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Abstract We produce precise estimates for the Kogbetliantz kernel for the approx-

imation of functions on the sphere. Furthermore, we propose and study a new ap-

proximation kernel, which has slightly better properties.

Key words: Approximation, Kogbetliantz-kernel, Cesàro-Means

1 Introduction

For d ≥ 1, let Sd = {z ∈ Rd+1 : 〈z,z〉 = 1} denote the d-dimensional unit sphere

embedded in the Euclidean space Rd+1 and 〈·, ·〉 be the usual inner product. We use

dσd for the surface element and set ωd =
∫

Sd dσd .

In [3] E. Kogbetliantz studied Cesàro means of the ultraspherical Dirichlet ker-

nel. Let Cλ
n denote the n-th Gegenbauer polynomial of index λ . Then for λ = d−1

2

Kλ ,0
n (〈x,y〉) =

n

∑
k=0

k+λ

λ
Cλ

k (〈x,y〉)

is the projection kernel on the space of harmonic polynomials of degree ≤ n on the

sphere Sd . The kernel could be studied for all λ > 0, but since we have the appli-

cation to polynomial approximation on the sphere in mind, we restrict ourselves to

half-integer and integer values of λ . Throughout this paper d will denote the dimen-

sion of the sphere and λ = d−1
2

will be the corresponding Gegenbauer parameter.
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Kogbetliantz [3] studied how higher Cesàro-means improve the properties of the

kernel K
λ ,0
n : for α ≥ 0 set

Kλ ,α
n (t) =

1
(

n+α
n

)

n

∑
k=0

(

n− k+α

n− k

)

k+λ

λ
Cλ

k (t).

He proved that the kernels (Kλ ,α
n )n have uniformly bounded L1-norm, if α > λ and

that they are non-negative, if α ≥ 2λ +1. There is a very short and transparent proof

of the second fact due to Reimer [4]. In this paper, we will restrict our interest to the

kernel K
λ ,2λ+1
n , which we will denote by Kλ

n for short.

The purpose of this note is to improve Kogbetliantz’ upper bounds for the kernel

Kλ
n . Especially, the estimates for Kλ

n (t) given in [3] exhibit rather bad behaviour at

t = −1. This is partly a consequence of the actual properties of the kernel at that

point, but to some extent the estimate used loses more than necessary. Furthermore,

the estimates given in [3] contain unspecified constants. We have used some effort

to provide good explicit constants.

In the end of this paper we will propose a slight modification of the kernel func-

tion, which is better behaved at t = −1 and still shares all desirable properties of

Kλ
n .

2 Estimating the kernel function

In the following we will use the notation

Aα
n =

(

n+α

n

)

.

Notice that
∞

∑
n=0

Aα
n zn =

1

(1− z)α+1
. (1)

Let Cλ
n denote the n-th Gegenbauer polynomial with index λ . The Gegenbauer poly-

nomials satisfy two basic generating function relations (cf. [1, 3])

∞

∑
n=0

Cλ
n (cosϑ)zn =

1

(1− 2zcosϑ + z2)λ
(2)

∞

∑
n=0

n+λ

λ
Cλ

n (cosϑ)zn =
1− z2

(1− 2zcosϑ + z2)λ+1
. (3)

Several different kernel functions for approximation of functions on the sphere

and their saturation behaviour have been studied in [2]. We will investigate the ker-

nel
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Kλ
n (cosϑ) =

1

A2λ+1
n

n

∑
k=0

A2λ+1
n−k

k+λ

λ
Cλ

k (cosϑ),

which has been shown to be positive by E. Kogbetliantz [3] for λ > 0.

By the generating functions (1) and (3) it follows

∞

∑
n=0

A2λ+1
n Kλ

n (cosϑ)zn =
1+ z

(1− 2zcosϑ + z2)λ+1(1− z)2λ+1
. (4)

Thus we can derive integral representations for Kλ
n using Cauchy’s integral formula.

As pointed out in the introduction, we will restrict the values of λ to integers or half-

integers. The main advantage of this is the fact that the exponent of (1− z) in (4) is

then an integer.

For λ = k ∈ N0 we split the generating function (4) into two factors

1+ z

(1− 2zcosϑ + z2)(1− z)
× 1

(1− 2zcosϑ + z2)k(1− z)2k
.

