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Abstract. Asymptotic formulæ for the summatory function of additive arithmetic func-
tions related to numeration systems given by regular languages are derived.

1. Introduction

Additive numeration systems and the corresponding additive arithmetic functions have
been studied from various points of view since the seminal papers of H. Delange [4, 5],
where such functions were investigated for the usual q-adic numeration system. Later
more exotic systems of numeration, such as general linear numeration systems [13, 14],
especially such systems defined by linear recurring sequences were considered. Furthermore,
digital representations with respect to substitutions over a finite alphabet were studied
(cf. [8, 9]). All these numeration systems have in common that the number of integers
represented by words of length n satisfies a pure exponential law ∼ Cn for some constant
C > 1. Different aspects of such representations of the integers were studied: dynamics
of corresponding adding machine (“odometer”) [15], topological dynamics of the odometer
[1], asymptotic properties of summatory functions of additive functions such as the “sum-
of-digits” function [8, 9, 12, 16, 17], local and global versions of central limit theorems for
the values of additive functions [6, 7, 10], existence of distribution functions of additive
functions [2].

In the present paper we take the opposite approach compared to the existing literature
on the subject. We start with a regular language L, order its words by the genealogical
ordering induced by an ordered alphabet, and assign the number n the (n+1)-st word in the
language. The above mentioned expansions, which come from finite linear recurrences are
special cases of this setting. For the question of recognizability of the language generated
by an increasing sequence of integers we refer to [13, 20, 21].

The paper is organized as follows. In Section 2 we introduce the basic notation of nu-
meration systems related to regular languages; for this purpose we summarize the contents
of the paper [18]. In Section 3 we state the main theorem, which is the appropriate ana-
logue of the summation formula for the sum-of-digits function discovered by H. Delange
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[5]. Furthermore, we state two corollaries which simplify the asymptotic expression given
in the theorem for special cases. Section 4 is devoted to the proofs of the theorem and its
corollaries. The final Section 5 presents a number of examples which show that the results
given in Section 3 cannot be improved in general.

2. Preliminaries

Let Σ be a finite alphabet. The free monoid generated by Σ with identity ε is Σ∗. If
w is a word over Σ, |w| denotes its length. We assume that the reader is familiar with
classical notions of formal languages theory like (minimal) automaton, regular language or
transducer (see for instance [11]).

For a totally ordered alphabet (Σ, <), a word w is genealogically less than w′ if |w| < |w′|
or if |w| = |w′| and there exist letters σ < τ such that w = xσy and w′ = xτy′, x, y, y′ ∈ Σ∗.
In the literature, the terminology radix order is also used.

Describing an infinite regular language L over a totally ordered alphabet (Σ, <) with re-
spect to the genealogical ordering gives a one-to-one and onto increasing mapping between
N and L. If w is the n-th word of the genealogically ordered language L , n ∈ N \ {0},
then we denote by val : L → N the application mapping w onto n − 1. The integer
val(w) is said to be the numerical value of w. So each non-negative integer n is repre-
sented by a unique word val−1(n) ∈ L and this leads to the notion of numeration system

on a regular language. These systems have been introduced in [18] and generalize classical
numeration systems like the q-adic systems, the Fibonacci system and the linear numera-
tion systems whose characteristic polynomial is the minimal polynomial of a Pisot number
(for the properties of these latter systems we refer to [3]). As an example, consider the
alphabet Σ = {0, 1} where we assume that 0 < 1. If we consider the regular language
L = ε∪ 1Σ∗ \Σ∗11Σ∗ = ε∪ 1∪ 10{10, 0}∗ then the numeration system on L is exactly the
Fibonacci numeration system (cf. [23]).

