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ASYMPTOTICS OF THE POINCARÉ FUNCTIONS

GREGORY DERFEL, PETER J. GRABNER†, AND FRITZ VOGL

Dedicated to Prof. Stanislav A. Molchanov on the occasion of his 65th birthday

Abstract. The asymptotic behaviour of the solutions of of Poincaré’s functional equa-
tion f(λz) = P (f(z)) (λ ∈ C, |λ| > 1) for P a polynomial of degree ≥ 2 is studied in
different regions of the complex plane.

1. Introduction

In 1890 H. Poincaré [10] has studied the equation

f(λz) = R(f(z)), z ∈ C, (1.1)

where R(z) is a rational function and λ ∈ C. He proved that, if R(0) = 0, R′(0) = λ
and |λ| > 1, then there exists a meromorphic or entire solution of (1.1). After Poincaré,
solutions of (1.1) are called the Poincaré functions admitting a multiplication theorem
(cf. [14]). Later on, G. Valiron [13, 14] elaborated the case, where R(z) = P (z) is a
polynomial, i.e.

f(λz) = P (f(z)), z ∈ C, (1.2)

and obtained conditions for the existence of an entire solution f(z). Furthermore, he
derived the following asymptotic formula for M(r) = max|z|=r |f(z)|:

logM(r) ∼ rρQ

(
log r

log |λ|

)
, r → ∞. (1.3)

Here Q is a 1-periodic function bounded between two positive constants, ρ = logm
log |λ|

and

m = degP (z) .
An interesting example of such equations, which stems from the description of Brownian

motion on Sierpinski’s gasket, has been studied in ([1], [?], and [6]). This is the functional
equation

f(5z) = 4f 2(z)− 3f(z). (1.4)
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Similar equations arise also in the theory of branching processes (cf. [2], [7]).
Different aspects of the Poincaré functions are discussed in papers [?], [4], [5], and [11]

closely related to the present one.
In our paper we derive further results of Valiron’s type. Namely, in addition to (1.3) we

find asymptotics of entire solutions f(z) on various rays arg z = ϑ of the complex plane.
It turns out that this heavily depends on the arithmetic nature of λ.

For instance, the following statement (Theorem 4.3, below) is proved:
If arg λ = 2πβ and β is irrational, then f(z) is unbounded along any ray arg z = ϑ.

Moreover, if we denote ϕ(z) = log |f(z)| (where the main branch of logarithm is taken)
then there exists a sequence rn → ∞, such that the limit

lim
n→∞

ϕ(rne
iϑ)

rρn
= L (1.5)

exists and L > 0.
On the other hand, if β is rational (and, in particular, if β = 0, i.e. λ is real) f(z) may

be bounded on some rays and even in whole sectors. Nevertheless, for rational β, the limit
(1.5) still exists under some additional assumptions. Denote β = t/s and suppose that t, s
are relatively prime. Put q = λs (note that 1 < q ∈ R). Here we have the following result
(see Theorems 5.1 and 5.2 below):

Suppose that either |λ| > m2 or s > 2ρ. Then f(z) is unbounded on any ray, and one
can find a geometric progression rn = qnr0, (r0 > 0), for which the limit (1.5) exists and
L > 0.

Further refinements are possible when λ > 1 is real and P (z) = pmz
m + . . . + p1z +

p0 is a polynomial with real coefficients. Namely, we prove the the following statement
(Theorem 6.1):

Assume that: a) λ > m; b) pi ≥ 0, for i ≥ 2; c) All preimages of 0 under P , i.e
P−n({0}) are real. Let f(z) be an entire solution of (1.2) such that f(0) and f

′

(0) are
real and f(0) ≥ 0 and f

′

(0) > 0. Then f(z) tends to infinity along any ray in the sector
0 < |ϑ| < π/2. Moreover,

ϕ(reiϑ) ∼ rρQϑ

(
log r

log λ

)
, r → ∞ (1.6)

where Qϑ(z) is 1-periodic and bounded between two positive constants.
Condition c) plays an important role in the last statement. If P (z) is quadratic polyno-

mial (a case, arising in some applications) it is possible to give an exact criterion for reality
of P−n({0}) (see Lemma 6.4 below): Let

P (z) = az(z − ω), 0 6= ω ∈ R (1.7)

All preimages of 0 under P are real, if and only if the following condition is fulfilled

a|ω| ≥
{
2 for ω > 0

4 for ω < 0
(1.8)
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The paper is organised as follows. In section 2 we discuss some elementary but important
properties of the Poincaré equation (1.2) and its (formal) power series solutions. Section 3
is devoted to a study of the asymptotics of solutions for (1.2) along spirals (i.e. geometric
progression of the form zn = λnz0, λ ∈ C). As a consequence of these results, in Section 4,
we obtain asymptotics of solutions on different rays of the complex plane. We split the
presentation into two different cases:

a) β = 1
2π

arg λ is rational (Section 4.1)
b) β is irrational (Section 4.2)

Sufficient conditions for unboundedness of solutions along all rays emanating from the
origin are given in Section 5.

