

In order to make the sequence of Dirichlet forms coherent with the self-similar structure
of K, we require the following self-similarity condition for En:

En+1( f , f ) = λ

m∑
i=1

r−1
i En( f ◦ Fi, f ◦ Fi),

where ri (i = 1, . . . , m) are positive weights and λ is a proportionality factor. Furthermore,
the sequence of forms has to be compatible, which amounts to the equation

λRV1,V0

(
m∑

i=1

r−1
i E0(· ◦ Fi, · ◦ Fi))

)
= E0(·, ·), (16)

which comes as a solution of a nonlinear eigenvalue equation. This equation plays the same
role in the Dirichlet form approach as equations (12) play for the approach via random walks.
The Dirichlet form E on K is then defined as

E ( f , f ) = lim
n→∞ λn

∑
w∈Sn

r−1
w E0( f ◦ Fw|V0 , f ◦ Fw|V0 ),

where S = {1, . . . , m}, rw = rw1 · · · rwn for w = w1 · · ·wn ∈ Sn and Fw = Fw1 ◦ · · · ◦ Fwn .

Remark 3.2. There are some additional technical problems concerning this construction of
Dirichlet forms, which arise from the fact that in general the form is supported only on a
proper subset of K. In [8, chapter 3], sufficient conditions for the weights ri and the form E0

are given, which ensure that the form E is supported on the whole set K.

Given a Dirichlet form E together with its domain D and a measure μ on K, we can now
define the associated Laplace operator on K by

∀v ∈ D ∩ L2(μ) : E (u, v) = −〈�μu, v〉L2(μ), (17)

which defines �μ, if D is dense in L2(μ). Note that this is the same as equation (9) in the
manifold case. In the case of a self-similar fractal K as described in section 2, the ‘natural’
measure on K is the according Hausdorff measure Hρ

K . In this case, we omit the subscript μ.
For more information on Dirichlet forms in general and their applications to the description

of diffusion processes, we refer the reader to the monograph [71]. For the specifics of Dirichlet
forms on fractals, we refer the reader to [8, 86].

4. Spectral analysis on fractals

Let us start with a short discussion of the manifold case, which is again somehow
complementary to the fractal case.

13
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4.1. Spectral analysis on manifolds

As described in section 3.1, the Laplace operator on an n-dimensional manifold M is defined
via a Riemannian metric g. If M is compact with smooth (or empty) boundary (for simplicity),
the Laplace operator has pure point spectrum. The eigenvalues −λk are all real (by self-
adjointness) and non-positive (by definition (8)). Denote the normalized eigenfunctions by ψk.
Then, the heat kernel can be written as

pt (x, y) =
∞∑

k=0

e−λktψk(x)ψk(y). (18)

This expression yields the trace of the heat kernel

K(t) = Tr et � =
∫

M
pt (x, x) d vol(x) =

∞∑
k=0

e−λkt . (19)

The precise order of magnitude of the heat kernel pt (x, y) and especially K(t) for t → 0+ has
been the object of intensive research in the middle of the 20th century. We refer the reader to
[87–90] for derivations of this asymptotic expansion by techniques using partial differential
equations; for a probabilistic approach, we refer the reader to [84]. The reason for the interest
in these quantities was their close connection to invariants of the underlying manifold and to
index theorems for differential equations (see, e.g., [91, 92, 88, 89]).

The final form of the asymptotic expansion of K(t) is given by

K(t) ∼ (4πt)−
n
2

∞∑
k=0,1/2,1,...

Bkt
k, (20)

where the coefficients Bk are given by

Bk =
∫

M
bk d vol +

∫
∂M

ck dσ,

where σ denotes the surface measure on the boundary ∂M.
The functions bk depend on the metric tensor of M and its derivatives and vanish for

k ∈ 1
2 + N0; the functions ck encode information about the curvature of the boundary and

the boundary conditions and vanish for k ∈ N0. Schemes for the computation of the bk

have been developed (see, e.g., [93]). The computation of the ck is much more complicated;
for explicit computation of the functions ck for small k, we refer the reader to [15] and
[94]. It should be mentioned that the coefficients Bk with half-integer k vanish for a closed
manifold M.

From the first-order asymptotic relation K(t) ∼ vol(M)/(4πt)
n
2 , the asymptotic behaviour

of the counting function

N(x) =
∑
λk<x

1 (21)

can be obtained by a Tauberian argument giving Weyl’s [95] classical asymptotic relation

N(x) = vol(M)

Bn
x

n
2 + o(x

n
2 ), (22)

where Bn denotes the volume of the n-dimensional unit ball. The eigenvalues of � constitute
the frequencies of the oscillations in the solutions of the wave equation � u = utt . This led to
Kac’s famous question ‘can one hear the shape of a drum?’ (cf [96]).

More precise information on the eigenvalues is contained in the spectral zeta function

ζ�(s) =
∑
λk �=0

λ−s
k = Tr(−�)−s, (23)

14
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the Dirichlet generating function of (λk)k. This series converges for �s > n
2 (the ‘abscissa

of convergence’). For a detailed discussion of complex powers of elliptic operators and their
analytic continuation, we refer the reader to [97]. The zeta function is connected to the trace
of the heat kernel by a Mellin transform

ζ�(s)�(s) =
∫ ∞

0
K(t)ts−1 dt, for �s >

n

2
. (24)

The right-hand side has an analytic continuation to the whole complex plane, which can be
found by using the asymptotic expansion (20) by the following standard computation:

tζ�(s)�(s) =
∫ 1

0

(
K(t) − (4πt)−

n
2

∑
k<L

Bkt
k

)
ts−1dt

+(4π)−
n
2

∑
k<L

Bk

s − n
2 + k

+
∫ ∞

1
K(t)ts−1dt.

The first integral converges for �s > n
2 − L, the second integral converges for all s ∈ C by the

exponential decay of K(t).
As a consequence of the procedure of analytic continuation and the properties of the

�-function, some special values of ζ� can be computed (k ∈ 1
2 N0, cf [44]):

Res
s= n

2 −k
ζ�(s) = Bk

(4π)n/2�( n
2 − k)

for
n

2
− k ∈

(
1

2
Z

)
\ Z�0

and

ζ�(−�) = (−1)��!
B n

2 +�

(4π)n/2
for � ∈ N0.

