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Abstract

The asymptotic behaviour of the solutions of Poincaré’s functional equation f(λz) =

p(f(z)) (λ > 1) for p a real polynomial of degree ≥ 2 is studied in angular regions W

of the complex plain. It is known [9, 10] that f(z) ∼ exp(zρF (logλ z)), if f(z) → ∞ for

z → ∞ and z ∈ W , where F denotes a periodic function of period 1 and ρ = logλ deg(p).

In the present paper we refine this result and derive a full asymptotic expansion. The

constancy of the periodic function F is characterised in terms of geometric properties of

the Julia set of p. For real Julia sets we give inequalities for multipliers of Pommerenke-

Levin-Yoccoz type. The distribution of zeros of f is related to the harmonic measure on

the Julia set of p.
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1. Introduction

1·1. Historical remarks

In his seminal papers [36, 37] H. Poincaré has studied the equation

f(λz) = R(f(z)), z ∈ C, (1.1)

where R(z) is a rational function and λ ∈ C. He proved that, if R(0) = 0, R′(0) = λ, and

|λ| > 1, then there exists a meromorphic or entire solution of (1.1). After Poincaré, (1.1)

is called the Poincaré equation and solutions of (1.1) are called the Poincaré functions .

The next important step was made by G. Valiron [45, 46], who investigated the case,

where R(z) = p(z) is a polynomial, i.e.

f(λz) = p(f(z)), z ∈ C, (1.2)

and obtained conditions for the existence of an entire solution f(z). Furthermore, he

derived the following asymptotic formula for M(r) = max|z|≤r |f(z)|:

logM(r) ∼ rρF

(

log r

log |λ|

)

, r → ∞. (1.3)

Here F (z) is a 1-periodic function bounded between two positive constants, ρ = log d
log |λ|

and d = deg p(z).

Different aspects of the Poincaré functions have been studied in the papers [9, 10, 12,

14, 21, 41]. In particular in [9], in addition to (1.3), asymptotics of entire solutions f(z)

on various rays reiϑ of the complex plane have been found.

It turns out that this asymptotic behaviour heavily depends on the arithmetic nature

of λ. For instance, if argλ = 2πβ, and β is irrational, then f(z) is unbounded along any

ray arg z = ϑ (cf. [9]).

1·2. Assumptions

In the present paper we concentrate on the simplest, but maybe most important case

for applications, namely, when λ is real and p(z) is a real polynomial (i. e. all coefficients

of p(z) are real).

It is known from [46] and [9] that, if f(z) is an entire solution of (1.2), then the only

admissible values for f0 = f(0) are the fixed points of p(z) (i. e. p(f0) = f0). Moreover,

entire solutions exist, if and only if there exists an n0 ∈ N such that

λn0 = p′(f0).

It was proved in [9, Propositions 2.1–2.3] that the general case may be reduced to the

simplest case

f(0) = p(0) = 0 and p′(0) = λ > 1

by a change of variables. In the same vein, we can assume without loss of generality that

f ′(0) = 1 and the polynomial p is monic (i. e. the leading coefficient is 1)

p(z) = zd + pd−1z
d−1 + · · ·+ p1z. (1.4)

1·3. Poincaré and Schröder equations

The functional equation (1.2) with the additional (natural) conditions f(0) = 0 and

f ′(0) = 1 is closely related to Schröder’s functional equation (cf. [42])

g(p(z)) = λg(z), g(0) = 0 and g′(0) = 1 (1.5)
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which was used by G. Koenigs [22, 23] to study the behaviour of p under iteration around

the repelling fixed point z = 0. By definition, g is the local inverse of f around z = 0.

Both functions together provide a linearisation of p around its repelling fixed point z = 0

g(p(f(z))) = λz and g(p(n)(f(z))) = λnz,

where p(n)(z) denotes the n-th iterate of p given by p(0)(z) = z and p(n+1)(z) = p(p(n)(z)).

We note here that (1.1) and (1.2) are also called Schröder equation by some authors.

For instance, the value distribution of solutions of the Poincaré (alias Schröder) equation

(1.1) has been investigated in [21].

1·4. Branching processes and diffusion on fractals

Iterative functional equations occur in the context of branching processes (cf. [20]).

Here a probability generating function

q(z) =

∞
∑

n=0

pnz
n

encodes the offspring distribution, where with pn ≥ 0 is the probability that an individual

has n offspring in the next generation (note that q(1) = 1). The growth rate λ = q′(1)

decides whether the population is increasing (λ > 1) or dying out λ ≤ 1. In the first case

the branching process is called super-critical. The probability generating function q(n)(z)

(n-th iterate of q) encodes the distribution of the size Xn of the n-th generation under

the offspring distribution q. In the case of a super-critical branching process it is known

that the random variables λ−nXn tend to a limiting random variable X∞. The moment

generating function of this random variable

f(z) = Ee−zX∞

satisfies the functional equation (cf. [20])

f(λz) = q(f(z)),

which is (1.2), if q is a polynomial. Furthermore, this equation can be transformed into

(1.2), if q is conjugate to a polynomial by a Möbius transformation, especially q(z) =
1

p(1/z) , where p is a polynomial.

Branching processes have been used in [1, 2, 30] to model time for the Brownian

motion on certain types of self-similar structures such as the Sierpiński gasket. In this

context the zeros of the solution of (1.2) are the eigenvalues of the infinitesimal generator

of the diffusion (“Laplacian”), if the generating function of the offspring distribution is

conjugate to a polynomial (cf. [10, 18, 31, 43, 44]). In this case the zeros of f have to be

real, since they are eigenvalues of a self-adjoint operator. This motivates the investigation

of real Julia sets in Section 4.

1·5. Contents

The paper is organised as follows.

