
SUBBLOCK OCCURRENCES IN SIGNED DIGIT REPRESENTATIONS

PETER J. GRABNER†, CLEMENS HEUBERGER‡, AND HELMUT PRODINGER∗

Abstract. Signed digit representations with base q and digits − q

2
, . . . , q

2
(and unique-

ness being enforced by applying a special rule which decides whether −q/2 or q/2 should
be taken) are considered with respect to counting the occurrences of a given (contiguous)
subblock of length r. The average number of occurrences amongst the numbers 0, . . . , n−1
turns out to be const · log

q
n + δ(log

q
n) + o(1), with a constant and a periodic function

of period one depending on the given subblock; they are explicitly described. Further-
more, we use probabilistic techniques to prove a central limit theorem for the number of
occurrences of a given subblock.

1. Introduction

If we write 106 in binary we obtain 11110100001001000000. This word contains the
(contiguous) substring 100 three times. In this paper we are concerned with counting
occurrences of a given substring (or block) (like 100) in representations of numbers. Since
this is typically somewhat erratic, we are interested in an average

1

N

∑

0≤n<N

(number of occurrences of a given block w in the representation of n).

This is a generalisation of counting the frequency of digits.
For the instance of the q–ary representation of numbers this average was investigated

by Kirschenhofer in [11]; the more exotic (q, d)–ary representation of numbers with base
q and digits d, d + 1, . . . , d + q − 1 was treated in [12]. The technique in these papers
was an extension of Delange’s method [3]. However, in [6] a novel method, based on the
Mellin–Perron summation formula was introduced, and it was indicated how it works for
such subblock counting problems. We will use this technique in the present paper. (A
Delange type analysis would be feasible but very messy.)

Recently, Heuberger and Prodinger [9] have considered a symmetric system

n =
∞
∑

j=0

εjq
j

Date: May 5, 2003.
1991 Mathematics Subject Classification. Primary:11K16 ; Secondary:11A63, 11M41.
Key words and phrases. Digit representation, subblock occurrence, Mellin-Perron formula.
† This author is supported by the START-project Y96-MAT of the Austrian Science Fund.
‡ This author is supported by grant S8307-MAT of the Austrian Science Fund.
∗ This author is supported by the grant NRF 2053748 of the South African National Research

Foundation.
1



2 P. J. GRABNER, C. HEUBERGER, AND H. PRODINGER

with an even base q and digits εj ∈ {− q

2
, . . . , q

2
}. Such a system is a priori redundant

because of the existence of both± q

2
but can be made unique by the condition that |εj| = q/2

implies 0 ≤ sign(εj)εj+1 < q/2 (Equivalent conditions where discussed in [9]). We call this
expansion the symmetric signed digit expansion of n and denote it by (. . . ε2(n)ε1(n)ε0(n)).
For q = 2, this system was already considered by Reitwiesner in a computer science context
in [15].

In this paper we are addressing the subblock counting problem in such symmetric signed
digit expansions.

Before we announce our principal findings, we need some notation.

If a block b = (bs, . . . , b0) is given, we denote its value by value(b) =
∑

ℓ bℓq
ℓ.

We also use Iverson’s notation, popularized in [8]: [P ] is defined to be 1 if condition P is
true, and 0 otherwise. With this notation we can count the number of subblock occurrences
of b in (the symmetric signed digit expansions of) n via

(1.1) sb(n) =
∞
∑

k=0

[(εk+r−1(n), . . . , εk(n)) = b] .

We only consider admissible blocks b: these blocks represent the number value(b) in the
symmetric signed digit expansion. For interest we note that there are

2 + q

1 + q
qr − 1

1 + q
(−1)r

admissible blocks of length r; this was implicitly proved in [10].
We also use the decomposition of a real number x as x = ⌊x⌋ + {x} with the fractional

part {x} satisfying 0 ≤ {x} < 1.
As said before, we are going to study the quantity

(1.2) Sb(N) =
∑

n<N

∞
∑

k=0

[(εk+r−1(n), . . . , εk(n)) = b] .