Further refinements are possible, when λ > 1 is real and P (z) is a polynomial with real
and ”almost positive” coefficients – these are derived in Section 6. Also, we specialise some
of our results for quadratic polynomials.

In the final Section 7 we present some results on the asymptotics of solutions f(z) (rather
than |f(z)|) in some angular regions of the complex plane.

2. Preliminary remarks, simplifications of the equation, formal power

series solution

Consider the equation

f(λz) = P [f(z)], (2.1)

where

P (z) = pmz
m + pm−1z

m−1 + . . .+ p0. (2.2)

Throughout this paper we assume that m ≥ 2 and |λ| > 1.

2.1. Simplifications of the equation. The following Proposition 2.1 shows that, without
loss of generality, we may always assume that pm = 1.

Proposition 2.1. Let f(z) be a solution for (2.1). Then

g(z) = p
− 1

m−1

m f(z) (2.3)

is a solution of the equation

g(λz) = P̃ [g(z)], (2.4)

where

P̃ (z) = zm + p̃m−1z
m−1 + . . .+ p̃0,

is a polynomial with the leading coefficient equal to 1.
(More precisely,

p̃k = pkc
k−1; for k = 0, . . .m with c = p

− 1

m−1

m , (2.5)

In particular, p̃0 = p0c
−1 = p0p

1

m−1

m .)
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Proof. Put f(z) = cg(z) and insert this in (2.1).
Then we have

cg(λz) = pmc
m[g(z)]m + pm−1c

m−1[g(z)]m−1 + . . .+ p0

or

g(λz) = pm−1c
m−1[g(z)]m + pm−1c

m−2[g(z)]m−2 + . . .+ c−1p0

Next, choose c so that pmc
m−1 = 1, i.e. c = p

− 1

m−1

m . This completes the proof. �

Example 1. By virtue of the formula cos 2z = 2 cos2 z − 1 the function f(z) = cos z
satisfies the equation

f(2z) = 2[f(z)]2 − 1

Here p2 = 2, c = p−1
2 = 2−1 and therefore p̃2 = 1, p̃0 = −2.

Therefrom, according to Proposition 2.1, the function g(z) = 2 cos z = eiz+e−iz satisfies
the equation

g(2z) = g(z)2 − 2

Proposition 2.2. Let f(z) be a solution of (2.1). Then

g(z) = f(zγ), for γ > 0 (2.6)

is a solution of the equation

g(λ1/γz) = P [g(z)] (2.7)

Proof.

g(λ1/γz) = f [(λ1/γz)γ ] = f(λzγ) = P [f(zγ)] = P [g(z)]

�

Example 2. As it was mentioned already the function f(z) = cos z satisfies equation

f(2z) = P [f(z)],

where P (z) = 2z2−1. Put g(z) = cos
√
z, i.e. choose γ = 1/2 in (2.6). Then, in accordance

with Proposition 2.2, the (entire) function g(z) = cos
√
z satisfies the equation

g(4z) = cos
√
4z = cos 2

√
z = 2(cos

√
z)2 − 1 = P [g(z)]

H. Poincaré in [9, 10] and G. Valiron in [14] assumed that P (0) = 0. There is no loss of
generality in this assumption, as is shown in the following Proposition 2.3. The condition
P (0) = 0 can be always achieved by simple change of variables.

Proposition 2.3. Suppose that f(z) satisfies equation (2.1) and initial condition

f(0) = c0

(In accordance with Lemma 2.1 below, it is necessary that c0 = P (c0), i.e. c0 is fixed point
of P (z).) Then the function g(z) = f(z)− c0 satisfies the equation

g(λz) = P̃ [g(z)],
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where

P̃ (z) = P (z + c0)− c0

and the initial condition

g(0) = 0

In addition,

P̃ (0) = 0

i.e. 0 is a fixed point of P̃ (z) (which corresponds to the fixed point c0 of P (z)). Furthermore,
if ci (i = 0, 1, . . .m − 1) are fixed points of P (z), then c̃i = ci − c0 (i = 0, . . . , ℓ) are fixed

points of P̃ (z) and P̃ ′(c̃i) = P ′(ci)

Proof. Firstly

g(λz) = f(λz)− c0 = P [f(z)]− c0 = P [g(z) + c0]− c0 ≡ P̃ [g(z)]

Also, clearly

g(0) = f(0)− c0 = c0 − c0 = 0; P̃ (0) = P (c0)− c0 = 0

Next, suppose that ci (i = 0, . . . , ℓ) is a fixed point of P (z). Then

P̃ (ci − c0) = P [(ci − c0) + c0]− c0 = P (ci)− c0 = ci − c0

i.e. c̃ = ci − c0 is a fixed point of P̃ (z). Finally, P̃ ′(z) = P ′(z + c0) for any z and, in

particular, P̃ ′(c̃i) = P̃ ′(ci − c0) = P ′(ci). �

2.2. Formal power series solutions of (2.1). . Let

f(z) =

∞∑

k=0

fkz
k (2.8)

be a formal power series solution of (2.1). It is easily verified that f(z) satisfies (2.1) if
and only if the coefficients fn satisfy the following recurrence