In Section 2·1 we study the asymptotic behaviour of f(z) in those sectors W of the

complex plane, where

f(z) → ∞ for z → ∞, z ∈W. (1.6)
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It was proved in [9, 10] that (1.6) implies

f(z) ∼ exp

(

zρF

(

log z

logλ

))

for z → ∞, z ∈W,

where F (z) is a periodic function of period 1. In Section 2·1 we will refine this result to

a full asymptotic expansion of f(z), which takes the form

f(z) = exp (zρF (logλ z)) +
∞
∑

n=0

cn exp (−nzρF (logλ z)) , (1.7)

where F is a periodic function of period 1 holomorphic in some strip depending on W

and ρ = logλ d. The proof is based on an application of the Böttcher function at ∞ of

p(z).

We note here that E. Romanenko and A. Sharkovsky [41] have studied equation

(1.2) on R (rather than C) and obtained a full asymptotic expansion of this type by

Sharkovsky’s method of “first integrals” or “invariant curves”.

Further analysis of the periodic function F occurring in (1.7) is presented in Section 2·3,
where the Fourier coefficients of F are related to the Böttcher function at ∞ of p(z) and

the harmonic measure on the Julia set of p.

In Section 2·4 the asymptotic behaviour of f(z) is studied in sectors that are related

to basins of attraction of finite attracting fixed points.

In Section 3 we relate geometric properties of the Julia set to the location of the zeros

of f .

Section 4 is devoted to the special case of real Julia sets J (p). Here we prove, in

particular, the following inequalities of Pommerenke-Levin-Yoccoz type for multipliers of

fixed points ξ:

p(ξ) = ξ ⇒
{

|p′(ξ)| ≥ d for minJ (p) < ξ < maxJ (p)

|p′(ξ)| ≥ d2 for ξ = minJ (p) or ξ = maxJ (p).
(1.8)

Furthermore, equality can hold only, if p is linearly conjugate to a Chebyshev polynomial

of the first kind.

In Section 5 we continue the study of Dirichlet generating functions of zeros of Poincaré

functions that we started in [10] in the context of spectral zeta functions on certain

fractals. We relate the poles and residues of the zeta function of f to the Mellin transform

of the harmonic measure µ on the Julia set of p. Furthermore, we show a connection

between the zero counting function of f and the harmonic measure µ of circles around

the origin.

2. Relation of complex asymptotics and the Fatou set

Throughout the rest of the paper we will use the following notations and assumptions.

Let p be a real polynomial of degree d as in (1.4). We always assume that p(0) = 0

and p′(0) = a1 = λ with |λ| > 1. We refer to [3, 33] as general references for complex

dynamics.

We denote the Riemann sphere by C∞ and consider p as a map on C∞. We recall that

the Fatou set F(p) is the set of all z ∈ C∞ which have an open neighbourhood U such

that the sequence (p(n))n∈N is equicontinuous on U in the chordal metric on C∞. By
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definition F(p) is open. We will especially need the component of ∞ of F(p) given by

F∞(p) =
{

z ∈ C | lim
n→∞

p(n)(z) = ∞
}

, (2.1)

as well as the basins of attraction of a finite attracting fixed point w0 (p(w0) = w0,

|p′(w0)| < 1)

Fw0(p) =
{

z ∈ C | lim
n→∞

p(n)(z) = w0

}

. (2.2)

The complement of the Fatou set is the Julia set J (p) = C∞ \ F(p).

The filled Julia set is given by

K(p) =
{

z ∈ C | (p(n)(z))n∈N is bounded
}

= C \ F∞(p). (2.3)

Furthermore, it is known that (cf. [15])

∂K(p) = ∂F∞(p) = J (p). (2.4)

In the case of polynomials this can be used as an equivalent definition of the Julia set.

We will also use the notations

Wα,β = {z ∈ C \ {0} | α < arg z < β} (2.5)

and

B(z, r) = {w ∈ C | |z − w| < r} .
2·1. Asymptotics in the infinite Fatou component

In [9, 10] the asymptotics of the solution of the Poincaré equation (1.2) was given. We

want to present a different approach here, which gives a full asymptotic expansion.

Theorem 2·1. Let f be the entire solution of the Poincaré equation (1.2) for a real

polynomial p with λ = p′(0) > 1. Assume further that the Fatou component of ∞, F∞(p)

contains an angular region Wα,β.

A Then the following asymptotic expansion for f is valid for all z ∈ Wα,β large enough

f(z) = exp (zρF (logλ z)) +

∞
∑

n=0

cn exp (−nzρF (logλ z)) , (2.6)

where F is a periodic function of period 1 holomorphic in the strip
{

z ∈ C | α

logλ
< ℑz < β

logλ

}

and ρ = logλ d. Furthermore,

∀z ∈Wα,β : ℜzρF (logλ z) > 0 (2.7)

holds.

B Let g denote the Böttcher function associated with p, i. e.

(g(z))d = g(p(z)) (2.8)

in some neighbourhood of ∞. Its inverse function is given by the Laurent series around

∞

g(−1) (w) = w +

∞
∑

n=0

cn
wn

. (2.9)



6 G. Derfel, P. J. Grabner and F. Vogl

Then we have

f(z) = g(−1) (exp (zρF (logλ z)))

and cn can be determined from the coefficients of p.

Proof. We recall that p has a super-attracting fixed point of order d = deg p at infinity.

We consider the Böttcher function g associated with this fixed point (cf. [3, 5, 6, 26]),

which satisfies the functional equation (2.8) in some neighbourhood of infinity. The

Böttcher function has a Laurent expansion around infinity given by

g(z) = z +
∞
∑

n=0

bn
zn
, (2.10)

which converges for |z| > R for some R > 0. The coefficients (bn)n∈N0 can be determined

uniquely from the coefficients of the polynomial p.