The values of the analytic continuation of ζ�(α) for α to the left of the abscissa of convergence
of the series (23) can be interpreted as regularized values of the series (23) for values of s,
where it does not converge. For α � n

2 , the regularized value of the (divergent!) series∑
n

λ−α
n

is the constant term in the asymptotic expansion of the series∑
n

λ−α
n e−λnz

for z → 0 with �z > 0 (cf [98]), if there are no poles of ζ� on the line �s = α. A
further confirmation for the validity of the zeta regularization technique is given by the zeta
regularization theorem (cf [99] and [44, section 2.2.1]). For further reading on regularization,
we refer the reader to the book by Jorgenson and Lang [100], and for the physics background
of regularization and various applications, we refer the reader to the books by Elizalde [44]
and Elizalde et al [45], as well as to the instructive minicourse [47].

The value −ζ ′
�(0) is of special interest, as it represents the regularized value of the series∑

n

log λn,

which is the logarithm of the regularized determinant of the Laplace operator (the regularized
product of the eigenvalues). This special value occurs inter alia in the study of Reidemeister
torsion in [101] and in the computation of path integrals with an action given by the Laplace
operator [102, 103]. In the latter context, it is only defined up to a divergent factor, which can
be cancelled by forming the ratio of two determinants (cf [104, 105]). The determinant of −�
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can be expressed by

det(−�) = exp(−ζ ′
�(0)), (25)

which holds if ζ�(s) has no pole on the imaginary axis.
In the case of a fractal, the above approach to the spectral zeta function, its analytic

continuation and its finer properties cannot be used. The reason for this is that no asymptotic
expansion of the heat kernel is known in the fractal case. The existence of an analytic
continuation of the zeta function for fractals is not known in general. In section 4.5, we
comment on the known upper and lower estimates for the heat kernel.

On the other hand, for fractals having spectral decimation, the eigenvalues can be described
very precisely. In this case, they turn out to constitute a finite union of level sets of solutions
of the Poincaré functional equation. This then allows one to obtain the analytic continuation
of the spectral zeta function from the precise knowledge of the asymptotic behaviour of the
Poincaré function; the asymptotic expansion of the trace of the heat kernel can then be obtained
from the poles of the zeta function, reversing the argument in (24). The eigenvalue counting
function can then be related to the harmonic measure on the Julia set of a the polynomial
governing the spectral decimation.

4.2. Spectral decimation

It has been first observed by Fukushima and Shima [27, 33, 34] that the eigenvalues of
the Laplacian on the Sierpiński gasket and its higher dimensional analogues exhibit the
phenomenon of spectral decimation (see also earlier work by Bellissard [31, 32]). Later
on, spectral decimation for more general fractals has been studied by Malozemovet al [35, 36,
106–108].

Definition 8 (spectral decimation). The Laplace operator on a p.c.f. self-similar fractal G
admits spectral decimation, if there exists a rational function R, a finite set A and a constant
λ > 1, such that all eigenvalues of � can be written in the form

λm lim
n→∞ λnR(−n)({w}), w ∈ A, m ∈ N, (26)

where the preimages of w under n-fold iteration of R have to be chosen such that the limit
exists. Furthermore, the multiplicities βm(w) of the eigenvalues depend only on w and m, and
the generating functions of the multiplicities are rational.

The fact that all eigenvalues of � are negative real implies that the Julia set of R has to be
contained in the negative real axis. We will exploit this fact later.

In some cases, such as the higher dimensional Sierpiński gaskets, the rational function R
is conjugate to a polynomial. The method for meromorphic continuation of ζ� presented in
section 4.4 makes use of this assumption.

Recently, Teplyaev [106] showed under the assumption of spectral decimation that the
zeta function of the Laplacian admits a meromorphic continuation to �s > −ε for some
ε > 0 depending on properties of the Julia set of the polynomial given by spectral decimation.
His method uses ideas similar to those used in [81] for the meromorphic continuation of
a Dirichlet series attached to polynomial iteration. Complementary to the ideas used here,
Teplyaev’s method carries over to rational functions R.

4.3. Eigenvalue counting

As in the Euclidean case, the eigenvalue counting function

N(x) =
∑
λk<x

1
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measures the number of eigenvalues less than x. In a physical context, this quantity is often
referred to as the ‘integrated density of states’. It turns out that N(x) in many cases does
not exhibit a pure power law as in the Euclidean case, but shows periodic fluctuations. One
source of this periodicity phenomenon is actually spectral decimation, especially the high
multiplicities of eigenvalues, as will become clear in section 4.4.

Recall the definition of harmonic measure on the Julia set of a polynomial p of degree d
(cf [109]): the sequence of measures

μn = 1

dn

∑
p(n)(x)=ξ

δx

converges weakly to a limiting measure μ, the harmonic measure on the Julia set of p. The
point ξ can be chosen arbitrarily.

Assume now that the Laplace operator on the fractal K admits spectral decimation with a
polynomial p. Then, the relation limn→∞ λn p(−n)({w}) ∈ B(0, x) can be translated into

lim
n→∞ p(n)(λ−nz) = w and |z| < x.

Here, B(0, x) denotes the ball of radius x around 0. By general facts about the polynomial
iteration (cf [39]), the limit exists and defines an entire function of z, the Poincaré function
�(z) satisfying (1). Let

Nw(x) = # {z ∈ B(0, x) | �(z) = w} .

Then, the following relation can be obtained from the definition of harmonic measure:

lim
n→∞ d−nNw(λnx) = μ(�−1(B(0, x)));

this holds for all x small enough to ensure the existence of the inverse function �−1 on B(0, x).
In [110, theorem 5.2], we could prove a relation between the asymptotic behaviour of the

partial counting functions Nw(x) and the harmonic measure of balls μ(B(0, x)). The existence
of the two limits (ρ = logλ d)

lim
x→∞ x−ρNw(x)

lim
t→0

t−ρμ(B(0, t))

is equivalent. We conjectured there that these limits can only exist, if p is either a Chebyshev
polynomial or a monomial. These are the only cases of polynomials with smooth Julia sets (cf
[111]).

Summing up the above discussion, the eigenvalue counting function can be written as

N(x) =
∑
w∈A

∞∑
m=0

βm(w)Nw(λ−mx). (27)

Note that for fixed x, these sums are actually finite. In the known cases, such as the Sierpiński
gasket, the growth of βm(w) is stronger than dm, which implies that the terms for large m
(with Nw(λ−mx) still positive) become dominant in this sum (using that Nw(x) grows like xρ).
This shows that the multiplicity of the eigenvalues has the main influence on the asymptotic
behaviour of N(x). Furthermore, this explains the presence of an oscillating factor in the
asymptotic main term of N(x). We will discuss that in more detail in section 4.4.

