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Abstract. For words of length n, generated by independent geometric random vari-
ables, we consider the mean and variance, and thereafter the distribution of the num-
ber of runs of equal letters in the words. In addition, we consider the mean length of
a run as well as the length of the longest run over all words of length n.

1. Introduction

Let X denote a geometrically distributed random variable, i. e. P{X = k} = pqk−1 for
k ∈ N and q = 1 − p. The combinatorics of n geometrically distributed independent
random variables X1, . . . , Xn has attracted recent interest, especially because of appli-
cations in computer science. We mention just two areas, the skip list [1, 15, 17, 11]
and probabilistic counting [5, 9, 10, 12].

In [16] the number of left-to-right maxima was investigated for words a1 . . . an, where
the letters ai are independently generated according to the geometric distribution. In
[13] the study of left-to-right maxima was continued, but now the parameters studied
were the mean value and mean position of the r-th maximum.

In this article we study runs of consecutive equal letters in a string of n geometrically
distributed independent random letters. For example in w = 22211114431 we have 5
runs of equal letters of respective lengths 3, 4, 2, 1, 1. In the sequel we denote by Rn(w)
the number of runs in the word w, where w is of length n.

In section 2 we study the mean and variance of Rn. Thereafter, in section 3 we study
the distribution of the number of runs, which turns out to be Gaussian. Subsequently,
in section 4 we study the average length of the runs per word. Finally, in section 5 we
determine the mean and variance of the length of the longest run in a word of length
n. The treatment follows to some extent the classical paper [14]; compare also [7] for
such longest run statistics in a slightly different context.
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2. Moments of number of runs

In order to determine the mean and variance of the number of runs we will make use of
the following decomposition of the set of all (non-empty) words. Here {≥ k} denotes
the set {k, k + 1, . . .}; for a given set A we denote

A+ =
∞
⋃

k=1

Ak, A∗ = ε ∪A+,

where ε stands for the empty word. We decompose the set of non-empty words accord-
ing to runs of 1’s, separated by words consisting of larger digits only

(2.1) {≥ 1}+ = (ε+ 1+)
(

{≥ 2}+1+
)∗{≥ 2}+(ε+ 1+) + 1+ ;

here we find it more convenient to write + instead of ∪.
We consider a probability generating function F (z, u), where z labels the length of the
word, and u counts the number of runs. We should always have F (z, 1) = z

1−z
, and a

replacement of z by qz, if we increase all letters by 1.

Then (2.1) translates into the functional equation

(2.2) F (z, u) =
F (qz, u)

1− F (qz, u)
pzu

1− pz

( pzu

1− pz
+ 1
)2

+
pzu

1− pz
.

Now we differentiate it w. r. t. u, plug in u = 1, set G(z) = ∂
∂u
F (z, 1), and get

G(z) = G(qz)
(1− qz)2

(1− z)2
+

pz(1 − pz)

(1− z)2
.

Setting H(z) = (1− z)2G(z) yields

H(z) = H(qz) + pz(1− pz) .

Comparing coefficients, we see that

[z]H(z) = 1 ,

[z2]H(z) = − p2

1 − q2
= − p

1 + q
,

and that the other coefficients are zero. Consequently,

H(z) = z − p

1 + q
z2 ,

and

G(z) =
z − p

1+q
z2

(1− z)2
.

This leads to

Proposition 1. The mean value of the number of runs for n ≥ 1 is given by

µn = ERn = [zn]G(z) =
2q

1 + q
n +

p

1 + q
.
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Now that we see such a simple result, we are tempted to look for a simple proof as
well. Indeed, since the expectation is additive, we have n − 1 times the expectation
of having unequal digits at two adjacent random variables, plus 1. This expectation is
given by

∑

i 6=j

pqi−1 pqj−1 =
2q

1 + q
.

Then the expected number of runs is given by

(n− 1)
2q

1 + q
+ 1 =

2q

1 + q
n +

p

1 + q
.

If we want to compute the variance, such a simple argument seems to be out of reach.
Henceforth, we differentiate (2.2) twice, and use the notation V (z) = ∂2

∂u2F (z, 1).