Using the Böttcher function we can rewrite the Poincaré equation assuming that

|f(z)| > R

(g(f(z)))d = g(p(f(z))) = g(f(λz)). (2.11)

From this we derive that h(z) = g(f(z)) satisfies the much simpler functional equation

(h(z))d = h(λz),

which only holds for those values z for which |f(z)| > R. This equation has solutions

h(z) = exp (zρF (logλ z)) (2.12)

with ρ = logλ d and F a periodic function of period 1 holomorphic in some strip parallel

to the real axis. Since |h(z)| > 1 for all z with |f(z)| > R by the properties of the function

g, we have (2.7).

By (2.10) g is invertible in some neighbourhood of ∞ and we can write (2.9) where the

coefficients cn depend only on the coefficients of the polynomial p. This function satisfies

the functional equation

g(−1)(wd) = p(g(−1)(w)) (2.13)

for w in some neighbourhood of ∞. Inserting (2.12) into (2.9) yields (2.6) giving an exact

and asymptotic expression for f(z).

Remark 2·1. E. Romanenko and A. Sharkovsky have studied equation (1.2) on R

(rather than on C) in [41]. Applying Sharkovsky’s method of “first integrals” (“invariant

graphs”) they obtained a full asymptotic formula of type (2.6) for all solutions f(x), such

that f(x) → ∞ for x→ ∞.

2·2. Böttcher functions, Green functions, and constancy of the periodic function F

We will make frequent use of the integral representation of the Böttcher function

g(z) = exp

(

∫

J (p)

log(z − x) dµ(x)

)

, (2.14)

where µ denotes the harmonic measure on the Julia set J (p) (cf. [4, 7, 39]). This shows

that g is holomorphic on any simply connected subset of F∞(p). The measure µ can be
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given as the weak limit of the measures

µn =
1

dn

∑

p(n)(x)=ξ

δx, (2.15)

where ξ can be chosen arbitrarily (not exceptional) and δx denotes the unit point mass

at x (cf. [7, 39]).

The function g(z) can be continued to any simply connected subset U of C∞ \ K(p)

(this follows for instance from the integral representation (2.14)). Furthermore, it follows

from [3, Lemma 9.5.5] and (2.8) that

g(U) ⊂ {z ∈ C∞ | |z| > 1}.

The function log |g(z)| is the Green function for the logarithmic potential on F∞(p) (cf. [3,

Section 9]). Combining classical potential theory with polynomial iteration theory we get

lim
z→z0

z∈F∞(p)

|g(z)| = 1 ⇔ z0 ∈ J (p), (2.16)

where the implication ⇐ is [3, Lemma 9.5.5]. The opposite implication is a general

property of the Green function (cf. [16, Chapter III], and [39, Section 6.5]) combined

with the fact that ∂F∞(p) = J (p) for polynomial p.

Theorem 2·2. The periodic function F occurring in the asymptotic expression (2.6)

for f is constant, if and only if the polynomial p is either linearly conjugate to zd or to

the Chebyshev polynomial of the first kind Td(z).

Proof. The periodic function F is constant, if and only if the function h(z) = g(f(z))

introduced above satisfies

h(z) = exp (Czρ) (2.17)

for some constant C 6= 0. This implies that for any w0 ∈ J (p)\{0} the function g has an

analytic continuation to some open neighbourhood of w0. Thus (2.16) can be replaced

by

|g(w0)| = 1 ⇔ w0 ∈ J (p)

in our case. By (2.17) this is equivalent to w0 = f(z0) for Czρ0 ∈ iR. Since Czρ ∈ iR

describes an analytic curve (with a possible cusp at z = 0), the Julia set of p is the image

of this curve under the entire function f , thus itself an analytic arc.

By [19, Theorem 1] J (p) can only be an analytic arc, if the Julia set of p is either a line

segment or a circle. The Julia set is a line segment, if and only if p is linearly conjugate

to the Chebyshev polynomial Td (cf. [3, Theorem 1.4.1]); the Julia set is a circle, if and

only if p is linearly conjugate to zd (cf. [3, Theorem 1.3.1]).

Remark 2·2. Suppose that the periodic function F is constant. If p is linearly conjugate

to a monomial, then the Böttcher function g and therefore its inverse are linear functions.

In this case ρ = 1. (We recall that we generally assume that f ′(0) = 1.) If p is linearly

conjugate to a Chebyshev polynomial, g(−1) is linearly conjugate to the Joukowski func-

tion z + 1
z . In this case ρ = 1, if 0 is an inner point of the line segment J (p), and ρ = 1

2 ,

if 0 is an end point of the line segment J (p) (cf. Sections 4·1 and 4·2). Furthermore, the

asymptotic series (2.6) is finite, if the periodic function F is constant.
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2·3. Further analysis of the periodic function

In this section we relate the periodic function F occurring in (2.6) to the local behaviour

of the Böttcher function at the fixed point f(0) = 0.

This will allow to express the Fourier coefficients of F in terms of residues of the Mellin

transform (cf. [11, 34]) of the harmonic measure µ given by (2.15). This Mellin transform

was introduced and studied in [4]. A similar relation was also used in [18] to derive an

asymptotic expression for f in a special case.

We will use the relation

G(w) = log g(w) =

∫

J (p)

log(w − x) dµ(x) (2.18)

between the (complex) “Green function” G and the Böttcher function g. Assume that

the Fatou component F∞(p) contains an angular region centred at the fixed point 0.

Furthermore, assume that limw→0 g(w) = 1. Then (2.12) holds in this angular region.