P (f0) = f0 (2.9)

(λ− α)f1 = 0, with α := P ′(f0) =
m∑

k=1

kpkf
k−1
0 (2.10)

(λn − α)fn =
m∑

k=2

pk
∑

ℓ1+...+ℓk=n
ℓ1,...,ℓk<n

fℓ1fℓ2 . . . fℓK =: Sn(p2, . . . , pm, f0, f1, . . . fn−1) (2.11)

Remark 2.1. We call a power series solution trivial, if it degenerates to the constant f0.
Note, that in view of (2.1), a nontrivial solution is non-polynomial.

The following Lemma immediately follows from (2.9)–(2.11).

Lemma 2.1. The following assertions hold:

(1) The only admissible values for f0 (at most m) are the fixed points of P (z).
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(2) A nontrivial formal power solution f(z) exists if and only if there is an n0 ∈ N such
that

λn0 = α = P ′(f0) (2.12)

(3) If n0 ≥ 2 and f(z) is a nontrivial solution, then

fkn0+1 = fkn0+2 = . . . = f(k+1)n0−1 = 0 for k = 0, 1, . . . (2.13)

and there are infinitely many fi, such that fi 6= 0.
(4) Sn(p2, . . . , pm, f0, f1, . . . fn−1) is a polynomial of its arguments with positive coeffi-

cients.

Remark 2.2. Let f(z) be a nontrivial formal power solution of (2.1), which satisfies (2.12)
with n0 ≥ 2. Then, from Lemma 2.1-(3) it follows that:

(1) f(z) is even, if n0 is even
(2) the function

g(z) = f( n0

√
z)

can be developed into a formal power series and satisfies the equation

g(λn0z) = P [g(z)]

in a line with Proposition 2.2. In other words, g(z) is formal power series solution
of equation

g(µz) = P [g(z)],

where

µ := λn0 = α = P ′(g0) = P ′(f0)

i.e. g(z) satisfies (2.12), with n0 = 1

2.3. Entire solution versus formal solution. We conclude this section with the fol-
lowing classical theorem of Valiron.

Theorem 2.4 (Valiron [14]). Any formal power series solution f(z) of (2.1) is an entire
function of order

ρ =
logm

log |λ| .

Furthermore, denote M(r) = max|z|≤r |f(z)|. Then

logM(r) ∼ rρQ

(
log r

log |λ|

)
, r → ∞,

where Q is a 1-periodic function bounded between two positive constants.
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3. Asymptotics of solutions along spirals

As it was mentioned already in the introduction the main objective of this paper is to
derive asymptotics for the solutions of (2.1) along different rays arg z = ϑ of the complex
plane C.

Latter asymptotics can be derived from the asymptotics of f(z) along spirals (geometric
progressions) of the form zn = λnz0, where z0 = r0e

iϑ0 ∈ C will be specified below.
Corresponding results are given in Theorem 3.1, below.

Consider the Poincaré equation

f(λz) = P [f(z)], |λ| > 1 (3.1)

where (as indicated in Section 2.1, we can always assume that P is normalised)

P (z) = zm + pm−1z
m−1 + . . .+ p1z + p0, m ≥ 2. (3.2)

Denote
K = max{|p0|, . . . , |pm−1|}. (3.3)

Suppose that z0 = r0e
iϑ0 ∈ C is such a point, that

|f(z0)| > max{e, 2mK}. (3.4)

Denote

ϕ(z) = log |f(z)|; zn = λnz0; ρ =
logm

log |λ| (3.5)

(It follows from (3.4) that ϕ(z0) > 1.)

Theorem 3.1. Suppose that f(z) is a solution of (3.1) and (3.4) is satisfied. Then the
limit along the spiral zn = λnz0

lim
n→∞

ϕ(zn)

|zn|ρ
= L(z0) (3.6)

exists and
ϕ(z0)− 3Km

2|f(z0)|

|z0|ρ
< L(z0) <

ϕ(z0) +
3Km

2|f(z0)|

|z0|ρ
. (3.7)

In particular, in view of (3.4), L(z0) is bounded between two positive constants:

ϕ(z0)− 3
4

|z0|ρ
< L <

ϕ(z0) +
3
4

|z0|ρ
. (3.8)

Furthermore, if f(z) is an entire solution of (3.1), then L is a continuous function on the
domain {z ∈ C | |f(z)| > max(e, 2mK)}.
Remark 3.1. Throughout this paper we deal mainly with the asymptotics of entire solu-
tions of (3.1). However, some statements of the present section and Section 4 are valid for
arbitrary solutions of (3.1). In particular, for validity of (3.6) and (3.7) no assumptions on
the smoothness of f(z) are needed.

