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Let n be an even integer, and P a set of n points in the plane. A matching is a
set of n/2 edges such that each point of P is an endpoint of exactly one edge. The
sum of the lengths of the edges is called the cost of the matching. In [], Reingold
and Supowit have analyzed a divide–and–conquer heuristic to obtain a matching
with a small cost.

Here, we want to demonstrate, that – among a large class of similar strategies –
the version of Reingold and Supowit produces the minimal expected costs.

For the sake of shortness, we assume of certain knowledge of [].

Reingold and Supowit start with a rectangle with sides
√
2 and 1. Then, it

is bisected vertically to form two rectangles of sides 1 and 1/
√
2, respectively. If

both rectangles contain an even number of points, the matching is constructed in
both rectangles separately. If both rectangles contain an odd number of points, the
recursive strategy leaves one point in each rectangle (the “stranded point”), and
the two lonely points are connected.

Now we consider – more generally – a rectangle with sides a and b. The first
vertical cut produces two rectangles with respective sides a

2
and b. They are only

similar to the original one in the Reingold/Supowit setting. However, the next cut
will be horizontal, and the produced rectangles are similar to the original one.

Let us now consider the expected costs according to n random points. They are
of course dependent on the size of the rectangle from which we start. If we multiply
both sides by a factor λ, the expected cost will also multiply by the factor λ. And if
we want to compare the expected costs according to different rectangles, we should
normalize them by dividing by

√
ab.

Instead of one recursion as in the original case, we must consider Fn, the expected
cost, based on a rectangle with sides a and b, and Gn, the expected cost, based on
a rectangle with sides b and a

2
.

Otherwise, the argumentation to obtain the recursion is pretty much the same
as in [].
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We have F0 = G0 = 0, and for n ≥ 1

Fn = 2−n
n∑

k=0

(
n

k

)(
Gk +Gn−k

)
+ 1

2
φ(a, b) · χ(n)

Gn = 2−n
n∑

k=0

(
n

k

)(Fk

2
+Gn−k

)
+ 1

2
φ(a, b) · χ(n).

Here, χ(n) is 1 for n even and 0 for n odd; the 1
2
is the probability of an “odd–odd

split” and φ(a, b) is the expected distance between two randomly chosen points one
in each of the two halves (with sides a

2
and b) of the rectangle with sides a and b.

By symmetry, we can write

Fn = 21−n
n∑

k=0

(
n

k

)
Gk + 1

2
φ(a, b) · χ(n)

Gn = 2−n
n∑

k=0

(
n

k

)
Fk + 1

2
φ(b, a

2
) · χ(n).

Now, φ(a, b) = bG( a
2b ), where G(a) is the expected distance of two points in each of

two adjacent rectangles of sides a and 1 each. This quantity is given by [Kommentar
zur Berechnung als Fusznote?!]

G(a) =
1

a2

(
− 1

30
+ a5 +

√
1 + a2

15
− a2

√
1 + a2

5
+
a4

√
1 + a2

15

−
√
1 + 4 a2

30
+

2 a2
√
1 + 4 a2

5
− 8 a4

√
1 + 4 a2

15
− a4 log(a)

12

+
5 a4 log(2 a)

4
+
a4 log(−1 +

√
1 + a2)

8
− a4 log(1 +

√
1 + a2)

24

− a log(a+
√
1 + a2)

6
− 31 a4 log(−1 +

√
1 + 4 a2)

24

+
a4 log(1 +

√
1 + 4 a2)

24
+
a log(2 a+

√
1 + 4 a2)

6

)

.

We choose an alternative approach to solve this system of recursions. Reingold and
Supowit have used the Mellin transform, as demonstrated in Knuth’s book [], while
we use a slightly faster approach, which is called Rice’s method (see [],[]).

Let us use two other abbreviations, A = 1
2
φ(a, b) = b

2
G( a

2b ) and B = 1
2
φ(b, a

2
) =

a
4
G( ba ).
It is useful to deal with the exponential generating functions

F (z) =
∑

n≥0

Fn
zn

n!
and G(z) =

∑

n≥0

Gn
zn

n!
.