This fact can be used to analyse the local behaviour of log g(w) around w = 0:

log g(w) =
(

f (−1)(w)
)ρ

F
(

logλ f
(−1)(w)

)

= wρF (logλ w) +O(wρ+1). (2.19)

Thus the behaviour of the Green function G at the point 0 exhibits the same periodic

function F as the asymptotic expansion of log f around ∞.

ℜz

ℑz

0

R

Γ

ΓR

J (p) branch cut

Λ+

Λ
−

Fig. 1. Paths of integration.

We now relate the Green function G(w) to the Mellin transform of µ

Mµ(s) =

∫

J (p)

(−x)s dµ(x), (2.20)

where the branch cut for the function (−x)s is chosen to connect 0 with ∞ without any
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further intersection with J (p). Following the computations in [4, Section 5] we obtain

using the integration paths depicted in Figure 1

Mµ(s) =
1

2πi

∮

Γ

(−z)s dG(z) = 1

2πi

∮

ΓR

(−z)s dG(z).

For ℜs < 0 we have for the circle of radius R
∣

∣

∣

∣

∣

1

2πi

∫

|z|=R

(−z)s dG(z)
∣

∣

∣

∣

∣

≪ Rℜs,

which allows to let R → ∞ in this case. This gives

Mµ(s) =
1

2πi

(

∫

Λ+

(−z)s dG(z)−
∫

Λ−

(−z)s dG(z)
)

=
e−iπs − eiπs

2πi

∫ ∞

0

xsG′(x) dx = s
sinπs

π

∫ ∞

0

xs−1G(x) dx,

which relates the Mellin transform of the measure µ to the Mellin transform of the

function G(z)

MG(s) =

∫ ∞

0

xs−1G(x) dx =
π

s sinπs
Mµ(s) for − ρ < ℜs < 0. (2.21)

The function Mµ(s) (and therefore MG(s) by (2.21)) has an analytic continuation by

the following observation

Mµ(s) =
1

d

d
∑

k=1

∫

J (p)

(−p(−1)
k (x))s dµ(x), (2.22)

where p
(−1)
k (k = 1, . . . , d) denote the d branches of the inverse function of p; we choose

the numbering so that p
(−1)
1 (0) = 0. The summands for k = 2, . . . , d are clearly entire

functions in s, since the integrand is bounded away from 0 and ∞. For the summand

with k = 1 we observe that

p
(−1)
1 (x) =

1

λ
x+O(x2) for x→ 0. (2.23)

Inserting this into (2.22) gives

Mµ(s) =
1

d
λ−s

∫

J (p)

(−x)s dµ(x) + 1

d
λ−s

∫

J (p)

(−x)sO(x) dµ(x)

+
1

d

d
∑

k=2

∫

J (p)

(−p(−1)
k (x))s dµ(x),

where the second term on the right-hand-side originates from inserting the holomorphic

function O(x2) from (2.23) into the integrand, which gives a function holomorphic in a

larger domain. Thus we obtain

Mµ(s) =
1

dλs − 1
H(s) (2.24)

for some function H(s) holomorphic for ℜs > −ρ−1 (ρ = logλ d). The numerator dλs−1

has zeros at s = −ρ+ 2kπi
log λ (k ∈ Z), which give possible poles for the function Mµ(s).
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Remark 2·3. Using the full Taylor expansion of p
(−1)
1 (x) instead of the O-term in (2.23)

would yield the existence of a meromorphic continuation of Mµ(s) to the whole complex

plane.

Taking (2.21) and (2.24) together gives the analytic continuation ofMG(s) to −ρ−1 <

ℜs < 0. Then the Mellin inversion formula (cf. [11]) gives (for −ρ < c < 0)

G(x) =
1

2πi

c+i∞
∫

c−i∞

MG(s)x−s ds =
1

2πi

c+i∞
∫

c−i∞

π

s sinπs

1

dλs − 1
H(s)x−s ds

=
1

2πi

−ρ− 1
2+i∞
∫

−ρ− 1
2−i∞

π

s sinπs

1

dλs − 1
H(s)x−s ds+

∑

k∈Z

Res
s=−ρ+ 2kπi

log λ

MG(s)x−s. (2.25)

The integral in the second line is O(xρ+
1
2 ), the sum of residues can be evaluated further

to give the Fourier expansion of the periodic function F
∑

k∈Z

Res
s=−ρ+ 2kπi

log λ

MG(s)x−s = xρ
∑

k∈Z

fke
2kπi log

λ
x = xρF (logλ x). (2.26)

The Fourier coefficients fk are given by

fk = Res
s=−ρ− 2kπi

log λ

MG(s) =
π

(

−ρ− 2kπi
log λ

)

sinπ
(

−ρ− 2kπi
log λ

) Res
s=−ρ− 2kπi

log λ

Mµ(s)

=
π

(− log d− 2kπi) sinπ
(

−ρ− 2kπi
log λ

)H

(

−ρ− 2kπi

logλ

)

. (2.27)

2·4. Asymptotics in a finite Fatou component – analysis of asymptotic values

It is clear from the functional equation (1.2) for f that any asymptotic value of f has

to be an attracting fixed point of the polynomial p (including ∞). Thus the analysis in

Section 2·1 can be interpreted as the behaviour of f when approaching the asymptotic

value ∞. In the present section we extend this analysis to all asymptotic values.