We will prove the following theorem.

Theorem 1. Let q ≥ 2 be an even integer and r ≥ 1. For an admissible block b =
(br−1, . . . , b0) with |br−1| < q

2
and b 6= 0r the number of occurrences of the block b in the

symmetric signed digit expansions of the positive integers less than N satisfies

(1.3) Sb(N) =
Q(b0)

qr(q + 1)
N logqN + h0(b)N +NHb(logq N) + o(N),

where

Q(η) =q +











2 for η = 0,

0 for η = ± q

2
,

1 else,

(1.4)

Hb(x) =
∑

k∈Z\{0}

hk(b)e
2kπix,
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hk(b) =
log q

2kπi(log q + 2kπi)

(

ζ

(

2kπi

log q
, [value(b) < 0] + q−r value(b) +

Rmin(b0)

qr(q + 1)

)

− ζ

(

2kπi

log q
, [value(b) < 0] + q−r value(b) +

Rmax(b0)

qr(q + 1)

)

)

for k 6= 0,

h0(b) = logq Γ

(

[value(b) < 0] + q−r value(b) +
Rmin(b0)

qr(q + 1)

)

− logq Γ

(

[value(b) < 0] + q−r value(b) +
Rmax(b0)

qr(q + 1)

)

− Q(b0)

qr(q + 1)

(

r +
1

2
+

1

log q
− 1

q + 1

)

+
1

qr−1(q + 1)
,

Rmin(η) =− q

2
−
[

(η − 1) mod q ≥ q

2

]

,(1.5)

Rmax(η) =
q

2
+
[

η mod q <
q

2

]

.(1.6)

The function Hb(x) is a periodic continuous function of period 1 and mean 0. As usual

ζ(s, x) denotes the Hurwitz ζ-function.

Remark. The case of blocks b with most significant digit br−1 = ± q

2
can be reduced to

Theorem 1 by using the following simple observation

Sb(N) =



























0
∑

η=− q

2
+1

Sηb(N) for br−1 = − q

2
,

q
2
−1
∑

η=0

Sηb(N) for br−1 =
q

2
.

The main term in this case is 1
2

Q(b0)
qr(q+1)

N logq N .

The instance r = 1 (counting digits) was discussed in [9], although without mentioning
the periodic fluctuations in explicit form. Thuswaldner [17] has used Dirichlet series and
the Mellin-Perron summation formula to exhibit this fluctuating behaviour in the case
q = 2 and r = 1.

The limit distribution of digital functions of various kinds has been investigated by
several authors. Especially, we mention the work of M. Drmota and J. Gajdosik [4] for
local and central limit theorems for the sum-of-digits function with respect to recurrence
based numeration systems. Furthermore, central limit theorems for digital functions in
polynomial subsequences of the integers have been studied by N. L. Bassily and I. Katai
[1, 2].

We will prove the following central limit theorem for sb(n).
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Theorem 2. Let sb(n) denote the number of occurrences of the block b in the symmetric

signed digit expansion of n defined in (1.1). Then sb satisfies

(1.7) lim
N→∞

1

N
#

{

n < N | sb(n) <
Q(b0)

qr(q + 1)
logq N + x

√

Vb logq N

}

=
1√
2π

x
∫

−∞

e−
t2

2 dt,

where

(1.8) Vb =
Q(b0)

qr(q + 1)

(

1 + 2
r−1
∑

t=1

[bt = b0, . . . , br−1 = br−1−t]
1

qt

+ 2
q

qr(q + 1)

(

1− Q(b0)

q + 1

)

− (2r − 1)
Q(b0)

qr(q + 1)

)

.

2. Explicit formulæ

In [9] we were able to give an explicit formula for the k-th digit of the symmetric signed
digit expansion of n. The problem in this section is to combine this information for each
individual digit of a given admissible block b in a manageable way.