In this paper, L always refers to an infinite regular language having ML = (Q,Σ, s, δ, F )
as trimmed minimal automaton where Q is the set of states, s ∈ Q is the initial state,
δ : Q×Σ → Q is the transition function and F ⊂ Q is the set of terminal states (to obtain
unambiguous constructions, we only consider minimal automata; in order to relate the size
of the language with the eigenvalues of the incidence matrix, we assume the automaton to
be trimmed) and we represent integers using the numeration system built upon L for a given
ordering of the alphabet. We extend δ to Q × Σ∗ by δ(q, σ1 · · ·σk) = δ(δ(q, σ1), σ2 · · ·σk)
and write q.w as a shorthand for δ(q, w), q ∈ Q, w ∈ Σ∗.

For each state q ∈ Q, we define the language

Lq = {w ∈ Σ∗ | δ(q, w) ∈ F}

of the words accepted by ML with initial state q. In particular, L = Ls. For each state
q ∈ Q, we define two functions uq(n) and vq(n) counting the number of words in Lq

respectively of length n and of length less or equal to n,

uq(n) = #(Lq ∩ Σn) and vq(n) = #(Lq ∩ Σ≤n).
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If Q = {q1 = s, q2, . . . , qk} then we denote by u(n) the k-tuple (uq1(n), . . . , uqk(n)). Let
us recall that for a regular language, us(n) is either Θ(nk) for some integer k ≥ 0 or an
exponential function of the order 2Ω(n). For a characterization of polynomial languages we
refer to [22].

The incidence matrix of the minimal automaton defining the language L is given by
Ap,q = #{σ ∈ Σ | p.σ = q} for p, q ∈ Q.

From now on we will assume that L is an exponential language, whose trimmed minimal
automaton has one dominating eigenvalue λ > 1. Thus we can write for each q ∈ Q:
uq(n) = Pq(n)λ

n + o(λn) for (possibly zero) polynomials Pq, and assume that Ps (which is
non-zero) has degree d ≥ 0. For each q ∈ Q, there exists a word w of length bounded by
#Q such that s.w = q. So us(n + l) ≥ uq(n) for all n ≥ 0 and consequently the degree of
Ps is the highest degree among the degPq, q ∈ Q. We define the sets

Q1 = {q ∈ Q | uq(n) = Pq(n)λ
n + o(λn), deg Pq = degPs}

Q2 = {q ∈ Q | uq(n) = Pq(n)λ
n + o(λn), deg Pq = degPs − 1}

Q3 = Q \ (Q1 ∪Q2).

Since Lq is also regular, it can be genealogically ordered and we obtain a new numeration
system. The function mapping the n-th word of Lq onto n−1 is denoted valq : Lq → N (in
particular, val = vals). If Lq is finite then the domain of valq is also finite and its image is
restricted to {0, . . . ,#Lq − 1}.

Using the definition of the genealogical ordering, a formula for computing numerical
values was derived in [18]. Let w = σ1 · · ·σn ∈ L, then we have

(2.1) val(w) =
∑

q∈Q

|w|
∑

i=1

βq,i(w)uq(|w| − i)

where

(2.2) βq,i(w) = #{σ < σi | s.σ1 · · ·σi−1σ = q}+ δq,s for i = 1, . . . , |w|
Observe that these coefficients are bounded :

0 ≤
∑

q∈Q

βq,i(w) ≤ #Σ.

Formula (2.1) can be proved by observing that the summand for (q, i) for q 6= s is the
number of words v of length |w| which have prefix σ1 . . . σi−1σ with σ < σi (which means
that v < w), the state q is reached after reading the first i letters of v, and the postfix
vi+1 . . . is accepted by the automaton with initial state q. For q = s the summand for (s, i)
equals the number with the same descriptions as above plus the number of words of length
|w| − i which are accepted by the automaton starting from s. Summing over all possible
pairs (q, i) first gives the number of words v < w with |v| = |w|, the extra summand for
q = s equals the number of words v with |v| < |w|. Altogether this equals val(w).
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Remark 1. For a given q ∈ Q, the coefficients βq,i(w) can be computed by a transducer
built upon ML. For all p, r ∈ Q and σ ∈ Σ such that p.σ = r, if we replace in ML the

edge p
σ→ r with p

σ|β→ r where

β = #{τ < σ | p.τ = q}+ δq,s

then we obtain a transducer that reading w produces the output βq,1(w) · · ·βq,n(w). Con-
sequently, if two words x and y in L have the same prefix of length k ≥ 1 then for all states
q ∈ Q

βq,i(x) = βq,i(y) for i = 1, . . . , k.