First we study the case of a finite attracting, but not super-attracting fixed point. Let

w0 be an attracting fixed point of p and denote η = p′(w0) 6= 0 (|η| < 1). Then there

exists a solution Ψ of the Schröder equation

ηΨ(z) = Ψ(p(z)), Ψ(w0) = 0, and Ψ′(w0) = 1, (2.28)

which is holomorphic in Fw0(p) (for instance, the sequence (η−n(p(n)(z)− w0))n∈N con-

verges to Ψ on any compact subset of Fw0(p)). Assume now that Fw0(p) contains an

angular region Wα,β ∩ B(0, r) for some r > 0. Then by conformity of f some angular

region at the origin is mapped into Wα,β ∩B(0, r). We consider the function

j(z) = Ψ(f(z)),

which satisfies the functional equation

j(λz) = Ψ(f(λz)) = Ψ(p(f(z))) = ηΨ(f(z)) = ηj(z). (2.29)

This equation has the solution

j(z) = zlogλ ηH(logλ z) (2.30)
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with some periodic function of period 1, holomorphic in some strip. This periodic function

can never be constant, since otherwise j(z) would have an analytic continuation to the

slit complex plane. From this it would follow that f is bounded in the slit complex plane,

a contradiction.

The function Ψ has a holomorphic inverse around 0

Ψ(−1)(z) = w0 + z +

∞
∑

n=2

ψnz
n

which allows us to write

f(z) = Ψ(−1)
(

zlogλ ηH(logλ z)
)

= w0 + zlogλ ηH(logλ z) +

∞
∑

n=2

ψnz
n log

λ
η(H(logλ z))

n,

(2.31)

which is valid in the angular region Wα,β for z large enough. This gives an exact and

asymptotic expression for f in an angular region.

In the case of a super-attracting fixed point w0 we have p′(w0) = 0. Assume that

the first k − 1 derivatives of p vanish in w0, but the k-th derivative is non-zero. Then

p(z) = (z − w0)
kP (z) with P (w0) = A 6= 0. We use the solution g of the corresponding

Böttcher equation

g(p(z)) = A(g(z))k g(w0) = 0, g′(w0) = 1 (2.32)

to linearise (1.2)

g(f(λz)) = g(p(f(z))) = A(g(f(z)))k.

Thus the function h(z) = g(f(z)) satisfies

h(λz) = A(h(z))k.

This equation has solutions

h(z) = A− 1
k−1 exp

(

zlogλ kL (logλ z)
)

for a periodic function L of period 1 and a suitable choice of the (k − 1)-th root. Fur-

thermore, by the fact that limz→∞ h(z) = 0 we have

ℜ
(

zlogλ kL (logλ z)
)

< 0 for f(z) ∈ Fw0(p).

using the local inverse of g around 0 we get

f(z) = g(−1)
(

A− 1
k−1 exp

(

zlogλ kL (logλ z)
)

)

= w0 +A− 1
k−1 exp

(

zlogλ kL (logλ z)
)

(1 + o(1)). (2.33)

Summing up, we have proved

Theorem 2·3. Let w0 be an attracting fixed point of p such that the Fatou component

Fw0(p) contains an angular region Wα,β ∩ B(0, r) for some r > 0. Then the asymptotic

behaviour of f for z → ∞ and z ∈ Wα,β is given by (2.31), if η = p′(w0) 6= 0, and by

(2.33), if p(z)− w0 has a zero of order k in w0.

Remark 2·4. The periodic function H in (2.31) cannot be constant, because otherwise

f(z) would be bounded. The periodic function L in (2.33) can only be constant, if p is

linearly conjugate to zk, by the same arguments as in the proof of Theorem 2·2 (the case
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of Chebyshev polynomials does not occur, because they only have repelling finite fixed

points).

As a consequence of Ahlfors’ theorem on asymptotic values (cf. [17]) and Valiron’s

theorem on the growth of f (cf. [45, 46]) we get an upper bound for the number of

attracting fixed points of a polynomial.

Theorem 2·4. Let p be a real polynomial of degree d > 1 and let

γ = max {|p′(z)| | p(z) = z} .

Then the number of (finite) attracting fixed points of p is bounded by 2 logγ d, i.e.

# {z ∈ C | p(z) = z ∧ |p′(z)| < 1} ≤ 2 logγ d. (2.34)

3. Zeros of the Poincaré function and Julia sets

In this section we relate the distribution of zeros of the Poincaré function in angular

regions to geometric properties of the Julia set J (p) of the polynomial p.

Theorem 3·1. Let p be a real polynomial with p(0) = 0 and p′(0) = λ > 1. Then the

following are equivalent

(i) ∀r > 0 :Wα,β ∩ J (p) ∩B(0, r) 6= ∅
(ii) Wα,β contains a zero of f .

(iii) Wα,β contains infinitely many zeros of f .

Proof. We first remark that (ii) and (iii) are trivially equivalent, since f(z0) = 0 implies

that f(λnz0) = 0.

For the proof of “(i)⇒ (ii)” we take 0 < ε < β−α
2 so small that

∀r > 0 :Wα+ε,β−ε ∩ J (p) ∩B(0, r) 6= ∅.

Then we take r > 0 so small that

Wα+ε,β−ε ∩B(0, r) ⊂ f (Wα,β) , (3.1)

which is possible by conformity of f and f ′(0) = 1. Since the preimages of 0 are dense

in J (p), there exists η ∈ Wα+ε,β−ε ∩ B(0, r) and n ∈ N such that p(n)(η) = 0. By (3.1)

there exists ξ ∈Wα,β such that f(ξ) = η, from which we obtain

f(λnξ) = p(n)(f(ξ)) = p(n)(η) = 0.

For the proof of “(iii)⇒ (i)” we take z0 ∈ Wα,β with f(z0) = 0. Then

∀n ∈ N : f(λ−nz0) ∈ J (p).

For any r > 0 and n large enough f(λ−nz0) ∈Wα,β ∩B(0, r), which gives (i).

