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Abstract. We investigate the distribution of the hitting time T defined by the first
visit of the Brownian motion on the Sierpiński gasket at geodesic distance r from

the origin. For this purpose we perform a precise analysis of the moment generating
function of the random variable T . The key result is an explicit description of the

analytic behaviour of the Laplace-Stieltjes transform of the distribution function of

T . This yields a series expansion for the distribution function and the asymptotics
for t → 0.

1. Introduction

The Sierpiński gasket (cf. [Fa]) is a well known planar fractal which has been
studied from different points of view since 1915, when Sierpiński introduced it as
an example of a curve all of whose points are ramification points (cf. [Si]). Since
the 1980’s a notion of Brownian motion on this fractal (and later other “nested
fractals”, cf. [Li], [D-K]) has been developed. For an excellent introduction to
this subject we refer to [B-P]. The diffusion process Xt on the Sierpiński gasket is
defined as the weak limit of properly chosen rescalings of the simple random walk
on the “Sierpiński graph” G.
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Figure 1.
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Besides the study of Brownian motion on this fractal a notion of calculus (cf.
[Ki]) has been developed for functions on the Sierpiński gasket. The Laplacian as
the infinite generator of the diffusion on nested fractals (cf. [Li]) has been studied
extensively, see e. g. [E-I]. An equivalent approach to study this operator is to
consider the limit of transition operators on graphs approximating the fractal (cf.
[F-S], [Sh]).

This paper will be devoted to the study of of the stopping times defined by the
first hitting of the boundary of the geodesic ball. The geodesic distance d(x, y)
is defined as the length of the shortest path between the points x and y through
points of the gasket. An alternative way of introducing this distance is via proper
rescalings of distances in the approximating graphs. The Sierpiński gasket and the
geodesic metric d(x, y) on it have been defined in a rigorous way in [B-P] and [G-T].
The light gray area in Figure 1 indicates the geodesic ball of radius 0.732. We note
here that an exact formula for the Hausdorff-measure of the geodesic ball is given
in [Gr].

Furthermore, we will give precise analytic information on the moment generating
function

(1.1) φ(z) = Ee−zT ,

where T is the time of the first hitting of the boundary of the geodesic unit ball.
This function is known to satisfy the functional equation (cf. [B-P])

(1.2) φ(5z) =
φ(z)2

4− 3φ(z)
, φ(0) = 1, φ′(0) = −1.

This function turns out to have a meromorphic continuation to the whole complex
plane, and we will give precise information on the location of its singularities. As
a consequence of the distribution of the poles we explain the fluctuating behaviour
of its logarithm encountered in [B-P] and give an exact formula for the distribution
function of the random variable T :

(1.3) P (T < t) = 1−
∞∑

n=1

µne
−λnt,

where µn and λn will be given later. This formula has the same structure as the
corresponding distribution functions in the Euclidian case, where the λ’s form a
subsequence of the eigenvalues of the Laplacian. We will prove that the series (1.3)
is uniformly convergent for t ≥ 0 and determine the exact asymptotic behaviour
for t → 0. This (once again) exhibits fluctuating behaviour also described in [Bi]
and [B-P].

We remark here that there is a vast literature on such periodicity phenomena in
the theory of branching processes. In [F-O] a more general concept of polynomial
iterations is studied, which includes branching processes with finite maximal fam-
ily size. [B-B1] and [Du2] give an explanation for the near-constancy (the above
mentioned fluctuations are in fact very small) of the periodic function in the asymp-
totics of φ(z). Since the existence of a meromorphic analytic continuation of φ(z)
(which exists in our special case) could not be exploited there, the implications for
the process are somewhat weaker than Theorem 2.
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Furthermore, the properties of the distribution function of W , the limit of a su-
percritical branching process, have been studied extensively. There is an intimate
connection between the analytic behaviour of φ(z) and the behaviour of the distri-
bution for t→ 0+ and t→ ∞, which will be used in the proofs of Theorems 4 and 5.
We mention the study of the tail behaviour of the distribution of W in the case
of finite maximal family size in [B-B2], where again periodicity phenomena occur.
This is in contrast to (1.3), which implies purely exponential decay (in the case of
unbounded family size). The behaviour of the distribution function for t → + is
studied in [Du1] and [B-B2].

2. Stopping times and Branching Processes

The idea of using branching processes for modelling stopping times for the
Brownian motion on nested fractals was introduced in [B-P]. In order to use this
idea in the study of stopping times defined by the first hit at a given geodesic dis-
tance, we have to extend this idea slightly to branching processes with more than
one type (cf. [Ha]).

We consider three different types of edges for the simple random walk on the
Sierpiński graph G truncated at distance R. Firstly, there are those edges connecting
a vertex at distance R − 1 to a vertex at distance R. These will be marked by
the variable z in the generating functions. Clearly only one of these edges will
be traversed in a random walk stopping at distance R. Secondly, there are the
directed edges connecting a vertex at distance R−1, which is connected to a vertex
at distance R, with a vertex at distance R − 1 or R − 2. These will be marked by
the variable y in the generating functions. Finally, there are all the other edges,
which will be marked by x in the generating functions.