We see

V (z) = V (qz)
(1 − qz)2

(1− z)2
+

8q2

(1 + q)2(1− z)3
+

8pq2z2

(1 + q)2(1− z)2

+
4p2qz2

(1 + q)(1− z)2
+

2p3qz3

(1 + q)2(1− z)2
− 8q2

(1 + q)2(1− qz)(1− z)2

(2.3)

or, with W (z) = (1− z)2V (z),

W (z) = W (qz) +
8q2

(1 + q)2(1− z)
+

8pq2z2

(1 + q)2

+
4p2qz2

(1 + q)
+

2p3qz3

(1 + q)2
− 8q2

(1 + q)2(1− qz)
.

From this we see that (with wn := [zn]W (z)) for n ≥ 4,

wn = qnwn +
8q2

(1 + q)2
[

1− qn
]

,

or

wn =
8q2

(1 + q)2
.

Furthermore we see that

w0 = w1 = 0, w2 =
4q

1 + q
, and w3 =

2q(1 + q + 4q2)

(1 + q)(1 + q + q2)
.

Hence

V (z) =
4q

1 + q

z2

(1− z)2
+

2q(1 + q + 4q2)

(1 + q)(1 + q + q2)

z3

(1− z)2
+

8q2

(1 + q)2
z4

(1− z)3

and

[zn]V (z) =
4q2

(1 + q)2
(n− 2)(n− 3) +

2q(1 + q + 4q2)

(1 + q)(1 + q + q2)
(n− 2) +

4q

1 + q
(n− 1).

Adding the expectation and subtracting the square of the expectation, we obtain the
variance.
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Proposition 2. The variance of the number of runs is given for n ≥ 2 by

σ2

n = VRn =
2q(1− q)2(2 + q2)

(1 + q)2(1− q3)
n− 2q(1− q)2(3− q + q2)

(1 + q)2(1− q3)
.

3. Distribution of the number of runs

In this section we prove a central limit theorem for the distribution of the number of
runs. In order to do this, we have to extract further information from the functional
equation (2.2). We observe that the terms on the right-hand side are all simple rational
functions, except for the terms containing F (qz, u). From the definition of F (z, u) it
is clear that F (z, u) can be written as

F (z, u) =
∑

n≥1

znfn(u)

for polynomials fn(u) with deg fn = n, whose coefficients are positive and ≤ 1. There-
fore we have

(3.1) |fn(u)| ≤
|u|n+1 − 1

|u| − 1
, for |u| > 1.

Using q < 1 and (3.1) we obtain that F (qz, u) is holomorphic in |z| < 1√
q
, |u| < 1√

q
.

Since for u = z = 1 we have

1− F (q, 1)
p

1− p
= 0, and

∂

∂z

(

1− F (qz, u)
pzu

1− pz

)
∣

∣

∣

∣

z=1,u=1

6= 0

there exists a function f(u) holomorphic in a neighbourhood of u = 1 such that z =
f(u)−1 solves

1− F (qz, u)
pzu

1− pz
= 0

and satisfies f(1) = 1. Furthermore, |f(eit)| < 1 for 0 < |t| < ε for some ε > 0 by an
application of Rouché’s theorem. Thus we can write

(3.2) F (z, u) =
g(z, u)

1− f(u)z
+R(z, u),

where g(z, u) and R(z, u) are holomorphic in |z| < 1 + δ, |u − 1| < δ for some δ > 0.
Now we are in the general framework of Hwang’s quasi-power theorem (cf. [8]) and can
deduce the following theorem.

Theorem 1. The number of runs in words of length n produced by independent geo-

metric random variables obeys a central limit law, more precisely

(3.3) P

(

Rn ≤ 2q

1 + q
n+ t

√

2q(2 + q2)

1− q3
1− q

1 + q

√
n

)

= Φ(t) +O(n− 1
2 );

the error term is uniform in t.
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4. Average length of runs

Given a string w of geometric random variables of length n with k runs we define the
average length of a run to be Ln(w) =

n
k
. It is of interest to determine the moments and

the distribution of this parameter over all strings of length n. Intuitively, one expects
that the mean length of a run should be close to n divided by the mean number of
runs, which is

n
2q

1+q
n+ p

1+q

=
1 + q

2q
− 1− q2

4q2
1

n
+O

( 1

n2

)

.