The proof is similar to the one of [3, Lemma 1]. It may be divided into two main steps.
We shall state these two steps as Lemmas 3.1 and 3.2 below.
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Lemma 3.1. Suppose that (3.4) is fulfilled. Then

log f(λz0) = m log f(z0) + r(z0), (3.9)

where

r(z) = log

(
1 +

pm−1

f(z)
+ · · ·+ p0

f(z)m

)

and

|r(z0)| ≤
3mK

2|f(z0)|
. (3.10)

Denote ℜr(z0) = r1(z0) and equate real parts in (3.9).
As an immediate consequence of of Lemma 3.1 we obtain

Corollary 3.1. If (3.4) is satisfied, then

log |f(λz0)| = m log |f(z0)|+ r1(z0) (3.11)

or
ϕ(λz0) = mϕ(z0) + r1(z0), (3.12)

where

|r1(z0)| ≤
3mK

2|f(z0)|
. (3.13)

Proof of Lemma 3.1. Let us write P (z) in the form

P (z) = zm
(
1 +

pm
z

+ · · ·+ p0
zm

)
=: zm(1 +R(z)). (3.14)

Then we have for |z| ≥ 1

|R(z)| ≤ mK

|z| .

From (3.14) it follows that
logP (z) = m log z + r̃(z), (3.15)

where r̃(z) = log(1 +R(z)). Moreover, if (3.4) is satisfied, then

|r̃(z0)| ≤
3

2
|R(z0)| ≤

3

2

mK

|z0|
(3.16)

(in view of the inequality | log(1 + z)| ≤ 3
2
|z|, which is valid for |z| ≤ 1

2
).

Next, combining (3.1) and (3.15), we obtain (3.9), where r(z0) = r̃(f(z0)). Furthermore,
it follows from (3.16) that r(z0) satisfies (3.10). �

Remark 3.2. From the proof of Lemma 3.1 it follows that r(z) is an analytic function
and r1(z) is continuous in the domain {z ∈ C | |f(z)| > max(e, 2mK)}, if f(z) is an entire
solution of (3.1).

Now, from Corollary 3.1 we derive the two simple additional Corollaries 3.2 and 3.3.

Corollary 3.2. The sequence ϕ(λnz0) is monotonically increasing and tends to infinity,
as n→ ∞. Moreover ϕ(λnz0) > (5/4)nϕ(z0).
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Proof. It follows from (3.4) that

ϕ(z0) > 1 and |r1(z0)| <
3

4
. (3.17)

Combining (3.12), (3.13), and (3.17) we obtain

ϕ(λz0) = m

(
ϕ(z0) +

r1(z0)

m

)
≥ m

(
ϕ(z0)−

3

4m

)

≥ m

(
ϕ(z0)−

3

4m
ϕ(z0)

)
=

4m− 3

4
ϕ(z0) ≥

5

4
ϕ(z0). (3.18)

This implies monotonicity as well as the lower bound for ϕ(λnz0). �

Combining Corollary 3.2 with the estimate (3.13) yields

Corollary 3.3. For n = 0, 1, . . . we have

|r1(λnz0)| <
3

2

mK

|f(z0)|
=

3

2
mKe−ϕ(z0). (3.19)

Lemma 3.2. Suppose that (3.4) is satisfied. Then the limit

lim
n→∞

ϕ(λnz0)

mn
= L1(z0) (3.20)

exists and

|L1(z0)− ϕ(z0)| ≤
3mK

2|f(z0)|
. (3.21)

Furthermore, if f is an entire solution, then L is a continuous function on some neigh-
bourhood of z0.

Proof. From (3.12) we get by iteration

ϕ(λnz0)

mn
= ϕ(z0) +

1

m
r1(z0) + · · ·+ 1

mn
r1(λ

n−1z0). (3.22)

Denote

S(z0) =
∞∑

k=1

r1(λ
k−1z0)

mk
, (3.23)

where the series converges uniformly by (3.19) and

|S(z0)| ≤
3mK

2|f(z0)|
. (3.24)

Therefore the limit (3.20) exists and equals ϕ(z0) + S(z0). The inequality (3.21) follows
from (3.24). Continuity of L1 is a consequence of uniform convergence of the series (3.23)
and the continuity of ϕ and r1. �

Now Theorem 3.1 is an immediate consequence of Lemma 3.1.
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Proof of Theorem 3.1. Since zn = λnz0 and ρ = logm
log |λ|

then |λ|n = | zn
z0
| and m = |λ|ρ.

Therefore,

mn = (|λ|ρ)n =

∣∣∣∣
zn
z0

∣∣∣∣
ρ

.