Theorem 5 of [9] asserts that the digits of the symmetric signed digit expansion can be
computed by

(2.1) εk(n) =

q2−1
∑

s=0

cs

⌊

n

qk+2
+ ξs

⌋

,

where k ≥ 0 and

ξs :=
s(q + 1) + q/2 + [s mod q < q/2]

q2(q + 1)
,

cs :=

{

−(q − 1) if s mod q = q/2− [⌊s/q⌋ ≥ q/2],

1 otherwise

for 0 ≤ s < q2.
It will be convenient to extend (2.1) to arbitrary reals x (instead of the integer n) and

arbitrary integers k. We now show that this indeed defines a digit expansion for every real
x.

In the proof of Theorem 5 in [9], (2.1) has been rewritten to

εk(x) =

q−1
∑

j=0

(⌊

x

qk+1
+
j

q
+
q/2 + [j < q/2]

q(q + 1)

⌋

− q

⌊

x

qk+2
+
j

q
+
q/2 + [j < q/2]

q(q + 1)

⌋)

.

It is clear that εk(x) = 0 for sufficiently large k. Therefore, we obtain

∞
∑

k=−L

εk(x)q
k =

q−1
∑

j=0

q−L

⌊

xqL−1 +
j

q
+
q/2 + [j < q/2]

q(q + 1)

⌋

= x+O(q−L).
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This implies
∑

k∈Z εk(x)q
k = x for all x ∈ R.

Furthermore, the proof of Theorem 5 in [9] shows that |εk(x)| ≤ q

2
and that |εk(x)| = q

2
implies 0 ≤ sign(εk(x))εk+1(x) ≤ q

2
− 1.

We also state (2.1) in an alternative way:

Lemma 1. Let k ∈ Z, x ∈ R and let ξ−1 := 0 and ξq2 := 1. Then the ξℓ are increasing.

Choose 0 ≤ s ≤ q2 such that

(2.2) ξs−1 ≤
{

x

qk+2

}

< ξs.

Write s = mq + j where 0 ≤ m and 0 ≤ j < q.
Then the kth digit εk(n) of n can be expressed as

(2.3) εk(n) = ε0(s) =



















j if j < q/2,

j − q if j > q/2,

q/2 if j = q/2 and m < q/2,

−q/2 if j = q/2 and m ≥ q/2.

Proof. It can easily be checked that the ξℓ are increasing. Since
∑q2−1

ℓ=0 cℓ = 0 and since
ξℓ + ξq2−1−ℓ = 1 for −1 ≤ ℓ ≤ q2, we can rewrite (2.1) as

εk(x) =

q2−1
∑

ℓ=0

cℓ ⌊y + 1− ξq2−1−ℓ⌋ ,

where y =
{

xq−(k+2)
}

. By the monotonicity of the ξℓ, relation (2.2) implies ⌊y + 1− ξℓ⌋ =
[ℓ ≤ s− 1]. Therefore, we have

εk(x) =

s−1
∑

ℓ=0

cℓ =

m−1
∑

t=0

q
∑

ℓ=0

ctq+ℓ +

j−1
∑

ℓ=0

cmq+ℓ.

By definition,
∑q

ℓ=0 ctq+ℓ = 0 for all 0 ≤ t ≤ q − 1. This implies that

εk(x) =

j−1
∑

ℓ=0

cmq+ℓ = j − q [j − 1 ≥ q/2− [m ≥ q/2]] .

This proves the first equation in (2.3). The second equation in (2.3) is Lemma 3 in [9]. �

We will now find out how the block (εk+r−1(n), . . . , εk(n)) can be calculated from the
knowledge of

{

n/qk+r+1
}

. To this aim, we fix some r ≥ 1, k ≥ 0 and some 1 ≤ j ≤
qr+1(q + 1). We consider an integer n such that

(2.4)

{

n

qk+r+1

}

∈
[

j − 1

qr+1(q + 1)
,

j

qr+1(q + 1)

)

.