4.4. Spectral zeta functions

As in the Euclidean case, the eigenvalues of the Laplace operator � can be put into a Dirichlet
generating function. This will later allow us to use methods and ideas from analytic number
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theory to obtain more precise asymptotic information on N(x). The zeta function is again
given as the Dirichlet generating function of the sequence of eigenvalues (−λk)k:

ζ�(s) =
∑
λk �=0

λ−s
k ,

where all eigenvalues are counted with their multiplicity. This series converges for �s > dS
2 ;

the value dS is called the spectral dimension of the underlying fractal. As opposed to the case
of manifolds, this dimension usually differs from the (Hausdorff) dimension of the space. This
fact has been realized in the early studies of diffusion on fractals; see, e.g., [21, 20]. The zeta
function is related to the eigenvalue counting function by

ζ�(s) =
∫ ∞

0
x−s dN(x) = s

∫ ∞

0
N(x)x−s−1 dx. (28)

The second relation identifies ζ� as the Mellin transform of the counting function N(x). This
relation also gives a more intuitive description of the spectral dimension by the fact that N(x)

is of order x
dS
2 .

For the spectral zeta function on fractals, analytic continuations beyond the abscissa of
convergence are known to exist only in specific cases: if the Laplace operator is defined via a
self-similar Dirichlet form, an analytic continuation to the half-plane �s > 0 can be given (see
remark 4.3), spectral decimation in general allows for an analytic continuation to a half-plane
�s > −ε for some ε > 0 (cf [37, 106, 112]); the case of spectral decimation given by a
polynomial is rather specific, as it allows for an analytic continuation to the whole complex
plane, as we will explain in what follows.

In the following, we will exploit the consequences of spectral decimation. Not too
surprisingly after definition 8, iteration of polynomials will play an important role in this
discussion. Furthermore, since relation (26) can be expressed in terms of the Poincaré function
�, properties of this function will be used to derive the meromorphic continuation of ζ� to the
whole complex plane.

Under the assumptions of spectral decimation, the Julia set of the polynomial p(x) =
adxd +· · ·+ a1x is a subset of the non-positive reals, which contains 0. By [110, theorem 4.1],
this implies that λ = p′(0) � d2. By [110, theorem 4.1], the equality can only occur, if p is
a Chebyshev polynomial, which would correspond to spectral decimation on the unit interval
(viewed as a self-similar fractal). Thus, in the cases of interest, we have that ρ = logλ d < 1

2 .
The Poincaré function � is then an entire function of order ρ.

In order to find the analytic continuation of ζ�(s) to the whole complex plane, we analyse
the partial zeta functions

ζ�,w(s) =
∑

�(−μ)=w,μ �=0

μ−s. (29)

Since �w = 1− 1
w
� is a function of order ρ = logλ d < 1

2 , it can be expressed as a Hadamard
product (cf [113])

1 − 1

w
�(z) =

∏
�(−μ)=w

(
1 + z

μ

)
;

for w = 0, we have the slightly modified expression

�0(z) = 1

z
�(z) =

∏
�(−μ)=0,μ �=0

(
1 + z

μ

)
.

Taking the Mellin transform of log �w, which exists for −1 < �s < −ρ, we obtain

Mw(s) =
∫ ∞

0
(log �w(x)) xs−1 dx = π

s sin πs
ζ�,w(−s). (30)
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Thus, to find the analytic continuation of ζ�,w(s) to the left of its abscissa of convergence, it
suffices to find the analytic continuation of Mw(s) for �s > −ρ. Following slightly different
lines as in [83], we consider the function

�w(z) = p(�(z)) − w

ad (�(z) − w)d
= �w(λz)

ad (−w)d−1�w(z)d
.

Then, we have

log �w(z) = log �w(λz) − d log �w(z) − log ad − (d − 1) log(−w)

and this function tends to 0 exponentially for z → +∞. Taking the Mellin transform, we
obtain

(λ−s − d)Mw(s) =
∫ ∞

0
(log �w(λx) − d log �w(x)) xs−1 dx (for − 1 < �s < −ρ)

=
∫ 1

0
(log �w(λx)) xs−1dx − (log ad + (d − 1) log(−w))

1

s
(∗)

+
∫ ∞

1
(log �w(λx) − d log �w(x) − log ad − (d − 1) log(−w)) xs−1dx

(for �s > −1)

=
∫ 1

0
(log �w(x)) xs−1dx

+
∫ ∞

1
(log �w(λx) − d log �w(x) − log ad − (d − 1) log(−w)) xs−1dx

(for �s > 0)

=
∫ ∞

0
(log �w(x)) xs−1 dx.

Reading the line marked (∗) of this computation shows that Mw(s) has a simple pole at s = 0
with the residue

Res
s=0

Mw(s) = log ad

d − 1
+ log(−w).

Furthermore, this computation shows that Mw(s) is holomorphic in the half-plane �s > 0.
Using (30) gives the analytic continuation of ζ�,w(s) for �s < 0:

ζ�,w(s) = s sin πs

π(λs − d)

∫ ∞

0
(log �w(x)) x−s−1 dx. (31)

This shows that ζ�,w(−m) = 0 for m ∈ N0 (for s = 0 the double zero of s sin πs cancels the
simple pole of Mw(−s)). These could be called the ‘trivial zeros’ as in the case of the Riemann
zeta function. Furthermore, we obtain

ζ ′
�,w(0) = − log ad

d − 1
− log(−w).

Equation (31) even lends itself to the numerical computation of values of ζ�,w(s) for �s < 0,
as we will see in section 4.5.2.

By our assumption on spectral decimation, the generating functions of the multiplicities
of the eigenvalues are rational

Rw(z) =
∞∑

m=0

βm(w)zm.

Thus, we can write the spectral zeta function of � as

ζ�(s) =
∑
w∈A

∞∑
m=0

βm(w)
∑

�(−μ)=w

(λmμ)−s =
∑
w∈A

Rw(λ−s)ζ�,w(s). (32)
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Since all functions involved in the last (finite) sum are meromorphic in the whole complex
plane, we have found the meromorphic continuation of ζ� to the whole complex plane. The
functions ζ�,w(s) have at most simple poles in the points s = ρ + 2kπ i

log λ
(k ∈ Z). Furthermore,

the residues of these poles do not depend on w. All other poles of ζ� come from the poles of
the functions Rw(λ−s). Since these are rational functions of λ−s, their poles are equally spaced
on vertical lines.