Inserting this into (3.20) we get

lim
n→∞

ϕ(zn)

|zn|ρ
= lim

n→∞

ϕ(zn)

|z0|ρmn
= L1(z0)|z0|−ρ = L(z0). (3.25)

Combining this with (3.21) we obtain
∣∣∣∣L(z0)−

ϕ(z0)

|z0|ρ
∣∣∣∣ ≤

3mK

2|f(z0)||z0|ρ
, (3.26)

which gives (3.7). �

As can be seen from the proof, it is possible to relax the conditions of Theorem 3.1
slightly and to restate it in the following modified form.

Theorem 3.2. Suppose that f(z) satisfies (3.11) (or, what is the same, ϕ(z) satisfies
(3.12)). Suppose further that (3.13) is satisfied. Then the conclusion of Theorem 3.1
holds, i.e. ϕ(z) satisfies (3.6) and (3.7).

Remark 3.3. One can see from the proof (see (3.22)–(3.24)) that not only (3.26) (or (3.7))
is true, but the slightly stronger statement

∣∣∣∣
ϕ(zn)

|zn|ρ
− ϕ(z0)

|z0|ρ
∣∣∣∣ ≤

3mK

2|f(z0)||z0|ρ
for n = 1, 2, . . . (3.27)

holds.

4. Asymptotics along rays

As a consequence of Theorem 3.1 on the asymptotic behaviour of f(z) along spirals we
shall derive the asymptotics along rays reiϑ in this section. It turns out that the latter
heavily depends on the arithmetic nature of arg λ.

Denote arg λ = 2πβ. Then it is natural to distinguish two cases: β is rational and β is
irrational.

4.1. Rational angle.

Theorem 4.1. Suppose that the conditions of Theorem 3.1 (or Theorem 3.2) are satisfied.
Suppose further that β = t

s
is rational (with s and t relatively prime). Denote q = λs (note

that q is a real number > 1); rn = qnr0 (and recall the notation z0 = r0e
iϑ0). Then the

limit

lim
n→∞

ϕ(rne
iϑ)

rρn
= L(z0) (4.1)

exists and satisfies (3.7).
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Remark 4.1. Similar asymptotics occur on the rays

arg z = ϑ0 +
2kπ

s
, k = 0, 1, . . . , s− 1.

Proof. If f(z) satisfies (3.1) then (by iteration of (3.1)) it also satisfies

f(λsz) = P (s)(f(z)), (4.2)

where P (s) denotes the s-th iteration of P . By our assumptions q = λs is real and > 1.
The assertion follows by an application of Theorem 3.1 to P (s). �

If in addition to the assumptions of Theorem 4.1 it is known that f(z) → ∞ as z → ∞
along the ray arg z = ϑ0, then one can obtain stronger results. Suppose that there exists
an interval I = [r0, r0q] such that condition (3.4) is satisfied for all z ∈ eiϑ0I, i.e.

∀z ∈ eiϑ0I : |f(z)| > max{e, 2mK}. (4.3)

Denote
M0 = max

z∈eiϑ0I
ϕ(z) and m0 = min

z∈eiϑ0I
ϕ(z).

Then the following is an immediate consequence of Theorem 4.1.

Theorem 4.2. Suppose that the assumptions of Theorem 3.1 (or Theorem 3.2) are satis-
fied, β = t

s
is rational and (4.3) holds. Then

ϕ(reiϑ0) ∼ rρQ

(
log r

log q

)
, (4.4)

where Q is a continuous 1-periodic real function of a real variable bounded between two
positive constants:

∀t ∈ R :
m0 − 3

4

(qr0)ρ
≤ Q(t) ≤ M0 +

3
4

rρ0
(4.5)

Remark 4.2. The theorem of Valiron [14] cited in Section 1 follows from Theorem 4.2.

Proof. Suppose that f(z) is an entire solution of (3.1). Denote

M(r) = max
|z|=r

|f(z)| and ψ(r) = logM(r).

Then arguments analogous to those which led us to (3.12) and (3.13) yield

ψ(|λ|r) = mψ(r) +R(r) (4.6)

with

|R(r)| < 3mK

2M(r)
. (4.7)

Thus the conditions of Theorem 3.2 are satisfied for the real scaling factor |λ| in (4.6).
Clearly, also M(r) > max{e, 2mK} for r large enough, which implies (4.3). From this we
obtain

logM(r) ∼ rρQ

(
log r

log |λ|

)
(4.8)

which implies Valiron’s theorem. �
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4.2. Irrational angle. In this case we cannot claim the existence of geometric progressions
along a given ray, for which (4.1) holds. Instead we will prove that for any ray reiϑ there
exists a sequence of positive real numbers (sn) with sn → ∞ such that

lim
n→∞

ϕ(sne
iϑ)

sρn
= L > 0

exists. In particular, this implies that in the case of irrational β solutions of the Poincaré
equation are unbounded on any ray. As far as we know this phenomenon has not been
mentioned in the literature before. An alternative proof of the latter statement based on
the Phragmén-Lindelöf principle will be given in Section 5.