In [19] numeration systems on regular languages are extended to the representation of
real numbers. (These numbers are therefore represented by right-infinite words instead of
finite words). With those considerations, a particular set L∞ of infinite words is defined,
which is used for the representation of real numbers in the interval [ 1

λ
, 1]. A word ω ∈ Σω

belongs to L∞ if there exists a sequence of words in L converging to ω. If we denote by
x[ℓ] the prefix of length ℓ of the (finite or infinite) word x, then we have by definition of
the set L∞ that a word ω belongs to L∞ if and only if

∃(xn)n∈N ∈ LN, ∀ℓ > 0, ∃Nℓ ∈ N : ∀n > Nℓ, xn[ℓ] = ω[ℓ].

The set L∞ is equipped with the topology induced by the infinite product topology on ΣN.
As a consequence of Remark 1, to any word ω ∈ L∞ there corresponds a unique infinite
sequence of coefficients (βq,n(ω))n∈N for each q ∈ Q because ω has arbitrarily long common
prefixes with words in L. Actually, the sequence (βq,n(ω))n∈N is obtained by feeding the
transducer built on ML with the infinite word ω. In [19], it is shown that for any sequence
of words Vk converging to a word ω ∈ L∞, the limit

lim
k→∞

val(Vk)

vs(|Vk|)
only depends on ω and we denote its value by val∞(ω).

For one of our theorems we will need the following technical hypothesis.

Hypothesis 1. Let V and Ṽ be two prefixes of words in L. Then there exist two words
η and η̃ such that V η, Ṽ η̃ ∈ L and |V η| = |Ṽ η̃|.

This is equivalent to the following more technical hypothesis, which we will actually use.

Hypothesis 2. There exist constants C,D ≥ 0 such that for any two prefixes V and Ṽ of
words in L with ||V |−|Ṽ || ≤ C there are words η and η̃ such that |η|, |η̃| ≤ D, V η, Ṽ η̃ ∈ L,
and |V η| = |Ṽ η̃|.
Proof of equivalence of Hypotheses 1 and 2. Assume that L satisfies Hypothesis 1 and con-
sider two words V, Ṽ ∈ pref(L). By Hypothesis 1 there are two words η, η̃ with V η, Ṽ η̃ ∈ L
and |V η| = |Ṽ η̃|. Let us define the automaton B = (Q×Q,Σ×Σ, (s, s), δB, F ×F ) where
the transition function δB is defined by

δB((q, q
′), (σ, σ′)) = (δ(q, σ), δ(q′, σ′))
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where δ is the transition function of ML. Feeding (V η, Ṽ η̃) into the automaton B, after
max(|V |, |Ṽ |) steps we reach some state. From this state we can reach a terminal state
after at most (#Q)2 steps. Thus we can choose a constant D = C + (#Q)2.

Now assume that L satisfies Hypothesis 2. We use induction on k with (k − 1)C <

|Ṽ | − |V | ≤ kC. Let W̃ be the prefix of Ṽ of length |V |+ (k − 1)C. Then an application

of the induction hypothesis to W̃ and V gives the existence of words η and η′ such that
|W̃η′| = |V η|. If |W̃η′| ≥ |Ṽ | we apply Hypothesis 2 to the prefix of V η of length |Ṽ | and
Ṽ ; if |W̃η′| < |Ṽ | we apply Hypothesis 2 to V η and Ṽ . �

3. An asymptotic formula for the summatory function of additive
functions

Let us consider a regular language L of exponential growth and its corresponding se-
quence vs(n). We define the strictly increasing continuous function g : R+ → R

+ by

(3.1) g(n+ x) = vs(n)
1−xvs(n+ 1)x for 0 ≤ x ≤ 1 and n ∈ N.