This implies that
(j − 1)/qℓ

q2(q + 1)
≤ n

qk+ℓ+2
− uqr−ℓ−1 <

j/qℓ

q2(q + 1)
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for some integer u and all 0 ≤ ℓ ≤ r− 1. By Lemma 1, the digit εk+ℓ(n) depends on j and
ℓ only, and not on n: If −1 ≤ sℓ ≤ q2 is chosen such that

ξsℓ−1 ≤
{

j − 1

qℓ+2(q + 1)

}

< ξsℓ,

then

εk+ℓ(n) = ε0(sℓ).

Using Lemma 1 once more, we get

(2.5) εk+ℓ(n) = εℓ

(

j − 1

q + 1

)

.

Therefore, we study the digit expansion of real numbers in more detail.

Lemma 2. For all x ∈ R there exist unique u ∈ Z and v ∈ R with x = u+ v such that

(2.6) −q/2 + [(ε0(u)− 1) mod q ≥ q/2]

q + 1
≤ v <

q/2 + [ε0(u) mod q < q/2]

q + 1
.

Furthermore εℓ(x) = εℓ(u) for ℓ ≥ 0.

Proof. Since

q/2 + [ε0(u) mod q < q/2]

q + 1
= 1− q/2 + [(ε0(u+ 1)− 1) mod q ≥ q/2]

q + 1

existence and uniqueness of u and v follows.
We consider first the case ℓ = 0. By Lemma 1, there is some s with ε0(u) = ε0(s) and

ξs−1 ≤ {u/q2} < ξs. We assume first 1 ≤ s < q2. By definition, we have

(s− 1) +
q/2 + [(s− 1) mod q < q/2]

q + 1
≤ u−mq2 < s+

q/2 + [s mod q < q/2]

q + 1

for some integer m. Since u is an integer, we conclude that

(s− 1) +

⌈

q/2 + [(s− 1) mod q < q/2]

q + 1

⌉

≤ u−mq2 ≤ s+

⌈

q/2 + [s mod q < q/2]

q + 1

⌉

− 1.

Since the values of the ceiling functions equal 1, we can rewrite this as

(2.7) ξs−1 +
q/2 + [(s− 1) mod q ≥ q/2]

q2(q + 1)
≤ u

q2
−m ≤ ξs −

q/2 + [s mod q < q/2]

q2(q + 1)
.

Combining this with (2.6) yields

ξs−1 ≤
u+ v

q2
−m < ξs,

which is equivalent to ε0(u+ v) = ε0(s) = ε0(u).
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For s = 0 and s = q2 we have to do some extra work. We only show what happens
for s = 0: we still have the upper bound as in (2.7). Thus the only problem occurs, if
u+v
q2

−m < 0. But then

ξq2 = 1 >
u+ v

q2
−m+ 1 ≥ 1−

q

2
+ 1

q2(q + 1)
= ξq2−1

by (2.6). This also implies ε0(x) = ε0(u) as requested.
In order to deal with ℓ ≥ 1 we consider

∑

k≥0

(εk(x)− εk(u))q
k = v −

∑

k<0

εk(x)q
k.

The left hand side is an integer which is divisible by q by the above discussion. The absolute
value of the right hand side is at most

q/2 + 1

q + 1
+
q

2

∑

k≥1

q−k < 2 ≤ q,

which implies that both sides vanish. This means that
∑

k≥0 εk(x)q
k =

∑

k≥0 εk(u)q
k.

Since both sides are symmetric signed digit expansions of the same integer, the digits have
to be equal. �

3. Counting blocks

Let b = (br−1, . . . , b0) be an admissible block. We want to count the number of occur-
rences of the block b as a subblock of the digit expansions of the integers 0, . . . , N − 1. In
order to avoid technical problems arising from leading zeros we exclude the block b = 0r.
Furthermore, we can exclude blocks b with most significant digit br−1 ∈ {± q

2
}. This en-

sures that εℓ(wq
r + value(b)) = bℓ for 0 ≤ ℓ ≤ r − 1 and w ∈ Z, because Algorithm 2 of

[9] does not consider w when computing the first r digits in that case. For blocks starting
with zeros, it makes sense to tacitly assume that any number has a sufficient number of
leading zeros.