Summing up, ζ�(s) has a meromorphic continuation to the whole complex plane with
possible poles in the points

s = − logλ βw, j + 2kπ i

log λ
with k ∈ Z,

where the βw, j are the poles of the rational functions Rw(z) and (at most) simple poles in the
points

s = ρ + 2kπ i

log λ
with k ∈ Z.

The spectral dimension dS is then given as

dS

2
= max

(
ρ, max

w, j
(−� logλ βw, j)

)
,

the rightmost poles of the function ζ�.
Furthermore, since the functions ζ�,w(s) are bounded for �s � ρ + ε and the functions

Rw(λ−s) are bounded along every vertical line, which contains no poles, the function ζ�(s) is
bounded along every vertical line c + it for c > ρ, which does not contain a pole of any of the
functions Rw(λ−s).

In the case of the Sierpiński gasket and its higher dimensional analogues, the rightmost
poles of ζ� come from the rational functions Rw(λ−s). Furthermore, the relation∑

w∈A

Rw(1/d) = 0

holds, which amounts to a cancellation of the poles of the functions ζ�,w in (32). Thus, the
analytic behaviour of the function ζ� is mainly governed by the functions Rw. This means that
in this respect the effects of multiplicity prevail over the individual eigenvalues. In a recent
paper [112], it was proved that the spectral zeta function of fully symmetric fractals has an
analytic continuation to the region �s > −ε for some positive ε; furthermore, it is shown that
all poles of ζ� have real part 0 or dS

2 . This explains the above-mentioned cancellation of poles
in this case.

We now investigate the asymptotic behaviour of N(x) under the assumption that βm(w)

grows exponentially faster than dm for some w ∈ A. This implies that dS
2 > ρ. We use the

classical Mellin–Perron formula (cf [114]) to express N(x) in terms of ζ�(s):

N(x) = lim
T→∞

1

2π i

∫ c+iT

c−iT
ζ�(s)xs ds

s
,

for any c > dS
2 . Now the line of integration can be shifted to the left to �(s) = c′ for

dS
2 > c′ > ρ. This is justified, because ζ�(σ + it) remains bounded for |t| → ∞ and σ > ρ.

Then, we have

N(x) = lim
T→∞

⎛
⎝ 1

2π i

∫ c′+iT

c′−iT
ζ�(s)xs ds

s
−

∑
2π |k|<T log λ

Res
s=dS/2+2kπ i/ log λ

ζ�(s)xs

s

⎞
⎠ .
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Now the limit of the integral
∫ c′+iT

c′−it can be shown to exist for T → ∞, which shows that the
limit

lim
T→∞

∑
2π |k|<T log λ

Res
s=dS/2+2kπ i/ log λ

ζ�(s)xs

s

exists. This can be rewritten as xdS/2H(logλ x) for a periodic continuous function H given by
its Fourier expansion

H(t) =
∑
k∈Z

e2kπ it

dS/2 + 2kπ i/ log λ
Res

s=dS/2+2kπ i/ log λ
ζ�(s).

The limit of the integral can be shown to be O(xc′
). Thus, we have shown

N(x) = xdS/2H(logλ x) + O(xc′
). (33)

In particular, the limit limx→∞ x−dS/2N(x) does not exist.
We remark here that there exists a totally different approach to zeta functions of fractals

due to Lapidus and his collaborators [10, 41, 115, 116]. In this geometric approach, the volume
of tubular neighbourhoods of the fractal G

VG(ε) = vol ({x ∈ R
n | d(x, G) < ε})

is analysed. The asymptotic behaviour of VG(ε) for ε → 0 gives rise to the definition of a zeta
function. In this geometric context, the complex solutions of (3) occur as poles of the zeta
function; they are also called the ‘complex dimensions’ of the fractal G in this context. This
approach is motivated by the definition of Minkowski content, which itself turned out to be
too restrictive to measure (most of the) self-similar fractals.

4.5. Trace of the heat kernel

The diffusion semi-group At introduced in section 3.3 can be given in terms of the heat kernel
pt (x, y). As opposed to the situation in the Euclidean case, the knowledge of the behaviour of
the heat kernel for t → 0 is by far not as precise. Kumagai [117] proved the following lower
and upper estimates of the form:

t−
dS
2 exp

(
−c1

(
d(x, y)dw

t

) 1
dw−1

)
� pt (x, y) (34)

pt (x, y) � t−
dS
2 exp

(
−c2

(
d(x, y)dw

t

) 1
dw−1

)
, (35)

where dS and dw are the spectral and the walk dimension of the fractal, respectively. These
dimensions are related to the Hausdorff dimension d f of the fractal via the so-called Einstein
relation

dSdw = 2d f .

In the fractal case usually dw > 2, as opposed to the Euclidean case, where dw = 2, which
implies dS = d f .

Only recently, a conjecture by Barlow and Perkins [20] could be proved by Kajino [118].
Namely that for any x ∈ K the limit

lim
t→0

t
dS
2 pt (x, x)
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does not exist for a large class of self-similar fractals. This gives an indication as to why
obtaining more precise information on the heat kernel than the estimates (34) and (35) would
be very difficult.

Even if the precise behaviour of the heat kernel seems to be far from reach, the trace of
the heat kernel

K(t) =
∫

K
pt (x, x) dH(x)

can still be analysed in some detail under the assumption of spectral decimation. The reason
for this are the two relations between K(t), N(x), and ζ�:

K(t) =
∫ ∞

0
e−tx dN(x) = t

∫ ∞

0
N(x) e−xt dx, (36)

ζ�(s) = 1

�(s)

∫ ∞

0
K(t)ts−1 dt (37)

valid for t > 0 and �s > dS
2 . The first expresses K(t) as the Laplace transform of N(x), and

the second gives ζ� as the Mellin transform of K(t).
Given the precise knowledge on the zeta function obtained in section 4.4, we can use the

Mellin inversion formula to derive asymptotic information on K(t) for t → 0. We have

K(t) = 1

2π i

∫ c+i∞

c−i∞
ζ�(s)�(s)t−s ds, (38)

where integration is along the vertical line �s = c > dS
2 . We note that the Gamma function

decays exponentially along vertical lines, whereas Dirichlet series grow at most polynomially
by the general theory of Dirichlet series (cf [119]). Thus, convergence of the integral is
guaranteed.