The first factor is essentially the generating function of the Fejér kernel, namely

1

2π i

∮

|z|= 1
2

1+ z

(1− 2zcosϑ + z2)(1− z)

dz

zn+1
=

(

sin(n+ 1)ϑ
2

sin ϑ
2

)2

≤ 1

(sin ϑ
2
)2
. (5)

Notice that this is just the kernel (n+ 1)K0
n .

We compute the coefficients of the second factor using Cauchy’s formula

Qk
n(cos(ϑ)) =

1

2π i

∮

|z|= 1
2

1

(1− 2zcosϑ + z2)k(1− z)2k

dz

zn+1
. (6)

In order to produce an estimate for Qk
n, we first compute Q1

n. This is done by

residue calculus and yields

Q1
n(cos(ϑ)) =

1

4sin2(ϑ
2
)

(

n+ 2− sin((n+ 2)ϑ)

sin(ϑ)

)

. (7)

This function is obviously non-negative and satisfies

Q1
n(cos(ϑ))≤ n+ 2

2sin2(ϑ
2
)
. (8)

Now the functions Qk
n are formed from Q1

n by successive convolution:

Qk+1
n (cos(ϑ)) =

n

∑
m=0

Qk
m(cos(ϑ))Q1

n−m(cos(ϑ)).
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Inserting the estimate (8) and an easy induction yields

Qk
n(cos(ϑ))≤ 1

2k sin2k(ϑ
2
)

k

∑
r=0

(

k

r

)(

n+ r+ k− 1

n

)

. (9)

Remark 1. Asymptotically, this estimate is off by a factor of 2λ , but as opposed to

Kogbetliantz’ estimate it does not contain a negative power of sin(ϑ), which would

blow up at ϑ = π . The size of the constant is lost in the transition from (7) to (8),

where the trigonometric term (actually a Chebyshev polynomial of the second kind)

is estimated by its maximum. On the one hand this avoids a power of sin(ϑ) in the

denominator, on the other hand it spoils the constant.

Putting (5) and (9) together yields

A2k+1
n Kk

n(cos(ϑ))≤ 1

2k(sin ϑ
2
)2k+2

k

∑
ℓ=0

(

k

ℓ

)(

n+ k+ ℓ

n

)

, (10)

where we have used the identity

n

∑
i=0

(

i+m

i

)

=

(

n+m+ 1

n

)

.

Remark 2. Since the generating function of A2k+1
n Kk

n(cos(ϑ)) is a rational function

in this case, an application of residue calculus would have of course been an op-

tion. The calculation of the residues at e±iϑ produces a denominator containing

sin(ϑ)2k−1. Computation of the numerators for small values of k show that this

denominator actually cancels, but we did not succeed in proving this in general.

Furthermore, keeping track of the estimates through this cancellation seems to be

difficult. This denominator could also be eliminated by restricting C
n
≤ ϑ ≤ π − C

n
,

but this usually spoils any gain in the constants obtained before. This was actually

the technique used in [3].

For λ = 1
2
+ k we split the generating function (4) into the factors

1√
1− 2zcosϑ + z2(1− z)

× 1+ z

(1− 2zcosϑ + z2)k+1(1− z)2k+1
(11)

with k ∈N0. The second factor is exactly the generating function related to the case

of integer parameter λ studied above.

For the coefficients of the first factor in (11) we use Cauchy’s formula again

Rn(cosϑ) =
1

2π i

∮

|z|= 1
2

1√
1− 2zcosϑ + z2(1− z)

dz

zn+1
.

We deform the contour of integration to encircle the branch cut of the square root,

which is chosen to be the arc of the circle of radius one connecting the points e±iθ
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ℜ(z)

ℑ(z)

10

e
iθ

e
−iθ

Fig. 1 The contour of integration used for deriving Rn(cosϑ ).

passing through −1. This deformation of the contour passes through ∞ and the sim-

ple pole at z = 1, where we collect a residue. This gives

Rn(cosϑ) =
1

2sin ϑ
2

− 1

2
√

2π

2π−ϑ
∫

ϑ

cos((n+ 1)ϑ)√
cosϑ − cost sin t

2

dt.

We estimate this by

Rn(cosϑ)≤ 1

2sin ϑ
2

+
1

2
√

2π

2π−ϑ
∫

ϑ

1√
cosϑ − cost sin t

2

dt =
1

sin ϑ
2

. (12)

This estimate is the best possible independent of n, because R2n(−1) = 1.