This function has the property g(n) = vs(n) for all n ∈ N. We define the function h :
R

+ → R
+ as the inverse function of g. By (3.1) we also have

(3.2) h(y) = n +
log y − log vs(n)

log vs(n + 1)− log vs(n)
for vs(n) ≤ y ≤ vs(n+ 1), n ∈ N.

Then we have |W | = ⌊h(val(W ))⌋ + 1, because a word w ∈ L has length n, if and only if
vs(n− 1) ≤ val(w) < vs(n).

Theorem 1. Let L be a regular language of exponential growth on the alphabet Σ and

f : Σ → R a function. We assume further that the incidence matrix of the automaton

ML has a unique dominating eigenvalue. For a word w = σ1 · · ·σk ∈ L we define f(w) =
∑k

ℓ=1 f(σℓ). There exist bounded functions F,G : L → R such that

(3.3)
∑

w<W
w∈L

f(w) = val(W )|W |F (W ) + val(W )G(W ) +O
(

val(W )

|W |

)

holds for W ∈ L. Moreover, if W tends to a limit ω ∈ L∞ then F (W ) and G(W ) also

tend to a limit. The functions ω 7→ limW→ω F (W ) and ω 7→ limW→ω G(W ) are continuous

on L∞.

Corollary 2. Under the hypothesis of Theorem 1 and under Hypothesis 1 the following

asymptotic formula holds

(3.4)
∑

w<W
w∈L

f(w) = N · h(N)F(h(N)) +O(N),

where N = val(W ) and F is a Lipschitz-continuous periodic function of period 1.
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Corollary 3. Under the hypothesis of Theorem 1 and if the limit

lim
n→∞

1

nuq(n)

∑

|w|=n
w∈Lq

f(w) = Cf for all states q ∈ Q1

then the following asymptotic formula holds

(3.5)
∑

w<W
w∈L

f(w) = CfN · h(N) +O(N),

where N = val(W ).

4. Proof of the Results

Proof of Theorem 1. We introduce the notation

Fq(n) =
∑

|w|=n
w∈Lq

f(w)

and consider the vector F(n) = (Fq(n))q∈Q. We have the recursion formula

(4.1) Fq(n) =
∑

σ∈Σ

∑

|w|=n−1
w∈Lq.σ

f(σw) =
∑

σ∈Σ

(Fq.σ(n− 1) + uq.σ(n− 1)f(σ)) .

The incidence matrix of the minimal automaton defining the language L is denoted by A.
Furthermore, we introduce the matrix B given by

Bp,q =
∑

σ∈Σ
p.σ=q

f(σ).

Then we can rewrite (4.1) as

F(n) = AF(n− 1) +Bu(n− 1), with F(0) = 0,

which has the solution

(4.2) F(n) =
(

An−1B + An−2BA+ · · ·+ ABAn−2 +BAn−1
)

u(0).

Here we have used that u(n) = Anu(0).

Lemma 1. Let A be a non-negative square matrix with one dominating eigenvalue λ > 0
and assume that the matrix B satisfies Ap,q = 0 ⇒ Bp,q = 0 for all indices p and q. Then

the solutions of the equation

F(n) = AF(n− 1) +Bu(n− 1) F(0) = 0

u(n) = Au(n− 1)

satisfies

(4.3) |Fq(n)| ≤ Cnuq(n)
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for some positive constant C and all indices q. Furthermore, the asymptotic relation

(4.4) Fq(n) = Cqnuq(n) +Dquq(n) +O(uq(n)n
−1) for real constants Cq, Dq

holds for those indices q for which limn→∞ λ−nuq(n) 6= 0.