Shifting the line of integration in (38) to �s = −M − 1
2 (M ∈ N) and taking the poles of

the integrand into account (note that the poles of the Gamma function are compensated by the
‘trivial’ zeros of ζ�), we obtain for t → 0

K(t) = t−
dS
2 H dS

2
(logλ t) + H0(logλ t) + O(tM+ 1

2 ). (39)

Here, H dS
2

and H0 are the periodic continuous functions of period 1, whose Fourier coefficients

are given as the residues of ζ�(s)�(s) in the poles on the lines �s = dS
2 or �s = 0, respectively

(using the recent result by Steinhurst and Teplyaev [112] on the location of the poles of ζ�
for fully symmetric fractals). By the strong decay of the Gamma function, these functions are
even real analytic. Since M can be made arbitrarily large, the error term decays faster than any
positive power of t for t → 0.

The existence of complex poles of the zeta function thus implies the presence of
periodically oscillating terms in the asymptotic behaviour of the trace of the heat kernel for
t → 0. This implies that the limit limt→0 tdS/2 pt (x, x) does not exist on a set of positive measure
for x in accordance with the above-mentioned result by Kajino [118]. The consequences of the
presence of complex poles of the zeta function to properties of the heat kernel, the density of
states and the partition function, as well as the physical implications of the resulting fluctuating
behaviour in these quantities, have been discussed in [42, 43, 120].

4.5.1. Casimir energy on fractals. As an application of the spectral zeta function and its
properties, we compute the Casimir energy of the Sierpiński gasket and similar fully symmetric
fractals. We follow the lines of the exposition in [44, 121] and [15] and refer the reader to
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these works for further details. For a very recent discussion of Casimir physics on fractals, we
refer the reader to Dunne [120].

Consider the differential operator P = − ∂2

∂τ 2 − � on (R/ 1
β
Z) × G, where G denotes a

fully symmetric fractal in the sense of [112] admitting spectral decimation. As usual, we set
the parameter β = 1/kT . Then, the eigenfunctions of P are the products of eigenfunctions of
the operators ∂2/∂τ 2 and �; the eigenvalues are sums 4k2π2/β2 + λn for k ∈ Z and n ∈ N.
The zeta function of the operator P is then given by (for �s > dS+1

2 )

ζP(s) = 1

�(s)

∫ ∞

0
K(t)

∑
n∈Z

e
− 4π2n2

β2 t
ts−1dt.

Using the theta-function relation∑
n∈Z

e
− 4π2n2

β2 t = β

2
√

πt

∑
n∈Z

e− β2n2

4t ,

we obtain the relation

ζP(s) = β

2
√

π�(s)
�

(
s − 1

2

)
ζ�

(
s − 1

2

)
+ β√

π�(s)

∫ ∞

0
K(t)

∞∑
n=1

e− β2n2

4t ts− 3
2 dt (40)

valid for �s > dS
2 + 1

2 . The first summand has an analytic continuation to the whole complex
plane, whereas the second summand represents an entire function. This gives the analytic
continuation of ζP to the whole complex plane, which allows us to compute ζ ′

P(0), the logarithm
of the regularized determinant of P.

For the rescaled operator P/μ2, we have

ζ ′
P/μ2 (0) = ζ ′

P(0) + ζP(0) ln μ2.

From (40), we compute ζP(0) = 0, where we have again used the fact from [112] that ζ� has
no poles with �s < 0 as well as the existence of an analytic continuation obtained in section
4.4. Furthermore, we obtain

ζ ′
P(0) = −βζ�

(
−1

2

)
+ β√

π

∞∑
n=1

∞∑
j=1

∫ ∞

0
e− β2n2

4t −λ jt t−
3
2 dt.

The integral and the summation over n can be evaluated explicitly, which finally gives

ζ ′
P(0) = −βζ�

(
−1

2

)
− 2

∞∑
j=1

ln(1 − e−β
√

λ j ).

The case of the Sierpiński gasket and other fully symmetric self-similar fractal shows an
important contrast to the manifold case, where the zeta function (generically) has a pole at − 1

2
(see section 4.1). In the manifold case, the value ζ�(− 1

2 ) has to be replaced by the finite part
of ζ�(s) at s = − 1

2 , the function minus the principal part at the polar singularity (cf [15]). The
presence of a pole of ζ�(s) at s = − 1

2 amounts to a scale dependence of the value ζ ′
P(0); if ζ�

has no pole at s = − 1
2 , then ζ ′

P(0) is scale invariant. This happens in the fractal case as well
as for specific manifolds, as is mentioned in [45, p 86].

Now, the energy of the system is given by

E = −1

2

∂

∂β
ζ ′

P/μ2 (0) = 1

2
ζ�

(
−1

2

)
+

∞∑
j=1

√
λ j

eβ
√

λ j − 1
.

Letting β → ∞, which is equivalent to letting temperature tend to 0, gives the Casimir energy

ECas = 1

2
ζ�

(
−1

2

)
.
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4.5.2. Numerical computations. We will now describe the numerical computation of the
values ζ�,w(−1/2), which are needed for the computation of ζ�(−1/2) in the case of the
Sierpiński gasket. This fractal admits spectral decimation with the polynomial p(x) = x(x+5)

(cf [2, 27]). The corresponding Poincaré function is then given by the unique holomorphic
solution of the equation

�(5z) = �(z)(�(z) + 5), �(0) = 0, �′(0) = 1. (41)

We use the expression for ζ�(s) for Dirichlet boundary conditions derived in [83, section 7]:

ζ D
� (s) = 5−sζ�,−2(s) + 3

5s(5s − 1)(5s − 3)
ζ�,−3(s) + 2 · 5s − 5

(5s − 1)(5s − 3)
ζ�,−5(s).