Putting the estimates (10) and (12) together we obtain

A2k+2
n K

k+ 1
2

n (cos(ϑ))≤ 1

2k(sin(ϑ
2
))2k+3

k

∑
ℓ=0

(

k

ℓ

)(

n+ k+ ℓ+ 1

n

)

. (13)

Summing up, we have proved the following.

Theorem 1. Let λ = d−1
2

be a positive integer or half-integer. Then the kernel Kλ
n

satisfies the following estimates
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Kλ
n (cosϑ)≤



















1

2⌊λ ⌋(sin(ϑ
2
))2λ+2

⌊λ ⌋
∑
ℓ=0

(⌊λ⌋
ℓ

)

(2λ + 1)ℓ+1

(n+ 2λ + 1)ℓ+1

for 0 < ϑ ≤ π

(n+4λ+1)n

(n+2λ )n
for 0 ≤ ϑ ≤ π ,

(14)

where (a)n = a(a−1) · · ·(a−n+1) denotes the falling factorial (Pochhammer sym-

bol).

Remark 3. The estimate (14) is best possible with respect to the behaviour in n for a

fixed θ ∈ (0,π), as well as for the power of sin ϑ
2

. The constant in front of the main

asymptotic term could still be improved, especially its dependence on the dimen-

sion. The second estimate is the trivial estimate by Kλ
n (1).

3 A new kernel

The kernel Kλ
n (cosϑ) exhibits a parity phenomenon at ϑ = π , which occurs in the

first asymptotic order term (see Figure 2 for illustration). This comes from the fact

that the two singularities at e±iϑ collapse to one singularity of twice the original

order for this value of ϑ . In order to avoid this, we propose to study the kernel given

by the generating function

(1+ z)2λ+2

(1− 2zcosϑ + z2)λ+1(1− z)2λ+1
=

1− z2

(1− 2zcosϑ + z2)λ+1
× (1+ z)2λ+1

(1− z)2λ+2
. (15)

Let Bλ
n be given by

∞

∑
n=0

Bλ
n zn =

(1+ z)2λ+1

(1− z)2λ+2
, (16)

then the kernel is given by

Lλ
n (cosϑ) =

1

Bλ
n

n

∑
k=0

Bλ
n−k

k+λ

λ
Cλ

k (cosϑ) (17)

=
1

Bλ
n

2λ+1

∑
ℓ=0

(

2λ + 1

ℓ

)

A2λ+1
n−ℓ Kλ

n−ℓ(cosϑ). (18)

The coefficients Bλ
n satisfy

Bλ
n =

2λ+1

∑
ℓ=0

(

2λ + 1

ℓ

)(

n− ℓ+ 2λ + 1

n− ℓ

)

=
2λ+1

∑
ℓ=0

(−1)ℓ
(

2λ + 1

ℓ

)

22λ+1−ℓ

(

n− ℓ+ 2λ + 1

n

)

∼ 22λ+1n2λ+1

(2λ + 1)!
.
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The expression in the second line, which allows to read of the asymptotic behaviour

immediately, is obtained by expanding the numerator in (16) into powers of 1− z.

For λ ∈N0 we write the generating function of Bλ
n Lλ

n (cosϑ) as

(

(1+ z)2

(1− 2zcosϑ + z2)(1− z)2

)λ

× (1+ z)2

(1− 2zcosϑ + z2)(1− z)
. (19)

The coefficients of the first factor are denoted by Sλ
n (cosϑ). They are obtained by

successive convolution of

S1
n(cosϑ) =

1

2π i

∮

|z|= 1
2

(1+ z)2

(1− 2zcosϑ + z2)(1− z)2

dz

zn+1

=
n+ 1

sin2 ϑ
2

(

1− cos(ϑ
2
)sin(n+ 1)ϑ

2(n+ 1)sin ϑ
2

)

.

In order to estimate S1
n(cosϑ), we estimate the sinc-function by its minimum

sinc(t) =
sin(t)

t
≥−C′ =−0.217233628211221657408279325562 . . ..