Let b, n ≥ 1 and k ≥ 0 be fixed. By (2.4) and (2.5), we have (εk+r−1(n), . . . , εk(n)) = b

if and only if
{

n

qk+r+1

}

∈
⋃

j∈J(b)

[

j − 1

qr+1(q + 1)
,

j

qr+1(q + 1)

)

,

where

(3.1) J(b) =

{

1 ≤ j ≤ qr+1(q + 1) :

(

εr−1

(

j − 1

q + 1

)

, . . . , ε0

(

j − 1

q + 1

))

= b

}

.

In order to describe the set J(b), we write j− 1 = (q+1)u+R with Rmin(ε0(u)) ≤ R <
Rmax(ε0(u)) with Rmin andRmax defined in (1.5). Then by Lemma 2 we have εℓ(

j−1
q+1

) = εℓ(u)

for ℓ ≥ 0 and can rewrite (3.1) as

J(b) =
{

j = (q + 1)u+R + 1 : u ∈ Z, 1 ≤ j ≤ qr+1(q + 1),



8 P. J. GRABNER, C. HEUBERGER, AND H. PRODINGER

Rmin(ε0(u)) ≤ R < Rmax(ε0(u)), and (εr−1(u), . . . , ε0(u)) = b
}

.

Under our assumptions on the block b we can write the numbers u satisfying the last
condition as u = wqr + value(b) with w ∈ Z. Thus we arrive at

J(b) =
{

j = (q + 1)(wqr + value(b)) +R + 1 : w ∈ Z, 1 ≤ j ≤ qr+1(q + 1), and

Rmin(b0) ≤ R < Rmax(b0)
}

.

Inserting the definition of j in the range given for j, we get the following condition on w:

−
⌊

q−r

(

value(b) +
R

q + 1

)⌋

≤ w < q −
⌊

q−r

(

value(b) +
R

q + 1

)⌋

.

By (1.5) we have sign(value(b) + R
q+1

) = sign value(b) 6= 0 and therefore

0 < (sign value(b))

(

value(b) +
R

q + 1

)

< qr.

Summing up this gives
⌊

q−r

(

value(b) +
R

q + 1

)⌋

= − [value(b) < 0] .

Thus we reach the following explicit characterization:

Proposition 1. Let 0r 6= b an admissible block with |br−1| < q/2, n be a positive integer

and k ≥ 0. Let

Ib :=
⋃

[value(b)<0]≤w<q+[value(b)<0]

⋃

Rmin(b0)≤R<Rmax(b0)
[

wqr(q + 1) + (q + 1) value(b) +R

qr+1(q + 1)
,
wqr(q + 1) + (q + 1) value(b) +R + 1

qr+1(q + 1)

)

.

Then ((εk+r−1(n), . . . , εk(n)) = b if and only if
{

n

qk+r+1

}

∈ Ib.

We now study the sum (1.2). We denote the interval [ j−1
qr+1(q+1)

, j

qr+1(q+1)
) by Ij and its

characteristic function by 1Ij . The above proposition shows that

(3.2) Sb(N) =

q+[value(b)<0]−1
∑

w=[value(b)<0]

Rmax(b0)−1
∑

R=Rmin(b0)

Swqr(q+1)+(q+1) value(b)+R+1(N),

where

(3.3) Sj(N) =
∑

n<N

∞
∑

k=0

1Ij

({

n

qk+r+1

})

.

We note that (q + 1)(wqr + value(b)) +R + 1 ≥ 2 by (1.5).
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4. Dirichlet series

In this section, we study the asymptotic behaviour of the sum Sj(N) defined in (3.3),
where 1 < j ≤ qr+1(q + 1) using Dirichlet generating functions and the Mellin-Perron
summation formula.