Similar arguments show

Theorem 3·2. Let p be a real polynomial with p(0) = 0 and p′(0) = λ > 1. Then

J (p) ⊂ R
− ∪ {0} ⇔ all zeros of f are non-positive real (3.2)

and

J (p) ⊂ R ⇔ all zeros of f are real. (3.3)
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4. Real Julia set

Lemma 4·1. Let p be a real polynomial of degree d > 1. Then the Julia-set J (p) is

real, if and only if there exists an interval [a, b] such that

p(−1) ([a, b]) ⊆ [a, b]. (4.1)

Proof. Assume first that J (p) ⊂ R and take the interval [a, b] = [minJ (p),maxJ (p)].

Let ε > 0. Since J (p) is perfect, there exist ξ, η ∈ J (p) with a < ξ < a+ε < b−ε < η < b.

All preimages of ξ and η are in J (p) by the invariance of J (p). Furthermore, all these

preimages are distinct. Therefore, every value x ∈ [ξ, η] has exactly d distinct preimages

in [a, b] by continuity of p. Since ε was arbitrary and the two points a, b also have all

their preimages in J (p) ⊂ [a, b], we have proved (4.1).
Assume on the other hand that [a, b] satisfies (4.1). Since the map p has only finitely

many critical values, there exists x ∈ [a, b] such that the backward iterates of x are dense

in the Julia set. By (4.1) all these backward iterates are real; therefore J (p) is real.

Remark 4·1. By the above proof we can always assume [a, b] = [minJ (p),maxJ (p)].

Furthermore, we have

p ({minJ (p),maxJ (p)}) ⊆ {minJ (p),maxJ (p)},
which implies that at least one of the two end points of this interval is either a fixed

point, or they form a cycle of length 2.

Theorem 4·1. Let p be a polynomial of degree d > 1 with real Julia set J (p). Then for

any fixed point ξ of p with minJ (p) < ξ < maxJ (p) we have |p′(ξ)| ≥ d. Furthermore,

|p′(minJ (p))| ≥ d2 and |p′(maxJ (p))| ≥ d2. Equality in one of these inequalities implies

that p is linearly conjugate to the Chebyshev polynomial Td of degree d.

Remark 4·2. This theorem can be compared to [8, Theorem 2] and [29, 38], where

estimates for the derivative of p for connected Julia sets are derived. Furthermore, in

[13] estimates for 1
n log |(p(n))′(z)| for periodic points of period n are given.

Before we give a proof of the theorem, we present a lemma, which is of some interest on

its own. A similar result is given in [27, Chapter V, Section 2, Lemma 3].

Lemma 4·2. Let f be holomorphic in the angular region Wα,β If there exists a positive

constant M such that

∀z ∈ Wα,β : |f(z)| ≥M,

then

∀ε > 0 ∃A,B > 0 ∀z ∈Wα+ε,β−ε : |f(z)| ≤ B exp(A|z|κ)
with κ = π

β−α .

Proof. Without loss of generality we can assume that M = 1, α = −π
2 , and β = π

2 . In

this case κ = 1. The function

v(z) = log |f(z)|
is a positive harmonic function in the right half-plane. Thus it can be represented by the

Nevanlinna formula (cf. [28, p.100])

v(x+ iy) =
x

π

∫ ∞

−∞

dν(t)

|z − it|2 + σx, (4.2)
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where ν denotes a measure satisfying
∫ ∞

−∞

dν(t)

1 + t2
<∞

and σ ≥ 0.

In the region given by | arg z| ≤ π
2 − ε and |z| > 1 we have

|z − it| ≥ max(|t| sin ε, |z| sin ε) ≥ max(1, |t|) sin ε.

From this it follows that

|z − it|2 ≥ 1

2
(1 + t2) sin2 ε,

which gives
∫ ∞

−∞

dν(t)

|z − it|2 ≤ 2

sin2 ε

∫ ∞

−∞

dν(t)

1 + t2
≤ Bε

for |z| ≥ 1 and some Bε > 0. Setting A = 1
πBε + σ and observing that x ≤ |z| completes

the proof.

Proof of Theorem 4·1 Without loss of generality we may assume that the fixed point

ξ = 0. Then we consider the solution f of the Poincaré equation

f(λz) = p(f(z))

with λ = p′(0). We assume first that λ > 0.

First we consider the case minJ (p) < ξ < maxJ (p). In this case the function f(z)/z

tends to infinity uniformly for z → ∞ in the region ε ≤ arg z ≤ π − ε for any ε > 0 by

Theorem 2·1. Furthermore, we know that

|f(z)| ≥ C exp(A|z|logλ
d)

in this region for some positive constants A and C. Since f(z)/z does not vanish at z = 0,

this function satisfies the hypothesis of Lemma 4·2, from which we derive that

logλ d ≤ π

π − 2ε

holds for any ε > 0, which implies λ = p′(0) ≥ d.

The proof in the case ξ = maxJ (p) runs along the same lines. The function f(z)/z

tends to infinity uniformly in any region | arg z| ≤ π−ε in this case, which by Lemma 4·2
implies

logλ d ≤ π

2π − 2ε

for all ε > 0, and consequently λ = p′(0) ≥ d2.

For negative λ = p′(0) we apply the same arguments to p(2).

For the proof of the second assertion of the theorem, we first assume that the fixed

point ξ = 0 satisfies a = minJ (p) < 0 < maxJ (p) = b and that p′(0) = d. We know

that for a suitable linear conjugate q of the Chebyshev polynomial Td we have q′(0) = d

and J (q) = [a, b] with 0 ∈ (a, b).