Combining this with (31) and inserting s = − 1
2 gives

ζ D
�

(
−1

2

)
= 1

2π(
√

5 − 2)

[√
5
∫ ∞

0
log �−2(x)x− 1

2 dx

+155 + 135
√

5

88

∫ ∞

0
log �−3(x)x− 1

2 dx

−245 + 47
√

5

124

∫ ∞

0
log �−5(x)x− 1

2 dx

]
. (42)

From the general information on the asymptotic behaviour of Poincaré functions derived in
[110, 122], we obtain estimates of the form

exp(C1xρ ) � �(x) � exp(C2xρ )

for positive constants C1 and C2, ρ = log5 2 and valid for x � x0. Such estimates can be proved
easily by first showing the estimate for an interval of the form [x0, 5x0] and then extending it
by using the functional equation (41). For instance, we used C1 = 1, C2 = 1.08 and x0 = 10.
Then, the functions log �w(x) tend to 0 like exp(−C2xρ ) for x → ∞. Given a precision goal
ε > 0, we choose T so large that∫ ∞

T
exp(−C2xρ )x− 1

2 dx <
ε

2
.

Then, the improper integrals in (42) can be replaced by
∫ T

0 . The functions �w(x) can be
computed to high precision by using the power series representation of �(x) for |x| � 1 and
the functional equation (41) to obtain

�(x) = p(k+1)(�(x/5k+1))

for 5k < |x| � 5k+1. This allows the computation of the remaining finite integrals up to
precision ε

2 . We obtained

ED
Cas = 0.547 469 3544 . . .

for the Casimir energy of the two-dimensional Sierpiński gasket with Dirichlet boundary
conditions.

Similarly, we have for Neumann boundary conditions (cf [83])

ζ N
� (s) = 1

(5s − 1)(5s − 3)
((2 · 5s − 5)ζ�,−3(s) + 5sζ�,−5(s)).

This gives by the same numerical estimates as before

EN
Cas = 2.134 394 089 264 . . .

for the Casimir energy two-dimensional Sierpiński gasket with Neumann boundary conditions.
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4.6. Self-similarity and the renewal equation

Let K be a p.c.f. self-similar fractal with self-similar structure (K, �, (Fi)
m
i=1) with contraction

ratios αi and Hausdorff dimension ρ. Let K be equipped with a Dirichlet form with parameters ri

and λ as described in section 3.5. Denote by ND(x) and NN(x) the eigenvalue counting functions
for the Laplace operator under Dirichlet and Neumann boundary conditions, respectively. Then,
the following crucial fact was observed in [49]:

m∑
i=1

ND

(
riα

ρ
i

λ
x

)
� ND(x) � NN(x) �

m∑
i=1

NN

(
riα

ρ
i

λ
x

)
, (43)

where αi are the contraction ratios introduced in section 2, ρ is the Hausdorff dimension of
K, and the ri are the weights used for the construction of the Dirichlet form E in section 3.5.
Furthermore, the inequalities

ND(x) � NN(x) � ND(x) + #(V0)

hold, where V0 is defined in definition 2. Setting

γi =
(

riα
ρ
i

λ

)1/2

,

we end up with the equation

ND(x) =
m∑

i=1

ND(γ 2
i x) + g(x), (44)

where g(x) is defined as the difference between the left-hand side and the sum on the right-hand
side and remains bounded by (43). A similar equation holds for NN(x).

Equation (44) can be transformed into the classical renewal equation occurring in
probability theory (cf [123]). The asymptotic behaviour of the solutions of this equation
is described by the following theorem (stated as in [8]).

Theorem 4.1 (renewal theorem). Let t∗ > 0 and f be a measurable function on R, such that
f (t) = 0 for t < t∗. If f satisfies the renewal equation

f (t) =
N∑

j=1

p j f (t − α j) + u(t),

where α1, . . . , αN are positive real numbers, p j > 0 for j = 1, . . . , N and
∑N

j=1 p j = 1.
Assume that u is non-negative and directly Riemann integrable on R with u(t) = 0 for t < t∗.
Then, the following conclusions hold.

(i) Arithmetic (or lattice) case: if the group generated by α j is discrete (i.e. there exist T > 0
and integers mj with greatest common divisor 1 such that α j = T mj; all the ratios αi/α j

are then rational), then limt→∞ | f (t) − G(t)| = 0, where the T -periodic function G is
given by

G(t) =
⎛
⎝ N∑

j=1

p jmj

⎞
⎠

−1 ∞∑
k=−∞

u(t + kT ).

(ii) Non-arithmetic (non-lattice) case: if the group generated by the α j is dense in R (i.e. at
least one of the ratios αi/α j is irrational), then

lim
t→∞ f (t) =

⎛
⎝ N∑

j=1

p jα j

⎞
⎠

−1 ∫ ∞

−∞
u(t) dt.
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Corollary 4.1. Let f be a solution of the equation

f (x) =
m∑

i=1

f
(
γ 2

i x
) + g(x),

where 0 < γi < 1 and g is a bounded function. Let dS be the unique positive solution of the
equation

m∑
i=1

γ s
i = 1,

then the following assertions hold.

(i) Arithmetic (or lattice) case: if the group generated by the values log γ j is discrete,
generated by T > 0, then

f (x) = xdS/2 (G((log x)/2) + o(1))

for a periodic function G of period T .
(ii) Non-arithmetic (or non-lattice) case: if the group generated by the values log γ j is dense,

then

lim
x→∞ f (x)x−dS/2

exists.

The corollary is an immediate consequence of the theorem by setting f (et ) = edSt/2F(t)
and applying the theorem to F and g(et ) e−dSt/2.

Summing up, we have the following theorem.

Theorem 4.2 ([49, theorem 2.4]). Let (K, �, (Fi)
m
i=1) be a self-similar structure with

contraction ratios αi and Hausdorff dimension ρ. Let K be equipped with a Dirichlet form
with parameters ri and λ as described in section 3.5. Let dS

2 be the unique positive solution of
the equation

m∑
i=1

(
riα

ρ
i

λ

)s

= 1,

the ‘spectral dimension’ of the harmonic structure of K. Then, the following assertions hold.

(i) Lattice case: if the group generated by the values log(riα
ρ
i /λ) is discrete, then

ND(x) = xdS/2 (G((log(x))/2) + o(1))

for a periodic function G, which is non-constant in general.
(ii) Non-lattice case: if the group generated by the values log(riα

ρ
i /λ) is dense, then

lim
x→∞ ND(x)x−dS/2

exists.

The behaviour of NN(x) for x → ∞ is the same.