We rewrite Sj(N) as

(4.1) Sj(N) =

N
∑

n=1

(N − n)

∞
∑

k=0

(1Ij({nq−k−r−1})− 1Ij({(n− 1)q−k−r−1})
)

using Abel summation. It is clear that the difference in (4.1) only takes values in {0,±1}.
We now discuss for which n the non-zero values are taken.

The first term in the difference equals 1, if

n ≡ u mod qk+r+1 for some u ∈
{⌈

(j − 1)qk

q + 1

⌉

, . . . ,

⌈

jqk

q + 1

⌉

− 1

}

.

Using a similar expression for the second term in the difference, we obtain1Ij ({nq−k−r−1})− 1Ij ({(n− 1)q−k−r−1}) =
[

n ≡
⌈

(j − 1)qk

q + 1

⌉

mod qk+r+1

]

−
[

n ≡
⌈

jqk

q + 1

⌉

mod qk+r+1

]

.

Now we can write the Dirichlet generating function of

∞
∑

k=0

(1Ij ({nq−k−r−1})− 1Ij ({(n− 1)q−k−r−1})
)

as

(4.2)

∞
∑

n=1

1

ns

∞
∑

k=0

(1Ij ({nq−k−r−1})− 1Ij({(n− 1)q−k−r−1})
)

=

∞
∑

k=0

∞
∑

n=0

1
(

qk+r+1n +
⌈

(j−1)qk

q+1

⌉)s −
∞
∑

k=0

∞
∑

n=0

1
(

qk+r+1n+
⌈

jqk

q+1

⌉)s .

It is clearly enough to study functions ψj(s) defined by

ψj(s) =

∞
∑

k=0

∞
∑

n=0

1
(

qk+r+1n+
⌈

jqk

q+1

⌉)s =

∞
∑

n=1

λj(n)

ns
=

∞
∑

n=1

λ
(0)
j (n)

ns
+

∞
∑

n=1

λ
(1)
j (n)

ns
,

where λ
(ℓ)
j (n) denotes the contribution originating from the terms k ≡ ℓ mod 2 (ℓ = 0, 1)

in the first sum. The splitting of the sum is motivated by
⌈

jqk

q + 1

⌉

=
jqk

q + 1
+
j(−1)k+1 mod (q + 1)

q + 1
.
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This leads us to studying the functions

(4.3)
∞
∑

n=1

λ
(ℓ)
j (n)

(n− α
(ℓ)
j )s

=
∑

k≥0
k≡ℓ mod 2

∞
∑

n=0

1
(

qk+r+1n+ jqk

q+1

)s =
q−(r+ℓ−1)s

q2s − 1
ζ

(

s,
j

(q + 1)qr+1

)

,

where α
(ℓ)
j = j(−1)ℓ+1 mod (q+1)

q+1
.

We will use the Mellin-Perron summation formula (cf. [16]) in the form

(4.4)
∑

n<N

(N − n)an =
1

2πi

c+i∞
∫

c−i∞

∞
∑

n=1

an
(n− α)s

(N − α)s+1 ds

s(s+ 1)
,

where 0 ≤ α < 1 and c is in the half-plane of absolute convergence of the Dirichlet series.
In the sequel we will write

∫

(c)
for the contour integral over the vertical line ℜs = c. The

usefulness of this in the context of digital counting was described (for α = 0) in the survey
[6] and in the slightly more general situation 0 ≤ α < 1 in [7]. Without this version
with the parameter α, one could still proceed successfully, as in [17], but that would be
considerably more cumbersome and less elegant.

Applying (4.4) to the two functions in (4.3) separately with the two values of α
(ℓ)
j we

obtain

(4.5)

∑

n<N

(N − n)λj(n) =
∑

n<N

(N − n)λ
(0)
j (n) +

∑

n<N

(N − n)λ
(1)
j (n)

=
1

2πi

∫

(2)

q−(r−1)s

q2s − 1
ζ(s, βj)(N − α

(0)
j )s+1 ds

s(s+ 1)