In fact we obtain

Proposition 3. For n ≥ 1 the mean and variance of Ln are given respectively by

1 + q

2q
+O(

1

n
),

(1− q2)2(2 + q2)

8q3(1− q3)

1

n
+O(

1

n2
).

Moreover, Ln obeys a central limit theorem:

P

(

Ln −
1 + q

2q
≤ (1− q2)

√

2 + q2
√

8q3(1− q3)

t√
n

)

= Φ(t) +O(n− 1
2 ).

Proof. The proof will make use of the distribution obtained for the number of runs in
Theorem 1. We first write Rn = µn+σnXn, where Xn is a sequence of random variables
with asymptotically normal distribution, and µn and σn are given by Propositions 1, 2.
Then we can write

(4.1)
n

Rn

=
n

µn

1

1 + σn

µn
Xn

=
n

µn

− nσn

µ2
n

Xn +O
(

nσ2
n

µ3
n

|Xn|2
)

.

We observe that by (3.3) and 1− Φ(t) ∼ 1√
2πx

exp(−x2

2
) (cf. [3]) we have

P (|Xn| > logn) = O(n− 1
2 ).

This gives an error term of O(n−1 log n) in (4.1) and yields the desired result. �

5. Longest runs

In this section we study the mean of the longest run Mn of equal digits in a string of
length n. For this purpose we introduce the probability generating function Gh of all
strings that have runs only of length less than h. Similar arguments as in the proof of
(2.2) show that Gh satisfies

(5.1) Gh(z) =

(

1− (pz)h

1− pz

)2
Gh(qz)

1−Gh(qz)
pz

1−pz
(1− (pz)h−1)

+ pz
1 − (pz)h−1

1− pz
.

In order to extract the asymptotic behaviour of the probability that a string of length
n has runs of length at most h, we have to find the singularities of Gh(z). We start
with simple a priori estimates for the power series coefficients of Gh:

(5.2)
z

1− z
− 1

(1− z)2

∞
∑

k=0

(pqkz)h

1− pqkz
� Gh(z) �

z

1− z
,
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where

A(z) � B(z) ⇔ ∀n ∈ N : [zn]A(z) ≤ [zn]B(z).

The left hand side of (5.2) is obtained by subtracting all strings which contain at least
one run of 1’s of length ≥ h, or one run of 2’s of length ≥ h, and so on; clearly this is
not a disjoint union, therefore it only gives an estimate. The upper estimate is trivial.

Now we investigate the solution of the equation

(5.3) 1−Gh(qz)
pz

1− pz

(

1− (pz)h−1
)

= 0.

Since all the occurring power series have positive coefficients, we could apply Rouché’s
theorem to conclude that the positive real root ρh of (5.3) is the root of smallest
modulus. Then inserting the two estimates (5.2) and multiplying out, we obtain

1 + qρh(pρh)
h ≤ ρh ≤ 1 + qρh(pρh)

h +
pρh − (pρh)

h

1− qρh

∞
∑

k=1

(pqkρh)
h

1− pqkρh
.

By bootstrapping we easily see that this implies ρh = 1 + pqh + O((pq)h). Since the
poles of the other terms in (5.1) are 1

p
and 1

q
, ρh is the dominant singularity of the

function Gh. Furthermore, we have

Gh(qρh) =
q

p
+O(qh), G′

h(qρh) =
1

p2
+O(hqh)

d

dz

(

1−Gh(qz)
pz

1− pz

(

1− (pz)h−1
)

)
∣

∣

∣

∣

z=ρh

= − 1

pq
+O(hph).

Putting everything together we obtain

(5.4) P (Mn < h) = (1− pqh)n +O(hqh) +O(hqh).