Proof of Lemma 1. We can assume that the matrix B is also non-negative. Then there
exists a constant C such that C · A ≥ B (we interpret inequalities applied to matrices or
vectors component-wise). By the positivity of A we have

F(n) =
(

An−1B + An−2BA+ · · ·+ ABAn−2 +BAn−1
)

u(0) ≤ CnAnu(0) = Cnu(n).

This is the first inequality.
In order to prove (4.4) we assume that λ = λ1, λ2, . . . , λt are the eigenvalues of A; then

by our assumptions we have λ > |λ2| ≥ |λ3| ≥ · · · ≥ |λt|. From the general theory of
matrix recurrences we know that every entry of the matrix An can be written as

(An)p,q =

t
∑

ℓ=1

P (ℓ)
p,q (n)λ

n
ℓ

for polynomials P
(ℓ)
p,q . Inserting this into (4.2) and summing up the expressions for the

entries we obtain

Fq(n) =
t
∑

ℓ=1

R(ℓ)
q (n)λn

ℓ

for polynomials R
(ℓ)
q . Now uq(n) = Pq(n)λ

n + o(λn) holds for a non-zero polynomial Pq by

our hypothesis. The inequality |Fq(n)| ≤ Cnuq(n) implies that degR
(1)
q ≤ degPq+1. This

gives the desired asymptotic relation. �

Up to now we have only studied the summatory function of f for blocks of a given
length. We now turn to the evaluation of the sum (3.5) for general W ∈ L. We write
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W = σ1σ2 · · ·σℓ. Then we have

∑

w<W
w∈L

f(w) =
∑

|w|<|W |
w∈L

f(w) +
∑

|w|=|W |
w<W
w∈L

f(w) =

|W |−1
∑

k=1

Fs(k) +

|W |
∑

k=1

∑

σ<σk

∑

w∈Ls.σ1···σk−1σ

|w|=|W |−k

f(σ1 · · ·σk−1σw) =

|W |−1
∑

k=1

Fs(k) +

|W |
∑

k=1

∑

σ<σk

(

Fs.σ1···σk−1σ(|W | − k) + us.σ1···σk−1σ(|W | − k)f(σ1 · · ·σk−1σ)
)

=

∑

q∈Q

|W |
∑

k=1

βq,k(W )Fq(|W | − k) +
∑

q∈Q

|W |
∑

k=1

(

k−1
∑

i=1

f(σi)

)

(βq,k(W )− δq,s)uq(|W | − k)+

|W |
∑

k=1

∑

σ<σk

f(σ)us.σ1···σk−1σ(|W | − k)

where we have used the additivity of f in the second last line. In order to rewrite the sum
in the last line we introduce

γq,i(W ) =
∑

σ<σi
s.σ1···σi−1σ=q

f(σ).

Then again using the same reasoning as above we obtain

(4.5)
∑

w<W
w∈L

f(w) =
∑

q∈Q

|W |
∑

k=1

[

βq,k(W )Fq(|W | − k)+

(

γq,k(W ) + (βq,k(W )− δq,s)
k−1
∑

i=1

f(σi)

)

uq(|W | − k)

]

=:
∑

q∈Q

Sq

We now insert the asymptotic information from Lemma 1 into (4.5).
By our assumption the number vs(n) of strings of length less or equal to n can be written

as vs(n) = T (n)λn + o(λn) for a polynomial T of degree d. Furthermore, we have

(4.6)
g(n+ x)

g(n)
= λx

(

1 +
xd

n
+O

(

1

n2

))

for x ∈ R.

and limx→∞
g(x)

T (x)λx = 1.
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We will make use of the following asymptotic expansions frequently

(4.7)
uq(N − n)

g(N)
=











λ−n
(

aq − daq
n
N
+ cq

N
+O

(

n2

N2

))

for q ∈ Q1 and n = o(
√
N)

λ−n
(

aq
N

+O
(

n
N2

))

for q ∈ Q2 and n = o(N)

O
(

1
N2λn

)

for q ∈ Q3 and n ≤ N

and
(4.8)

Fq(N − n)

g(N)
=











λ−n
(

µqN − (d+ 1)µqn+ ξq +O
(

n2

N

))

for q ∈ Q1 and n = o(
√
N)

λ−n
(

µq +O
(

n
N

))

for q ∈ Q2 and n = o(N)

O
(

1
Nλn

)

for q ∈ Q3 and n ≤ N.