Remark 4.1. Similar ideas are used in [124] to study the asymptotic expansion of the eigenvalue
counting function of the Laplace operator on an open set G, which is formed from an open set
G0 with smooth boundary as

G =
∞⋃

n=0

Gn

with

Gn+1 =
m⋃

i=1

Fi(Gn),

with similitudes Fi and all the unions assumed to be disjoint.
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Remark 4.2. Very recently, Kajino [125] extended this approach to infinitely ramified fractals
such as the Sierpiński carpets. He observed that in order to have an inequality of the form (43)
it suffices to have the corresponding self-similarity property

E ( f , f ) = λ

m∑
i=1

r−1
i E ( f ◦ Fi, f ◦ Fi)

of the underlying Dirichlet form. This self-similarity together with symmetries characterizes
the Dirichlet form on the Sierpiński carpet uniquely, as was shown in [52].

Remark 4.3. Taking the Mellin transform (28) of equation (44) yields an analytic continuation
of ζ�(s) to the half-plane �s > 0 by

ζ�(s) = s

1 − ∑m
i=1 γ 2s

i

∫ ∞

0
g(x)x−s−1 dx

exhibiting poles at the complex solutions of the equation
m∑

i=1

γ 2s
i = 1,

the complex dimensions of the fractal structure (cf [10, 41, 42, 116]).

5. Self-similarity and the Poincaré equation

As has been described in section 3.2, diffusion processes on finitely ramified fractals, which
have strong self-similarity and symmetry properties, may be defined as limits of discrete simple
symmetric nearest-neighbour random walks on the associated approximating graphs. The
analysis is based on a renormalization-type argument, involving self-similarity and decimation
invariance.

Let Xt be the Markov process defined in section 3.2. This process has continuous sample
paths (in fact, it is a Feller process), which is invariant under the rescaling x → 2x, t → 5t by
definition. By the construction of the process Xt the time scaling is governed by a super-critical
branching process.

By the general theory of branching processes (cf [22]), the time scaling leads to an iterative
functional equation, i.e. the Poincaré equation. The fluctuating behaviour of its solution led
to multiplicative periodicity phenomena in the asymptotics of the transition probabilities, the
trace of the heat kernel and the eigenvalue counting function. In this section, we will give a
more detailed description of the asymptotic behaviour of the Poincaré functions and relate
the periodic fluctuations to the Julia set of the underlying polynomial. It should be mentioned
that the fluctuations are usually very small in amplitude; this has been observed by Karlin and
McGregor [126, 127] and Dubuc [128].

5.1. Historical remarks on the Poincaré equation

In the seminal papers [30, 129], Poincaré has studied the equation

f (λz) = R( f (z)), z ∈ C, (45)

where R(z) is a rational function and λ ∈ C. He proved that if R(0) = 0, R′(0) = λ, and
|λ| > 1, then there exists a meromorphic (for rational R) or entire (for polynomial R) solution
of (45). After Poincaré, (45) is called the Poincaré equation and the solutions of (45) are
called the Poincaŕe functions. The next important step was made by Valiron [130, 131], who
investigated the case, where R(z) = p(z) is a polynomial, i.e.

f (λz) = p( f (z)), z ∈ C, (46)
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and obtained conditions for the existence of an entire solution f (z). Furthermore, he derived
the following asymptotic formula for M(r) = max|z|�r | f (z)|:

ln M(r) ∼ rρQ

(
ln r

ln |λ|
)

, r → ∞. (47)

Here, Q(z) is a 1-periodic function bounded between two positive constants: ρ = ln d
ln |λ| and

d = deg p(z).
Various aspects of the Poincaré functions have been studied in [110, 122, 132–137].

5.2. Asymptotics and dynamics in the real case. Properties of the Julia set

Further refinements are possible when λ > 1 is real and p(z) = pdzd + · · · + p1z + p0 is a
polynomial with real coefficients. Without loss of generality, we can also assume that

f (0) = p(0) = 0; p′(0) = λ > 1 and f ′(0) = 1.

For the reader’s convenience, we recall now some basic notions from the iteration theory and
complex dynamics [38, 6]. To make things shorter, we give here definitions which slightly
differ from standard ones, but are equivalent to them in the polynomial case. That will suffice
our needs, in what follows.

We will especially need the component of ∞ of Fatou set F (p) given by

F∞(p) =
{

z ∈ C | lim
n→∞ p(n)(z) = ∞

}
, (48)

and the filled Julia set is given by

K(p) = {z ∈ C | (p(n)(z))n∈N is bounded} = C \ F∞(p). (49)

Now, according to [6], one can define the Julia set J (p) as

∂K(p) = ∂F∞(p) = J (p). (50)

In the case of polynomials, this can be used as an equivalent (and much simpler) definition of
the Julia set.

Let f (z) be an entire solution of (46). In contrast with the previous section (where the
asymptotics of | f (z)| is studied), here we collect some results on the asymptotics of the
solution f (z) itself (in some angular regions of the complex plane). Our presentation is based
on [83, 122, 110].

Theorem 5.1 ([83, theorem 1]). Let f be an entire solution of the functional equation (46).
Furthermore, suppose that F∞(p) contains an angular region of the form

Wβ = {z ∈ C \ {0} | | arg z| < β}
for some β > 0. Then, for any ε > 0 and any M > 0, the asymptotic relation

f (z) = exp

(
zρQ

(
log z

log λ

)
+ o

(|z|−M
))

(51)

holds uniformly for z ∈ Wβ−ε, where Q is a periodic holomorphic function of period 1 on the
strip {w ∈ C | |�w| <

β

log λ
}. The real part of zρQ(

log z
log λ

) is bounded between two positive
constants; Q takes real values on the real axis.

Remark 5.1. Note that the condition on the Fatou component F∞ is used in the proof of this
theorem to ensure that f (z) tends to infinity in the angular region Wβ (cf [83]). Therefore, this
condition could be replaced by

lim
z→∞ f (z) = ∞ for | arg z| < β.
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Yet a stronger result can be derived under the additional assumption that the Julia set
J (p) of polynomial p(z) is real (see corollary 5.1).

Remark 5.2. In the context of spectral decimation, the assumption that the Julia set J (p)

is real, is rather natural: the Julia set is closely related to level sets of the Poincaré function,
which in turn constitute the spectrum of the self-adjoint operator �.

Corollary 5.1 ([110, corollary 4.1]). Assume that p is a real polynomial such that J (p) is real
and all coefficients pi (i � 2) of p are non-negative. Then, J (p) ⊂ R

− ∪ {0}, and therefore,

f (z) ∼ exp

(
zρQ

(
log z

log λ

))
(52)

for z → ∞ and | arg z| < π . Here, Q is a periodic function of period 1 holomorphic in the strip
given by |�w| < π

log λ
. Furthermore, for every ε > 0, the real part of zρQ(

log z
log λ

) is bounded
between two positive constants for | arg z| � π − ε.