+
1

2πi

∫

(2)

q−rs

q2s − 1
ζ(s, βj)(N − α

(1)
j )s+1 ds

s(s+ 1)
,

where βj =
j

(q+1)qr+1 We now notice that ζ(σ+ it, α) = O(|t| 12−σ) for σ ≤ 0 (cf. [16]). Thus

we can shift the line of integration to ℜs = −1
4
by taking residues at the poles in s = 1
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and s = kπi
log q

=: χk into account to obtain

(4.6)
∑

n<N

(N − n)λj(n) =
q−(r−1)

2(q2 − 1)
(N − α

(0)
j )2 +

q−r

2(q2 − 1)
(N − α

(1)
j )2

+
1− 2βj

4
(N − α

(0)
j ) logq(N − α

(0)
j ) +

1− 2βj
4

(N − α
(1)
j ) logq(N − α

(1)
j )

− 1− 2βj
4

(

r +
1

log q

)

(N − α
(0)
j )− 1− 2βj

4

(

r + 1 +
1

log q

)

(N − α
(1)
j )

+
1

2 log q
ζ ′(0, βj)(2N − α

(0)
j − α

(1)
j )

+ (N − α
(0)
j )

∑

k∈Z\{0}

(−1)k(r−1)

2 log q

ζ(χk, βj)

χk(χk + 1)
(N − α

(0)
j )χk

+ (N − α
(1)
j )

∑

k∈Z\{0}

(−1)kr

2 log q

ζ(χk, βj)

χk(χk + 1)
(N − α

(1)
j )χk

+
1

2πi

∫

(− 1

4
)

· · · ds+ 1

2πi

∫

(− 1

4
)

· · · ds.

It is clear from the absolute convergence of the two integrals that they are bounded by
O(N

3

4 ).
Similarly to the cases studied in [6] and [7] the above integrals could be computed by

writing 1
q2s−1

as a geometric series and shifting the line of integration back to ℜs = 2. Since

the resulting formulæ are highly unpleasant, we restrict ourselves to the two asymptotic
main terms.

Thus we have

(4.7)
∑

n<N

(N − n)λj(n) =
1

2

1

qr(q − 1)
N2 +

(

1

2
− βj

)

N logq N

+

(

logq Γ(βj)−
1

2
logq 2π −

(

1

2
− βj

)(

1

log q
+

1

2
+ r

)

−
qα

(0)
j + α

(1)
j

qr(q2 − 1)

)

N

+N
(

Fj(logqN) + Fj(logq N + 1)
)

+O(logN) +O
(

Nω
(

Fj ,
1

N

)

)

,

where the periodic function Fj of period 2 is given by its absolutely convergent Fourier
series

Fj(x) =
∑

k∈Z\{0}

(−1)kr

2 log q

ζ(χk, βj)

χk(χk + 1)
ekπix
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and ω(Fj, δ) denotes the modulus of continuity of Fj. Clearly, Gj(x) = Fj(x) + Fj(x + 1)
is a periodic function of period 1 with Fourier series

Gj(x) =
∑

k∈Z\{0}

1

log q

ζ(χ2k, βj)

χ2k(χ2k + 1)
e2kπix.

Putting everything together we obtain

(4.8)

Sj(N) =
∑

n<N

(N − n)(λj−1(n)− λj(n))

=
1

(q + 1)qr+1
N logqN

+

(

logq
Γ(βj−1)

Γ(βj)
− 1

(q + 1)qr+1

(

1

log q
+

1

2
+ r

)

− 1

qr(q + 1)2

+
q[j ≡ 1 mod (q + 1)]− [j ≡ 0 mod (q + 1)]

qr(q2 − 1)

)

N

+N
(

Gj−1(logq N)−Gj(logqN)
)

+ o(N).

In order to obtain an asymptotic expression for Sb(N) stated in Theorem 1 we have to
combine the equations (3.2) and (4.8). For this purpose we need two identities:

q−1
∑

w=0

logq Γ

(

x+
w

q

)

=
q − 1

2
logq 2π +

1

2
− qx+ logq Γ(qx) for q ≥ 2 (cf. [13]),

q−1
∑

w=0

ζ

(

s,
w

q
+ x

)

= qs
∞
∑

n=0

q−1
∑

w=0

1

(nq + w + qx)s
= qsζ(s, qx) for x > 0.