We note that aq, cq and µq, ξq can be computed from the two leading coefficients of the

polynomials T , Pq and R
(1)
q .

In the following we will use the asymptotic formulas (4.7) and (4.8). Technically, we

would have to split summation at indices of order o(
√

|W |) and o(|W |), but we will con-
sequently omit this, since the contribution to the error term is negligible compared to the
other error terms. Assume now that q ∈ Q1. Then we can rewrite the corresponding part
of (4.5):
(4.9)

Sq = g(|W |)
|W |
∑

k=1

(

aq

(

γq,k(W ) + (βq,k(W )− δq,s)

k−1
∑

i=1

f(σi)

)

− (d+ 1)µqkβq,k(W )

)

λ−k+

µq|W |g(|W |)
|W |
∑

k=1

βq,k(W )λ−k +O
(

g(|W |)
|W |

)

.

Similarly, we get the following expansion for q ∈ Q2

(4.10) Sq = µqg(|W |)
|W |
∑

k=1

βq,k(W )λ−k +O
(

g(|W |)
|W |

)

and q ∈ Q3

(4.11) Sq = O
(

g(|W |)
|W |

)

.

Inserting (4.9), (4.10), and (4.11) into (4.5) yields

(4.12)
∑

w<W
w∈L

f(w) = |W |g(|W |)Φ(W ) + g(|W |)Ψ(W ) +O
(

g(|W |)
|W |

)

with

(4.13) Φ(W ) =
∑

q∈Q1

µq

|W |
∑

k=1

βq,k(W )λ−k
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and
(4.14)

Ψ(W ) =
∑

q∈Q1

|W |
∑

k=1

(

aqγq,k(W ) + aq(βq,k(W )− δq,s)
k−1
∑

i=1

f(σi)− (d+ 1)µqkβq,k(W )

)

λ−k

+
∑

q∈Q2

µq

|W |
∑

k=1

βq,k(W )λ−k.

We note that Φ and Ψ extend to continuous functions on L∞ by Φ(ω) = limW→ω Φ(W )
and Ψ(ω) = limW→ω Ψ(W ).

We finish the proof by noting that we have from (2.1) and (4.7)

val(W )

g(|W |) = Y (W ) +
1

|W |Z(W ) +O(|W |−2)

with

Y (W ) =
∑

q∈Q1

aq

|W |
∑

k=1

βq,k(W )λ−k

Z(W ) =−
∑

q∈Q1

daq

|W |
∑

k=1

βq,k(W )kλ−k +
∑

q∈Q2

aq

|W |
∑

k=1

βq,k(W )λ−k

+
∑

q∈Q1

cq

|W |
∑

k=1

βq,k(W )λ−k.

Again Y (W ) and Z(W ) extend to continuous functions on L∞. For Y (W ) this fact was
used in [19] to define an expansion for real numbers. Inserting

g(|W |) = val(W )

(

1

Y (W )
− 1

|W |
Z(W )

Y (W )2
+O(|W |−2)

)

into (4.12) we obtain the desired result with

F (W ) =
Φ(W )

Y (W )

G(W ) =
Ψ(W )

Y (W )
− Φ(W )Z(W )

Y (W )2
.