Theorem 4.3. Suppose that the assumptions of Theorem 3.1 (or Theorem 3.2) are satisfied
and β = 1

2π
arg λ is irrational. Then on any ray arg z = ϑ there exists a sequence (sne

iϑ)
with sn → ∞ such that the limit

lim
n→∞

ϕ(sne
iϑ)

sρn
= L(z0) (4.9)

exists and satisfies (3.7).

Proof. Let z0 satisfy (3.4). Then there exists an ε > 0 such that |f(z)| > max(e, 2mK)
holds for all z ∈ B(z0, ε). By Lemma 3.2

L1(z) = lim
n→∞

ϕ(λnz)

mn
(4.10)

is a continuous function of z on B(z0, ε) and convergence is uniform in B(z0, ε) as indicated
in the proof of Lemma 3.2.

By the density of the set {n arg λ | n ∈ N} on the unit circle there exists a sequence of
integers (nk)k∈N such that

lim
k→∞

arg λnk = ϑ− arg z0 mod 2π.

Let

ζk = |z0|eiϑ
(
λ

|λ|

)−nk

.

Then clearly limk→∞ ζk = z0 and we have

lim
k→∞

ϕ(λnkζk)

mnk

= lim
k→∞

ϕ(|z0|eiϑ|λ|nk)

mnk

= L1(z0)

by uniform convergence. Denoting sk = |z0||λ|nk we have then

lim
k→∞

ϕ(ske
iϑ)

sρk
= lim

k→∞

ϕ(ske
iϑ)

(|z0||λ|nk)ρ
=
L1(z0)

|z0|ρ
= L(z0).

�
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5. Conditions for the unboundedness of solutions along rays

Note that Theorem 3.1 and Corollary 4.1 are results of conditional type. In general, we
do not know whether condition (3.4) is satisfied in a specific point z0 = r0e

iϑ0 . In this
section we give some conditions under which any non-trivial entire solution f(z) of (3.1)
is unbounded on any ray arg z = ϑ. Denote as before λ = |λ|e2πiβ.

We can assure the unboundedness of f(z) along all rays under the following conditions
either on |λ| or on arg λ:

a) |λ| is large compared to m = degP (z)
b) β is rational, β = t/s (in lowest terms) and s is large compared to ρ = logm

log |λ|

c) β is irrational.

The proofs of b) and c) are based on the Phragmén-Lindelöf principle, or more precisely
on the following corollary.

Corollary 5.1 (Phragmén-Lindelöf, [8]). Assume that f(z) is a non-constant entire func-
tion of order ρ ≥ 1

2
. Suppose that n rays emanate from the origin and split the complex

plane C into n angular regions each of which has angle less than π
ρ
. Then f(z) is unbounded

on at least one of these rays.

5.1. Large |λ|.

Theorem 5.1. Suppose that |λ| > m2, i. e. ρ < 1
2
. Then

(1) f(z) is unbounded along any ray arg z = ϑ
(2) For any ϑ there exists a sequence rn = rn(ϑ) → ∞ such that the limit

lim
n→∞

ϕ(rne
iϑ)

rρn
= L(ϑ) (5.1)

exists.
(3) These limits L(ϑ) are bounded between two positive constants for all ϑ ∈ [0, 2π].
(4) Under the additional assumption that β = 1

2π
arg λ is rational (β = t

s
in lowest

terms) further refinements are possible. Denote q = λs (and note that q > 1).
Then rn can be chosen as a geometric progression rn = r0q

n independent of the
direction ϑ.

Proof. Unboundedness of f(z) along any ray follows from the assumption ρ < 1
2
(see [12,

8.73]). Moreover there exists a sequence r̃n → ∞ such that

m(r̃n) = min
|z|=r̃n

|f(z)| → ∞.

In particular, one can find a circle C0 = {z ∈ C | |z| = r0} such that condition (3.4) is
satisfied for all z ∈ C0. Then (2) and (3) follow either from Corollary 4.1 (if β is rational)
or from Theorem 4.3 (if β is irrational). Applying Corollary 4.1 once again yields (4). �
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5.2. Rational β with large denominator.

Theorem 5.2. Suppose that β = 1
2π

arg λ is rational (β = t
s
in lowest terms). Suppose

further that s > 2ρ. Then

(1) f(z) is unbounded on any ray arg z = ϑ.
(2) Furthermore, for any ϑ one can find a geometric progression rn = rn(ϑ) = qnr0(ϑ)

(with q = λs > 1) such that the limit (5.1) exists and L(ϑ) > 0.

Proof. Suppose that there exists a ray arg z = ϑ1 (r > 0) such that f(z) is bounded along
this ray. Then in view of equation (3.1) f(z) is bounded along all rays arg z = ϑ1 + 2kπ t

s

mod 2π (k = 0, . . . , s − 1). The angle between two consecutive rays is 2π
s
< π

ρ
. From

Corollary 5.1 it follows that f is constant. Assertion (2) follows by applying Corollary 4.1
as in the proof of Theorem 5.1. �

5.3. Irrational β. Suppose that β = 1
2π

arg λ is irrational. It was already proved in
Section 4.2 as an immediate consequence of Theorem 4.3 that every non-trivial entire
solution f(z) of (3.1) is unbounded along any ray arg z = ϑ. Here we present an alternative
proof of this statement using again the Phragmén-Lindelöf principle. However the existence
of the limit (4.9) cannot be obtained in this way.