The value was obtained with the help of Mathematica. This gives

1− cos(
ϑ

2
)

sin((n+ 1)ϑ)

2(n+ 1)sin(ϑ
2
)
= 1− sinc((n+ 1)ϑ)

cos ϑ
2

sinc ϑ
2

≤ 1+C′ =: C = 1.217233628211221657408279325562 . . .,

where we have used that cos(ϑ
2
) ≤ sinc(ϑ

2
) for 0 ≤ ϑ ≤ π . From this we get the

estimate

S1
n(cosϑ)≤C

n+ 1

sin2 ϑ
2

and consequently

Sλ
n (cosϑ)≤ Cλ

sin2λ ϑ
2

(

n+ 2λ − 1

n

)

(20)

by successive convolution as before.

Remark 4. This expression is bit simpler than the corresponding estimate for Qλ
n ,

because the iterated convolution of the terms n+1 is a binomial coefficient, whereas

the iterated convolution of terms n+2 can only be expressed as a linear combination

of binomial coefficients. The growth order is the same.

In a similar way we estimate the coefficient of the second factor in (19)
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1

2π i

∮

|z|= 1
2

(1+ z)2

(1− 2zcosϑ + z2)(1− z)

dz

zn+1

=
1

2sin2 ϑ
2

(2− cos(nϑ)− cos((n+ 1)ϑ))≤ 2

sin2 ϑ
2

.

As before, this is the kernel function for λ = 0.

Putting this estimate together with (20) we obtain

Bλ
n Lλ

n (cosϑ)≤ 2Cλ

sin2λ+2 ϑ
2

(

n+ 2λ

n

)

(21)

for λ ∈ N0.

For λ = k+ 1
2

(k ∈ N0) we factor the generating function as

(1+ z)√
1− 2zcosϑ + z2(1− z)

× (1+ z)2k+2

(1− 2zcosϑ + z2)k+1(1− z)2k+1
. (22)

We still have to estimate the coefficient of the first factor, which is given by the

integral

Tn(cosϑ) =
1

2π i

∮

|z|= 1
2

(1+ z)√
1− 2zcosϑ + z2(1− z)

dz

zn+1
.

We transform this integral in the same way as we did before using the contour in

Figure 1 which yields

Tn(cosϑ) =
1

sin ϑ
2

− 1

π
√

2

2π−ϑ
∫

ϑ

cos( t
2
)cos((n+ 1

2
)t)√

cosϑ − cost sin t
2

dt. (23)

The modulus of the integral can be estimated by

√
2

π

π
∫

ϑ

cos( t
2
)√

cosϑ − cost sin t
2

dt =
π −ϑ

π sin ϑ
2

≤ 1

sin ϑ
2

.

This gives the bound

Tn(cosϑ)≤ 2

sin ϑ
2

. (24)

Putting this estimate together with (21) we obtain

Bλ
n Lλ

n (cosϑ)≤ 4Ck

sin2k+3 ϑ
2

(

n+ 2k+ 1

n

)

(25)

for λ = k+ 1
2
.
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K10
3/2(cos(t))

K11
3/2(cos(t))

L10
3/2(cos(t))

L11
3/2(cos(t))

2.2 2.4 2.6 2.8 3.0

0.02

0.04

0.06

0.08

Fig. 2 Comparison between the kernels K
3
2

10, K
3
2

11, L
3
2
10, and L

3
2
11. The kernels K show oscillations

and a parity phenomenon at ϑ = π .

Summing up, we have proved the following. As before, the second estimate is

just the trivial estimate by Lλ
n (1).

Theorem 2. Let λ = d−1
2

be a positive integer or half-integer. Then the kernel Lλ
n

satisfies the following estimates

Lλ
n (cosϑ)≤















Dλ
C⌊λ⌋

Bλ
n sin2λ+2 ϑ

2

(

n+2λ
n

)

for 0 < ϑ ≤ π

1

Bλ
n

∑
2λ+2
ℓ=0

(

2λ+2
ℓ

)

22λ+2−ℓ(−1)ℓ
(

n+4λ+2−ℓ
n

)

for 0 ≤ ϑ ≤ π ,

(26)

where Dλ = 2 for λ ∈N and Dλ = 4, if λ ∈ 1
2
+N0.

Remark 5. Notice that the orders of magnitude in terms of n and the powers of sin ϑ
2

are the same for Lλ
n as for the kernel Kλ

n . This fact is illustrated by Figure 3. The co-

efficient of the asymptotic leading term of the estimate decays like (2λ + 1)(C/4)λ

for Lλ
n , whereas this coefficient decays like (2λ + 1)(1/2)λ for Kλ

n .
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