�

Proof of Corollary 2. From Theorem 1 we know that
∑

w<W
w∈L

f(w) = val(W )|W |F (W ) +O(val(W ))



ADDITIVE FUNCTIONS . . . REGULAR LANGUAGES 11

and that the limit limF (W ) exists, if W → ω ∈ L∞. Thus we only have to prove that
F (W ) can be written as a function of {h(N)} (recall that N = val(W )). We split the
proof of this fact into two parts: first we prove that limF (W ) for W → ω only depends
on val∞(ω), and secondly we show that val∞(ω) can be expressed in terms of {h(N)}.

To prove the first part we consider two sequences of words (Vk)k∈N and (Ṽk)k∈N converging
to ω and ω̃ with

(4.15) val∞(ω) = lim
k→∞

val(Vk)

g(|Vk|)
= lim

k→∞

val(Ṽk)

g(|Ṽk|)
= val∞(ω̃).

Without loss of generality we may assume that Vk has the prefix ω1 · · ·ωk and Ṽk has the
prefix ω̃1 · · · ω̃k. Moreover, we may consider Vk and Ṽk having the same length. Indeed
using Hypothesis 2, we can choose words ηk and η̃k of bounded length such that the words

ω1ω2 · · ·ωkηk and ω̃1ω̃2 · · · ω̃kη̃k

have the same length and belong to L. So we may choose Vk (resp. Ṽk) to be ω1ω2 · · ·ωkηk
(resp. ω̃1ω̃2 · · · ω̃kη̃k). Then by (4.15) and |f(w)| ≤ M |w| (for some positive constant M)
we have

(4.16)
∣

∣

∣
val(Ṽk)F (Ṽk)− val(Vk)F (Vk)

∣

∣

∣
(k + |ηk|) +O(val(Ṽk) + val(Vk))

=

∣

∣

∣

∣

∣

∣

∑

Vk≤w<Ṽk

f(w)

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣
val(Ṽk)− val(Vk)

∣

∣

∣
M(k + |ηk|).

Dividing this by g(k+ |ηk|)(k+ |ηk|) and letting k → ∞ we obtain that F (ω̃) = F (ω). Thus
we can define F(logλ val∞(ω)) := F (ω). The function F is then a continuous function,
since F is continuous and the map val∞ is continuous. Inserting (4.7) into (4.15) yields
{h(val(Vk))} = {logλ val∞(ω)} + O( 1

k
) and therefore we have F({h(val(Vk))}) = F (ω) +

O(µF(
1
k
)), where µF denotes the modulus of continuity of F . Thus F (ω) can be written

as a function of {h(N)} and it remains to prove that the modulus of continuity satisfies
µF(δ) = O(δ).

In order to prove Lipschitz-continuity of F we use the same reasoning once again for two
sequences Uk and Vk with

lim
k→∞

val(Uk)

g(|Uk|)
= λx, lim

k→∞

val(Vk)

g(|Vk|)
= λy

and |Uk| = |Vk|. We insert Uk and Vk into (4.16) to obtain

|λxF(x)− λyF(y)| ≤ M |λx − λy| ≤ C|x− y|.
Thus the function λxF(x) is Lipschitz continuous on [−1, 0] and by the Lipschitz continuity
of the function x 7→ λ−x also F is Lipschitz continuous on [−1, 0].

It remains to prove that F has a continuous periodic extension to R. For this purpose
it is enough to show that F(−1) = limx→0−F(x). For this purpose we observe that
given a minimal word Vk+1 of length k + 1 and a maximal word Wk of length k, we have
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val(Wk) + 1 = val(Vk+1). Furthermore, f(Vk+1) = O(k) and thus it follows immediately
that

F(−1) = lim
k→∞

F (Vk+1) = lim
k→∞

F (Wk) = lim
x→0−

F(x).