Using (5.4) and Abel summation we derive that the first and second moment of the
longest run are given by

(5.5)

EMn =
∑

h≥1

(1− P (Mn < h)) =
∑

h≥1

(

1− (1− pqh)n
)

+O(1)

EM2

n = 2
∑

h≥1

h (1− P (Mn < h))− EMn =

∑

h≥1

(2h− 1)
(

1− (1− pqh)n
)

+O(1).

In order to compute the asymptotic behaviour of these two moments, we use the now
classical exponential approximation technique (cf. [6]). We replace the terms (1−pqh)n

in the two sums by exp(−npqh) and estimate the error. For this purpose we split
the range of summation into three parts: h < 3

4
log 1

q
n, |h − log 1

q
n| ≤ 1

4
log 1

q
n, and

h > 5

4
log 1

q
n.

In the range h < 3

4
log 1

q
n we estimate

(

1− pqh
)n ≤

(

1− pn− 1
4

)n

≤ exp
(

−pn
3
4

)

and exp
(

−npqh
)

≤ exp
(

−pn
3
4

)

,
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which yields

(5.6)
∣

∣

(

1− pqh
)n − exp

(

−npqh
)
∣

∣ ≤ exp
(

−pn
3
4

)

.

In the range |h − log 1
q
n| ≤ 1

4
log 1

q
n we write h = log 1

q
n + t and approximate by the

Taylor expansion to obtain

(

1− pqh
)n

= exp
(

n log
(

1− p

n
qt
))

= exp

(

−pqt +O(
q2t

n
)

)

.

Observing that the error term in this equation tends to 0 we obtain

(5.7)
∣

∣

(

1− pqh
)n − exp

(

−npqh
)
∣

∣ = O
(

q2t

n

)

= O(n− 1
2 ).

For the range h > 5

4
log 1

q
n we use the Taylor expansion again to obtain

(5.8)
∣

∣

(

1− pqh
)n − exp

(

−npqh
)
∣

∣ = O(nq2h).

Inserting (5.6), (5.7), and (5.8) into (5.5) we obtain

(5.9) EMn =
∑

h≥1

(

1− exp(−npqh)
)

+O(1)O
(

e−n
3
4 log n

)

+O(n− 1
2 logn) +O(n− 3

2 ).

We now apply the Mellin transform (cf. [2, 4]) to the function f(t) =
∑

h≥1
(1 −

exp(−tpqh)). This yields the transformed function

(5.10) f ∗(s) = −Γ(s)p−s 1

qs − 1
, for − 1 < ℜs < 0.

Application of the Mellin inversion formula, shifting the line of integration to the right
and collecting residues yields

f(t) = − 1

2πi

− 1
2
+i∞
∫

− 1
2
−i∞

Γ(s)p−s 1

qs − 1
t−s ds = −

∑

k∈Z
Res f ∗

1 (s)t
−s
∣

∣

s= 2kπi

log 1
q

(5.11)

− 1

2πi

1
2
+i∞
∫

1
2
−i∞

Γ(s)p−s 1

qs − 1
t−s ds.

The residues are easily computed to be

(5.12)

Res Γ(s)p−s 1

qs − 1
t−s

∣

∣

∣

∣

s=0

= log 1
q
t− log p

log q
− 1

2
− γ

log q

Res Γ(s)p−s 1

qs − 1
t−s

∣

∣

∣

∣

s= 2kπi

log 1
q

= Γ

(

2kπi

log 1

q

)

(pt)
− 2kπi

log 1
q

1

log q
.

This yields

(5.13) f(n) = EMn +O(1) = log 1
q
n +O(1).
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Similarly, we can obtain an expression for the second moment

(5.14) EM2

n +O(1) = log21
q

n +O(logn)

by applying the same analysis to the function
∑

h≥1
(2h− 1)(1− (1− pqh)n). Unfortu-

nately, the error term in (5.5) is too weak to obtain the main term in the asymptotic
of the variance of Mn.

Proposition 4. The mean value of the length of the longest run Mn in a string of n

geometric random variables satisfies

EMn = log 1
q
n+O(1).
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