Furthermore, we notice that [value(b) < 0] + q−r value(b) + Rmin(b0)
qr(q+1)

> 0. This yields (1.3).

5. A central limit theorem

In this section we will sketch a proof of Theorem 2.
We first construct a probability space (Kubilius model, cf. [5]), which will be used to

approximate the values of sb(n) by random variables. For this purpose we consider the
infinite product space

Ω =
{

−q
2
, . . . ,

q

2

}N0

equipped with a probability measure µ given on cylinder sets by

µ ({(ωj)j≥0 | ωj = aj for j ≤ k − 1}) = lim
N→∞

1

N
# {n < N | εk−1(n) = ak−1, . . . , ε0(n) = a0} .

The limit exists, since the subsets of N given by fixing a finite number of digits correspond
to residue classes modulo a power of q by Proposition 1. From this fact it also follows that
(for j0 < j1 < · · · < js)
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(5.1)
1

N
# {n < N | εjs(n) = ajs, . . . , εj0(n) = aj0} =

µ ({(ωj)j≥0 | ωjs = ajs, . . . , ωj0 = aj0}) +O
(

qjs

N

)

.

We define random variables

Xk(ω) = [(ωk+r−1, . . . , ωk) = b].

From the definition of µ and Proposition 1 it follows that

(5.2) µ (Xk = 1) =
Q(b0)

qr(q + 1)
+

(−1)k

qk+r

(

1− Q(b0)

q + 1

)

,

which shows that the random variables Xk are not quite identically distributed. Further-
more, we compute the joint distribution of Xk and Xk+t for t > r:

(5.3) µ (Xk = 1 ∧Xk+t = 1) =

µ (Xk = 1)

(

µ (Xk+t = 1) +
(−1)t+r

qt

(

1− (−1)k+r

qk+r

)(

1− Q(b0)

q + 1

))

,

which shows that the random variablesXk andXk+t are not independent. The probabilities
in the case t ≤ r depend on the self-overlapping structure of b and can be computed using
(5.2). The variance of

∑K

k=0Xk can be computed

(5.4) V

(

K
∑

k=0

Xk

)

= K
Q(b0)

qr(q + 1)

(

1 + 2
r−1
∑

t=1

[bt = b0, . . . , br−1 = br−1−t]
1

qt

+ 2
q

qr(q + 1)

(

1− Q(b0)

q + 1

)

− (2r − 1)
Q(b0)

qr(q + 1)

)

+O(1) = VbK +O(1).

Equation (5.3) shows that the random variables Xk are ϕ-mixing in the sense of [14] with
ϕ(t) = O(q−t). An application of [14, Theorem 1.2.3] yields the central limit theorem for
Xk

(5.5) lim
K→∞

µ

(

K
∑

k=0

Xk <
Q(b0)

qr(q + 1)
K + x

√

KVb

)

=
1√
2π

x
∫

−∞

e−
t2

2 dt.

For technical reasons we replace the function sb(n) by

s̃b(n) =
∑

k≤logq N−log
1
3 N

[(εk+r−1(n), . . . , εk(n)) = b]

and notice that sb(n) − s̃b(n) = O(log
1

3 N). From (5.1) it follows that the normal-
ized moments of s̃b(n) converge to the same limit as the corresponding moments of
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∑

k≤logq N−log
1
3 N

Xk. Since (5.5) holds the convergence of moments implies

lim
N→∞

1

N
#

{

n < N | s̃b(n) <
Q(b0)

qr(q + 1)
logq N + x

√

Vb logqN

}

=
1√
2π

x
∫

−∞

e−
t2

2 dt

by the Fréchet-Shohat theorem (cf. [5, Lemma 1.43]).

Acknowledgement. The authors thank an anonymous referee for pointing out the pos-
siblity to prove a central limit theorem.
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