Theorem 5.3. If β is irrational, then every non-trivial entire solution f(z) of (3.1) is
unbounded along any ray arg z = ϑ.

Proof. Suppose that f(z) is bounded on a ray arg z = ϑ1. Then again by (3.1) f(z) is
bounded along all rays arg z = ϑ1 + 2kπβ mod 2π for k ∈ N. Since the angles ϑ1 + 2kπβ
mod 2π are dense in [0, 2π], one can find n such rays with angles between consecutive rays
less than π

ρ
. Corollary 5.1 implies then that f(z) is constant. �

6. Real case: real λ > 1 and polynomial P (z) with real coefficients

Throughout this section we will assume that λ > 1 is real and all coefficients of P (z) are
real. Also we use the notations of Section 2 above.

Immediately, from Lemma 2.1 (points (3) and (4)) we derive

Corollary 6.1. Suppose that

(1) pi ≥ 0 for i ≥ 2
(2) f0 ≥ 0 and fn0

> 0.

Then

a) fi ≥ 0 for all i
b) there are infinitely many i for which fi > 0
c) f(z) > 0 for all z ∈ R

+.

From this we obtain

Corollary 6.2. Under the assumptions of Corollary 6.1 f(z) → ∞ in R+. Moreover,

f(r) =M(r) = max
|z|=r

|f(z)|
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and

log f(r) ∼ rρQ

(
log r

log λ

)
for r → ∞, (6.1)

where Q is a continuous 1-periodic function bounded between two positive constants.

Further refinements are possible under additional assumptions (cf. also [?, Theorem 1]).

Theorem 6.1. Assume that

(1) λ > m
(2) pi ≥ 0 for i ≥ 2
(3) all preimages of 0 under P are real.

Let f(z) be an entire solution of (3.1) such that f(0) and f ′(0) are real and f(0) ≥ 0 and
f ′(0) > 0. Then f(z) tends to infinity along any ray in the sector | arg z| < π

2
. Moreover,

log |f(reiϑ)| ∼ rρQϑ

(
log r

log λ

)
for r → ∞, (6.2)

where Qϑ is a 1-periodic function bounded between two positive constants.

The proof is based on the following three lemmas.

Lemma 6.1. Suppose that all preimages of 0 under P are real. Let f(z) be an entire
solution of (3.1) such that f(0) and f ′(0) 6= 0 are real. Then f(z) has only real zeros.

Proof. Suppose that f(z) = 0 has a non-real solution z0. Then

0 = f(z0) = P (f(z0λ
−1)) = · · · = P (n)(f(z0λ

−n)),

which implies that f(z0λ
−n) is an n-th preimage of 0 under P and is therefore real by our

assumptions. Using Taylors formula we obtain

lim
n→∞

λn(f(zλ−n)− f(0)) = f ′(0)z.

Here the left hand side is real and the right hand side is not, which gives a contradiction. �

Lemma 6.2. Suppose that the assumptions of Lemma 6.1 are satisfied. Assume further
that

(1) pi ≥ 0 for i ≥ 2
(2) f(0) ≥ 0 and f ′(0) > 0.

Then f(z) has non-positive real zeros only.

Proof. The assumption f ′(0) 6= 0 implies that n0 = 1. Furthermore, we have fn0
> 0.

Thus by Corollary 6.1 f(z) > 0 on R+. Thus the zeros have to be non-positive. �

Lemma 6.3. Assume that f(z) is an entire function of order 0 < ρ < 1 with only negative
real zeros. Then f(z) tends to infinity faster than any power of z along any ray in the
sector | arg z| < π

2
.
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Proof. Because 0 < ρ < 1 according to Hadamard’s theorem we have

f(z) =
∞∏

n=1

(
1 +

z

rn

)
, (6.3)

where (−rn)n∈N with rn > 0 are the negative zeros of f . Write z = x+ iy and Sϑ = {z ∈
C | | arg z| ≤ ϑ} for ϑ < π

2
. Then we have for z ∈ Sϑ∣∣∣∣1 +

z

rn

∣∣∣∣ > 1 +
x

rn
≥ 1 +

|z| cosϑ
rn

≥ max

(
1,

|z| cosϑ
rn

)
.

Inserting this estimate into (6.3) yields

|f(z)| =
∞∏

n=1

∣∣∣∣1 +
z

rn

∣∣∣∣ >
N∏

n=1

∣∣∣∣1 +
z

rn

∣∣∣∣ > C|z|N ,

where C = cosN ϑ/(r1 · · · rN ) and N is an arbitrary positive integer. �

Proof of Theorem 6.1. Combining Lemma 6.3 and Corollary 4.2 proves the theorem. �

To conclude this section we present a lemma, which gives a condition for the reality of
the preimages of 0 in the case of quadratic polynomials.