If p(z) is a quadratic polynomial (a case arising in the context of spectral decimation), it
is possible to give an exact criterion for reality of J (p):

Lemma 5.1 ([122, lemma 6.7]). Let

p(z) = az(z − ω), 0 �= ω ∈ R. (53)

Then, Julia set J (p) is real, if and only if the following condition is fulfilled:

a|ω| �
{

2, ω > 0
4, ω < 0

. (54)

Note that in the above lemma |p′(0)| = a|ω| and d = deg p(z) = 2. Therefore, (54) can
be rewritten in the form

|p′(0)| �
{

d, ω > 0
d2, ω < 0

. (55)

It turns out that the necessity part of latter criterion (in the form (55)) is valid for general
polynomial p, with real Julia set J (p). Namely, the following result of Pommerenke–Levin–
Eremenko–Yoccoz type (on inequalities for multipliers) is true

Theorem 5.2 ([110, theorem 4.1]). Let p be a polynomial of degree d > 1 with real Julia set
J (p). Then, for any fixed point ξ of p with minJ (p) < ξ < maxJ (p), we have |p′(ξ )| � d.
Furthermore, |p′(minJ (p))| � d2 and |p′(maxJ (p))| � d2. An equality in one of these
inequalities implies that p is linearly conjugate to the Chebyshev polynomial Td of degree d.

Remark 5.3. This theorem can be compared to [136, 138, 133, 139] where inequalities (of the
opposite direction) for the multipliers of p with connected Julia sets were derived.

5.3. Future perspectives

Below we present several open questions related to the material of this paper.
What can be said about the existence of analytic continuations beyond the imaginary axis

of spectral zeta functions for more general classes of fractals, especially infinitely ramified
fractals? (See, e.g., the conjectures stated in [112].)

Can spectral decimation in the general setting as given by (26) be understood in terms of
the according Poincaré function of the rational function R? This would require knowledge
of the asymptotic behaviour of meromorphic solutions of the general Poincaré equation
f (λz) = R( f (z)).
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How far can the spectral properties of elliptic and more general differential operators on
Riemannian manifolds be carried over to their fractal analogues? Can the special values of the
fractal spectral zeta function be assigned a geometric meaning?

The asymptotic behaviour of the solutions of the Poincaré equation in the case of arbitrary
complex polynomials and complex scaling factor λ has been investigated in [122]. It would
be interesting to see applications of these results in physics.
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[87] Minakshisundaram S and Pleijel Å 1949 Some properties of the eigenfunctions of the Laplace-operator on
Riemannian manifolds Can. J. Math. 1 242–56

[88] Gilkey P B 1975 The boundary integrand in the formula for the signature and Euler characteristic of a
Riemannian manifold with boundary Adv. Math. 15 334–60

[89] Gilkey P B 1995 Invariance Theory, the Heat Equation and the Atiyah–Singer Index Theorem 2nd edn (Studies
in Advanced Mathematics) (Boca Raton, FL: CRC Press)

[90] Greiner P 1971 An asymptotic expansion for the heat equation Arch. Ration. Mech. Anal. 41 163–218
[91] Atiyah M, Bott R and Patodi V K 1973 On the heat equation and the index theorem Invent. Math.

19 279–330
[92] Gilkey P B 2004 Asymptotic Formulae in Spectral Geometry (Studies in Advanced Mathematics) (Boca Raton,

FL: Chapman and Hall/CRC Press)
[93] Fulling S A and Kennedy G 1988 The resolvent parametrix of the general elliptic linear differential operator:

a closed form for the intrinsic symbol Trans. Am. Math. Soc. 310 583–617
[94] Bordag M, Elizalde E and Kirsten K 1996 Heat kernel coefficients of the Laplace operator on the D-dimensional

ball J. Math. Phys. 37 895–916
[95] Weyl H 1912 Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen

(mit einer anwendung auf die theorie der hohlraumstrahlung) Math. Ann. 71 441–79
[96] Kac M 1966 Can one hear the shape of a drum? Am. Math. Mon. 73 1–23
[97] Seeley R T 1967 Complex powers of an elliptic operator Singular Integrals. Proc. Symp. in Pure Mathematics

(Chicago, IL, 1966) (Providence, RI: American Mathematical Society) pp 288–307
[98] Svaiter B F and Svaiter N F 1993 Zero point energy and analytic regularizations Phys. Rev. D 47 4581–5
[99] Weldon H A 1986 Proof of zeta-function regularization of high-temperature expansions Nucl. Phys.

B 270 79–91
[100] Jorgenson J and Lang S 1993 Basic Analysis of Regularized Series and Products (Lecture Notes in Mathematics

vol 1564) (Berlin: Springer)
[101] Ray D B and Singer I M 1971 R-torsion and the Laplacian on Riemannian manifolds Adv. Math. 7 145–210
[102] Dowker J S and Critchley R 1976 Effective lagrangian and energy–momentum tensor in de Sitter space Phys.

Rev. D 13 3224–32
[103] Hawking S W 1977 Zeta function regularization of path integrals in curved spacetime Commun. Math.

Phys. 55 133–48
[104] Simon B 1977 Notes on infinite determinants of Hilbert space operators Adv. Math. 24 244–73
[105] Dunne G V 2008 Functional determinants in quantum field theory J. Phys. A: Math. Theor. 41 304006
[106] Teplyaev A 2007 Spectral zeta functions of fractals and the complex dynamics of polynomials Trans. Am.

Math. Soc. 359 4339–58
[107] Bajorin N, Chen T, Dagan A, Emmons C, Hussein M, Khalil M, Mody P, Steinhurst B and Teplyaev A 2008

Vibration modes of 3n -gaskets and other fractals J. Phys. A: Math. Theor. 41 015101
[108] Bajorin N, Chen T, Dagan A, Emmons C, Hussein M, Khalil M, Mody P, Steinhurst B and Teplyaev A 2008

Vibration spectra of finitely ramified, symmetric fractals Fractals 16 243–58
[109] Ransford T 1995 Potential Theory in the Complex Plane (London Mathematical Society Student Texts vol 28)

(Cambridge: Cambridge University Press)
[110] Derfel G, Grabner P J and Vogl F 2008 Complex asymptotics of Poincaré functions and properties of Julia sets
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