This finishes the proof of Corollary 2. �

Proof of Corollary 3. If the limit

lim
n→∞

1

nuq(n)

∑

|w|=n
w∈Lq

f(w) = Cf

for all states q ∈ Q1 we have µq = Cfaq for q ∈ Q1 and we can write

Cf val(W ) = Φ(W )g(|W |) +O
(

g(|W |)
|W |

)

and therefore we can use |W | = ⌊h(N)⌋ + 1 to obtain
∑

w<W
w∈L

f(w) = Cfh(N)N +O(N),

where N = val(W ). �

Remark 2. The only properties of the function g that we used were the strict monotonicity
and (4.6). Thus any function g with these properties could be used instead; the results
would be the same.

5. Examples

We present a number of examples which show that in general the results cannot be
improved. Especially, Example 1 will show that the function G given in (3.3) does not
necessarily extend to a continuous function of {h(N)}.
Example 1. Let L = {a, b}∗c{a, b}∗ ∪ {d, e}∗ with a < b < c < d < e and consider
the function f(a) = f(b) = f(c) = f(d) = 0, f(e) = 1. In this case Corollary 3 applies
with Cf = 0, since the language {d, e}∗ has only 2n words of length n, whereas L has
us(n) = n2n−1 + 2n and vs(n) = (n+ 1)2n. It is a simple exercise to compute

∑

w<d(n)

f(w) = n2n−1 − 2n + 1 and
∑

w<e(n)

f(w) = (n+ 1)2n − 2n+1 − n+ 1.

Then

lim
n→∞

1

vs(n)
#{w ∈ L | d(n) ≤ w < e(n)} = 0

but

lim
n→∞

1

vs(n)

∑

d(n)≤w<e(n)

f(w) =
1

2
,

which implies that the two sequences d(ω) and e(ω) represent the same real number, but
the values of G at these points differ.
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Example 2. Let L = ({a, b}∗c{a, b}∗) ∪ ({d, e}∗c{d, e}∗) with a < b < c < d < e and
consider the function f(a) = f(b) = f(c) = f(d) = 0, f(e) = 1. In this case we have
us(n) = n2n for n > 1 and vs(n) = (n− 1)2n+1 + 1 for n > 0. Furthermore, we have
∑

w<cd(n−1)

f(w) = (n2 − 5n+ 8)2n−2 − 2 and
∑

w<e(n−1)c

f(w) = (n2 − 3n+ 4)2n−1 − n− 1.

The numerical values of the words are given by val(cd(n−1)) = (3n − 4)2n−1 + 1 and
val(e(n−1)c) = (n− 1)2n+1. Therefore we have

lim
n→∞

1

n val(cd(n−1))

∑

w<cd(n−1)

f(w) =
1

6
and lim

n→∞

1

n val(e(n−1)c)

∑

w<e(n−1)c

f(w) =
1

4
,

which shows that the function F in Corollary 2 is not constant.

Although we did not study polynomial languages in this paper, we will give an example
for such a language which shows that similar phenomena can be expected.

Example 3. Let L = a∗b∗ with a < b and consider the function f(a) = 1, f(b) = 0. In

this case we have us(n) = n+ 1 and vs(n) =
(n+1)(n+2)

2
. Furthermore, we have

∑

w<a(ℓ)b(n−ℓ)

f(w) =
n3 − n

6
+

(n− ℓ)(n+ ℓ+ 1)

2

and val(a(ℓ)b(n−ℓ)) = n(n+1)
2

+ n − ℓ. Setting N = val(a(ℓ)b(n−ℓ)) we can compute n =

⌊
√

2N + 9
4
− 3

2
⌋ and ℓ = N − n(n+3)

2
. Inserting this into the above formula we obtain

∑

w<a(ℓ)b(n−ℓ)

f(w) =

√
2

3
N

3
2+N

({

√

2N +
9

4
− 3

2

}(

1−
{

√

2N +
9

4
− 3

2

})

− 1

2

)

+O(
√
N).

This shows that we have a periodic function of h(N) =
√

2N + 9
4
− 3

2
in the second term

of the asymptotic formula.
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Belgium

E-mail address : M.Rigo@ulg.ac.be