Lemma 6.4. Let
P (z) = az(z − ω), 0 6= ω ∈ R (6.4)

All preimages of 0 under P are real, if and only if the following condition is fulfilled

a|ω| ≥
{
2 for ω > 0

4 for ω < 0
(6.5)

Proof. We will give a short geometric proof of this lemma using the plots of the functions
az(z − ω) for ω > 0 and ω < 0 in Figure 1.

We will give the proof for ω > 0; the proof for ω < 0 is similar.
The fixed points of P (z) are 0 and b = ω + 1

a
. Next, P−1({0}) = {0, ω}, P−1({b}) =

{− 1
a
, b}, and P−1(ω) consists of two points from the interval I = [− 1

a
, b].

Now, to prove sufficience of (6.5) it is enough to prove that under condition (6.5) every
preimage of a point of I lies in I. As can be seen from Figure 1, this is true, if

1

a
≤ −min

z∈R
P (z) = −P

(ω
2

)
=
a

4
ω2,

which is satisfied if aω ≥ 2 and ω > 0. This proves sufficience of (6.5).
On the other hand, suppose that aω < 2. Then

1

a
> −min

z∈R
P (z). (6.6)

Then there exist points c ∈ P−n({0}) arbitrarily close to the fixed point b. Thus there
exists a point d ∈ P−1({c}) ⊂ P−n−1({0}) arbitrarily close to − 1

a
∈ P−1({b}). By (6.6)

the preimages of − 1
a
and therefore of d are not real. Thus P−n−1({0}) contains non real

points. This proves necessity of (6.5). �
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x
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1
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ωω

2

−

a

4
ω2

−

1

a

−

1

a

ω > 0

x

y

ω +
1

a

ω

ω
ω

2

−

a

4
ω2

ω < 0

Figure 1. The graphs of az(z − ω) for ω > 0 and ω < 0.

7. Asymptotic behaviour in angular regions

In this section, as well as in Section 6, we assume that λ > 1 is real and all coefficients of
P (z) = zm+pm−1z

m−1+· · ·+p0 (see (3.2)) are real. Moreover, (by virtue of Proposition 2.3
and Remark 2.2) without loss of generality, we assume that P (0) = 0, P ′(0) = λ, f(0) = 0,
and f ′(0) > 0.

Let f(z) be an entire solution of (2.1). In contrast with the previous sections (where
asymptotics of |f(z)| is studied) here we collect some results on the asymptotics of the
solution f(z) itself in some angular regions of the complex plane.

As a starting point we present a theorem, which we proved in [?].

Theorem 7.1 ([?, Theorem 1]). Let f be an entire solution of the functional equation (2.1).
Furthermore, suppose that F∞, the Fatou component of ∞ of P , contains an angular region
of the form

Wβ = {z ∈ C \ {0} | | arg z| < β}
for some β > 0. Then for any ε > 0 and any M > 0 the asymptotic relation

f(z) = exp

(
zρQ

(
log z

log λ

)
+ o

(
|z|−M

))
(7.1)

holds uniformly for z ∈ Wβ−ε, where Q is a periodic holomorphic function of period 1 on

the strip {w ∈ C | |ℑw| < β
log λ

}. The real part of zρQ( log z
log λ

) is bounded between two positive

constants; Q takes real values on the real axis.
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Remark 7.1. Notice that the condition on the Fatou component F∞ is used in the proof
of this theorem to ensure that f(z) tends to infinity in the angular region Wβ . Therefore,
this condition could be replaced by

lim
z→∞

f(z) = ∞ for | arg z| < β.

Remark 7.2. E. Romanenko and A. Sharkovsky have studied equation (2.1) on R (rather
than on C). Applying Sharkovsky’s method of “first integrals” (“invariant graphs”) they
obtained not only an asymptotic formula of type (7.1) but a full asymptotic expansion for
all solutions f(x), such that f(x) → ∞ for x→ ∞.

We will present a number of consequences of this theorem.
From Theorem 7.1 and Theorem 4.3 we obtain

Corollary 7.1. Let f be a solution of (2.1). Assume that there exists r > 0 such that

∀x ∈ [r, λr] : |f(x)| > max(e, 2mK).

Then there exists γ > 0 such that for any 0 < ε < γ and any M > 0 the asymptotic
relation (7.1) holds uniformly for z ∈ Wγ−ε.

As an immediate corollary of Theorem 7.1 we get

Corollary 7.2. Let f be a solution of (2.1). If the Julia set of P is a subset of R− ∪ {0},
then for any ε > 0 and any M > 0 the asymptotic relation (7.1) holds uniformly for
z ∈ Wπ−ε.

Acknowledgment. We are grateful to E. Romanenko and A. Sharkovsky for having sent
their preprint and for stimulating discussions. We thank M. Sodin for useful remarks.
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