Let us assume now that p′(0) = d and J (p) is a Cantor subset of the real line, or

after a rotation that J (p) is a Cantor subset of the imaginary axis (this makes notation

slightly simpler).
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By arguments, similar to those in the beginning of Section 2·3 we can write

H(z) = ℜ log g(f(z)) =

∫

J (p)

log |f(z)− x| dµ(x). (4.3)

Since ℜ log g(.) is the Green function of J (p) with pole at ∞ (cf. [3, Lemma 9.5.5] or

[39]), we know that H(z) ≥ 0 for all z ∈ C and H(z) = 0, if and only if f(z) ∈ J (p)

(since K(p) = J (p) in the present case). By Theorem 2·1 we have

H(z) = ℜ (zF (logd z)) = xℜ(F (logd z))− yℑ(F (logd z)) for z = x+ iy, (4.4)

and by Theorem 2·2 the function F is not constant in the present case. The periodic

function ℑF (t+ iϕ) has zero mean, since the mean of F is real. Thus ℑF (t+ iϕ) attains

positive and negative values for any ϕ. We now take z = iy ∈ iR+ to obtain

H(iy) = −yℑ(F (logd y + i
π

2 log d
)).

Since ℑF attains positive values by the above argument, we get a contradiction toH(z) ≥
0 for all z.

A similar argument shows that for 0 = maxJ (p) and p′(0) = d2 the assumption that

the Julia set is not an interval leads to the same contradiction.

Remark 4·3. Lemma 6.4 in [9] proves Theorem 4·1 for the special case of quadratic

polynomials. The proof given in [9] is purely geometrical.

Remark 4·4. We have a purely real analytic proof for |p′(maxJ (p))| ≥ d2, which is

motivated by the proof of the extremality of the Chebyshev polynomials of the first kind

given in [40]. However, we could not find a similar proof for the other assertions of the

theorem.

4·1. The Julia set is a subset of the negative reals

As a consequence of Lemma 4·2 we get that any solution of the Poincaré equation for

a polynomial with Julia set contained in the negative real axis has order ≤ 1
2 . The only

solutions of a Poincaré equation with order 1
2 in this situation are the functions

f(z) =
1

a

(

cosh
√
2az − 1

)

for

p(z) = (Td(az + 1)− 1)/a,

where a ∈ R
+ and Td denotes the Chebyshev polynomial of the first kind of degree

d. This is also the only case where the periodic function F in (2.6) is constant in this

situation.

Corollary 4·1. Assume that p is a real polynomial such that J (p) is real and all

coefficients pi (i ≥ 2) of p are non-negative. Then J (p) ⊂ R− ∪ {0} and therefore

f(z) ∼ exp

(

zρF

(

log z

logλ

))

(4.5)

for z → ∞ and | arg z| < π. Here F is a periodic function of period 1 holomorphic in the

strip given by |ℑw| < π
log λ . Furthermore, for every ε > 0 ℜeiρ arg zF ( log z

log λ) is bounded

between two positive constants for | arg z| ≤ π − ε.



16 G. Derfel, P. J. Grabner and F. Vogl

Proof. From [9, Lemmas 6.4 and 6.5] it follows that f(z) has only non-positive real

zeros. Then by Theorem 3·2 J (p) ⊂ R− ∪ {0}. Finally, the assertion follows by applying

[9, Theorem 7.5].

Example 1. In order to illustrate the above results, we shall turn to the equation

f(5z) = 4f(z)2 − 3f(z),

which arises in the description of Brownian motion on the Sierpiński gasket [10, 24, 25,

43]. Here p(z) = 4z2 − 3z, and the fixed point of interest is f(0) = 1. This fits into the

assumptions of Section 1·2 only after substituting g(z) = 4(f(z)− 1), where g satisfies

g(5z) = g(z)2 + 5g(z).

Now Corollary 4·1 may be applied to this equation (the preimages of 0 are real by [9,

Lemma 6.7]) to give (4.5).

Note also that p′(0) = 5 > 4 = 22 in accordance with Theorem 4·1.

4·2. The Julia set has positive and negative elements

Again as a consequence of Theorem 4·1 the solution of the Poincaré equation for a

polynomial with real Julia set with positive and negative elements has order ≤ 1. The

only solution of a Poincaré equation of order 1 in this situation are the functions

f(z) =
1

a

(

cos

(

a
z − 2kπ

d−1

sin kπ
d−1

)

− ξk

)

for

p(z) =
1

a
(Td(a(z + ξk))− ξk) ,

where a ∈ R+ and ξk = cos kπ
d−1 for 1 ≤ k < d−1

2 . This is again the only case where the

periodic function F in (2.6) is constant in this situation.

5. The Zeta function of the Poincaré function

In [10] the zeta function of a fractal Laplace operator was related to the zeta function of

certain Poincaré functions. Asymptotic expansions for the Poincaré functions were then

used to give a meromorphic continuation of these zeta functions as well as information on

the location of their poles and values of residues. In this section we give a generalisation

of these results to polynomials whose Fatou set contains an angular regionW−α,α around

the positive real axis. In this case the solution f of (1.2) has no zeros in an angular region

W−α,α. Furthermore, from the Hadamard factorisation theorem we get

f(z) = z exp

(

k
∑

ℓ=1

(−1)ℓ−1 eℓz
ℓ

ℓ

)

∏

f(−ξ)=0
ξ 6=0

(

1 +
z

ξ

)

exp

(

−z
ξ
+

z2

2ξ2
+ · · ·+ (−1)k−1 z

k

kξk

)

,

(5.1)

where k = ⌊logλ d⌋. By the discussion in [10, Section 5] the values e1, . . . , ek are given

by the first k terms of the Taylor series of log f(z)
z

log
f(z)

z
=

k
∑

ℓ=1

(−1)ℓ−1 eℓz
ℓ

ℓ
+O(zk+1).
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The zeta function of f is now defined as