Then we get, on summing up the recursions about n ≥ 1,

F (z) = 2ez/2G
(z
2

)
+A

ez + e−z

2
−A

G(z) = ez/2F
(z
2

)
+B

ez + e−z

2
−B
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The next step is to introduce

F̃ (z) = e−zF (z) =
∑

n≥0

F̃n
zn

n!
and G̃(z) = e−zG(z) =

∑

n≥0

G̃n
zn

n!
.

Then we obtain

F̃ (z) = 2G̃
(z
2

)
+A

1 + e−2z

2
−Ae−z

G̃(z) = F̃
(z
2

)
+B

1 + e−2z

2
−Be−z

or

F̃ (z) = 2F̃
(z
4

)
+B(1 + e−z)− 2Be−z/2 +A

1 + e−2z

2
−Ae−z.

¿From this we infer that F̃0 = 0 and for n ≥ 1

F̃n =
(−1)n

1− 21−2n

(
A(2n−1 − 1) +B(1− 21−n)

)
.

Since F (z) = ezF̃ (z), we get for n ≥ 1

Fn =

n∑

k=1

(
n

k

)
(−1)k

1

1− 21−2k

(
A(2k−1 − 1) +B(1− 21−k)

)
.

As already indicated, we use Rice’s method [] for the asymptotic evaluation of this
(alternating) sum. Set

ψ(z) =
1

1− 21−2z

(
A(2z−1 − 1) +B(1− 21−z)

)
.

The basis of the approach is the integral representation

n∑

k=1

(
n

k

)
(−1)kψ(k) = − 1

2πi

∫

C

Γ(n+ 1)Γ(−s)
Γ(n+ 1− s)

ψ(s) ds,

where C is a positively oriented closed curve that lies in the domain of analyticity
of ψ(s), encircles 1, 2, . . . , n and no other poles of the integrand.

The asymptotic behavior is obtained by enlarging the contour of integration and
taking the additional negative residues into account; they are the terms in the
asymptotic expansion. In our instance, there are poles at z = 1

2
+ 1

2
χk, for k ∈ Z,

with χk = 2kπi
log 2

, since for these values we have 1 − 21−2z = 0. All these poles are

actually simple.
The computation of the negative residue is standard (Maple!) and yields

Γ(n+ 1)Γ(− 1
2
− 1

2
χk)

Γ(n+ 1
2
− 1

2
χk)

1

2 log 2

(
A
((−1)k√

2
− 1
)
+B

(
1−

√
2(−1)k

))
.
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Note that
Γ(n+ 1)

Γ(n+ 1
2
− 1

2
χk

= n
1

2
+ 1

2
χk =

√
n · e2kπi·log4

n.

It is customary to consider the pole at z = 1
2
separately. The contribution is

√
n ·

Γ(− 1
2
)

2 log 2

(
A+

√
2B
)1−

√
2√

2
.

Note also that Γ(− 1
2
) = −2

√
π, so that we get

√
n ·

√
π(
√
2− 1)√

2 log 2

(
A+

√
2B
)
.

We collect the other residues blabla and get

Theorem 1. The average cost of a random matching obtained from n points in a

rectangle of sides a and b is given by

√
n ·
(√

π(
√
2− 1)√

2 log 2

(
A+

√
2B
)
+ δ(log4 n) +O(

1

n
)

)
.

For the “classical” case we have A = D
2

and
√
2B = D

2
, and the factor in front

of
√
n is

√
π(
√
2− 1)D√
2 log 2

,

in accordance with the result in [].

Now we want to determine which choice of a and b gives the smallest constant.
Apart from factors which do not depend on the design parameters, we have to
consider A +

√
2B. As already discussed, we must rescale this quantity by

√
ab.

We thus want to minimize

A+
√
2B√

ab
=

1

2

√
b

a
G(

a

2b
) +

√
2

a

√
a

b
G(

b

a
).

As it is to be expected, this quantity depends only on the ratio xa
b , and we have to

minimize

H(x) :=
1√
x
G(
x

2
) +

√
x

2
G(

1

x
).

It is quite plausible that the x =
√
2 minimizes H(x), since then both terms are

the same. Maple can differentiate H(x) and confirms that H ′(
√
2) = 0 and blabla

(to be inserted by Peter Grabner, with a nice picture of this function).
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