ζf (s) =
∑

f(−ξ)=0
ξ 6=0

ξ−s, (5.2)

where ξ−s is defined using the principal value of the logarithm, which is sensible, since

ξ is never negative real by our assumption on F∞(p). The function ζf (s) is holomorphic

in the half plane ℜs > ρ. In [10] we used the equation

∫ ∞

0

(

log f(x)− log x−
k
∑

ℓ=1

(−1)ℓ−1 eℓx
ℓ

ℓ

)

x−s−1 dx = ζf (s)
π

s sinπs
, (5.3)

which holds for ρ < ℜs < k + 1, to derive the existence of a meromorphic continuation

of ζf to the whole complex plane. There ([10, Theorem 8]) we obtained

Res
s=ρ+ 2kπi

log λ

ζf (s) = −fk
π

(

ρ+
2πik

logλ

)

sinπ

(

ρ+
2πik

logλ

)

,

where fk is given by (2.27). From this we get

Res
s=ρ+ 2kπi

log λ

ζf (s) = − Res
s=−ρ− 2kπi

log λ

Mµ(s). (5.4)

This shows that the function

ζf (s)−Mµ(−s) (5.5)

is holomorphic in ρ − 1 < ℜs < ρ + 1, since the single poles on the line ℜs = ρ cancel.

This fact was used in [18] to derive an analytic continuation for ζf (s).

Theorem 5·1. Let f be the entire solution of (1.2) and assume that p is neither

linearly conjugate to a Chebyshev polynomial nor to a monomial and thatW−α,α ⊂ F∞(p)

for some α > 0. Then the following assertions hold

(i) the limit limt→∞ t−ρ log f(t) does not exist.

(ii) ζf (s) has at least two non-real poles in the set ρ+ 2πiσZ (σ = 1
log λ).

(iii) the limit limx→0 x
−ρG(x) with G given by (2.18) does not exist.

Proof. Equation (2.6) in Theorem 2·1 (see also [9]) implies that

z−ρ log f(z) = F (logλ z) + o(1) for z → ∞ and z ∈W−α,α

with a periodic function F of period 1. Theorem 2·2 implies that F is a non-constant .

Thus the limit in (i) does not exist.

Since the periodic function F is non-constant, there exists a k0 6= 0 such that the

Fourier-coefficients f±k0 do not vanish. By (2.6) we have

log f(z) = zρ
∑

k∈Z

fkz
2kπi

log λ +O(z−M )

for anyM > 0. By properties of the Mellin transform (cf. [35]), every term Azρ+iτ in the

asymptotic expansion of log f(z) corresponds to a first order pole of the Mellin transform

of log f(z) with residue A at s = ρ + iτ . Since fk0 6= 0, from (5.3) we have simple poles

of ζf (s) at s = ρ± 2k0πi
log λ .

Assertion (iii) follows from (i) by (2.19).
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In the following we consider the zero counting function of f

Nf (x) =
∑

|ξ|<x
f(ξ)=0

1. (5.6)

Theorem 5·2. Let f be the entire solution of (1.2). Then the following are equivalent
(i) the limit limx→∞ x−ρNf(x) does not exist.

(ii) the limit limt→0 t
−ρµ(B(0, t)) does not exist.

Proof. For the proof of the equivalence of (i) and (ii) we observe that by the fact that

f ′(0) = 1, there is an r0 > 0 such that f : B(0, r0) → C is invertible. For the following

we choose n = ⌊logλ(x/r0)⌋+ k and let the integer k > 0 be fixed for the moment. Then

we use the functional equation for f to get

Nf(x) = #
{

ξ | f(λnξ) = p(n)(f(ξ)) = 0 ∧ |ξ| < xλ−n
}

=#
(

p(−n)(0) ∩ f(B(0, xλ−n))
)

.

This last expression can now be written in terms of the discrete measure µn given in

(2.15)

Nf (x) = dnµn

(

f(B(0, xλ−n))
)

.

By the weak convergence of the measures µn (cf. [7]) we get for x → ∞ (equivalently

n→ ∞)

Nf (x) = dnµ(f(B(0, xλ−n))) + o(dn) = xρ(xλ−n)−ρµ(f(B(0, xλ−n))) + o(xρ).

By our choice of n we have r0λ
−k ≤ xλ−n ≤ r0λ

−k+1, which makes the first term

dominant. From this it is clear that the existence of the limit

lim
x→∞

x−ρNf (x) = C

is equivalent to

µ(f(B(0, t))) = Ctρ for r0λ
−k ≤ t < r0λ

−(k−1).

Since k was arbitrary this implies

µ(f(B(0, t))) = Ctρ for 0 < t < r0. (5.7)

It follows from f ′(0) = 1 that

∀ε > 0 : ∃δ > 0 : ∀t < δ : B(0, (1− ε)t) ⊂ f(B(0, t)) ⊂ B(0, (1 + ε)t). (5.8)

Thus the existence of the limit in assertion (ii) is equivalent to

lim
t→0

t−ρµ(f(B(0, t))) = C.

Thus (i) and (ii) are equivalent.

Remark 5·1. If J (p) is real and disconnected then the limits in Theorem 5·2 do not

exist. Furthermore, it is known that the limit

lim
t→0

t−ρµ(f(B(w, t))) = C

does not exist for µ-almost all w ∈ J (p) (cf. [32, Theorem 14.10]), if ρ is not an integer.

This motivates the following conjecture.

Conjecture. The limits in Theorem 5·2 exist, if and only if p is either linearly

conjugate to a Chebyshev polynomial or a monomial.
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[36] H. Poincaré. Sur une classe étendue de transcendantes uniformes. C. R. Acad. Sci. Paris
103 (1886) 862–864.
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