We introduce the probability generating function (PGF)

(2.1) FR(x, y, z) = z

∞∑

j,k=0

pR(j, k)x
jyk,

where pR(j, k) denotes the probability that the random walk starting at the origin
reaches distance R for the first time after j steps of type x, k steps of type y (and
one step of type z).

Proposition 1. The function FR(x, y, z) satisfies the functional equations

F2R(x, y, z) = FR (f1(x), f2(x, y), f3(x, y, z)) for R ≥ 2

F2R+1(x, y, z) = FR+1 (f1(x), f4(x, y), f5(x, y, z)) for R ≥ 1

F2(x, y, z) =
2xz

4− y − xy
,
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where the functions fi, i = 1, · · · , 4 are given by

f1(x) =
x2

4− 3x

f2(x, y) =
2(2 + x)x2(4− y)

64− 16x− 16y − 16x2 − 4xy + 6x2y + x3y

f3(x, y, z) =
4(4 + x)(2− x)xz

64− 16x− 16y − 16x2 − 4xy + 6x2y + x3y

f4(x, y) =
(2 + x)xy

8− 2x− x2 − xy

f5(x, y, z) =
(2− x)(4 + x)z

8− 2x− x2 − xy
.

Proof. We will use elementary path arguments to derive the functional equation
for FR. A path in G is a sequence of vertices ω = [a0, a1, . . . , an] such that two
consecutive vertices are neighbours in the graph G. The x-length of ω, |ω|X , is
the number edges marked with x traversed by the path; similarly we define the
y-length |ω|Y . The z-length is always 1. For every path we define its weight
W (ω | x, y, z) = x|ω|Xy|ω|Y z and for every set of paths Ω its weight is given by
W (Ω | x, y, z) =∑ω∈ΩW (ω | x, y, z). Notice that

FR(x, y, z) =W
(
ΩR | x

4
,
y

4
,
z

4

)
,

where ΩR denotes the set of all paths starting at the origin, which end at distance
R (and reach distance R only once).

We note first that the graph 2G obtained by multiplying all coordinates of the
vertices by 2 is isomorphic to G. Furthermore, the vertices of 2G are all vertices
of G. Let now u be a point at distance 2R from the origin and consider a path
ω = [0 = a0, a1, . . . , an = u]. Define τj(ω) by

(2.2) τ0 = 0 and for j ≥ 1 τj = {i > τj−1 | ai ∈ 2G, ai 6= aτj−1
},

for 0 ≤ j ≤ k, where k = k(ω) is the maximal index for which the last set is
non-empty; we have either τk = n and u = 2v or τk < n and u 6∈ 2G. In the second
case there is a unique u′ ∈ 2G which is a neighbour of u and an−1. We define the
shadow to be the path

(2.3) σ(ω) =

{
[0 = 1

2aτ0 ,
1
2aτ1 , . . . ,

1
2aτk = 1

2u] in the first case

[0 = 1
2aτ0 ,

1
2aτ1 , . . . ,

1
2aτk ,

1
2u

′] in the second case.

Take now a path ωR = [0, a1, . . . , an] hitting distance R for the first time after k
x-steps and ℓ y-steps (n = k + ℓ+ 1).

Then we have

(2.4) W (σ−1(ωR) | x, y, z) = f1(4x)
kf2(4x, 4y)

ℓf3(4x, 4y, 4z),

since every path ω2R in σ−1(ωR) can be decomposed as

ω2R = [0, . . . , 2a1] ◦ [2a1, . . . , 2a2] ◦ · · · ◦ [2an−1, . . . , T ],
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where ◦ denotes concatenation of paths, where the end-point of the first path co-
incides with the initial point of the second one. T is the terminal point indicated
in Figure 4. Each sub-path in ω2R [2aj, . . . , 2aj+1] “replaces” an edge [aj , aj+1] in
ωR, and according to which type this edge belonged to, [2aj, . . . , 2aj+1] has to be
a path in Figure 2 for an x-edge and a path in Figure 3 for a y-edge. [an−1, an]
(which had been marked by z) has to be replaced by a path in Figure 4. (Notice
that the “replacing” described above is just the familiar substitution construction
used in combinatorics, cf. [G-J].) The functions f1, f2 and f3 are just the PGF’s
of the paths joining the initial point and the terminal point in the different graphs,
where the edges are marked according to the pictures. The computation of the
functions fi is an elementary matrix inversion exercise, which was done by Maple.
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f2(x, y) =
2(2 + x)x2(4− y)

64− 16x− 16y − 16x2 − 4xy + 6x2y + x3y
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f3(x, y, z) =
4(4 + x)(2− x)xz

64− 16x− 16y − 16x2 − 4xy + 6x2y + x3y

For the second functional equation we extend the last edge of a path joining the
origin with a point at distance 2R+ 1 to obtain a point 2v at distance 2R + 2 (cf.
Figure 6). Then we apply the same ideas as in the proof of the first equation.
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�

Theorem 1. The moment generating function φr(z) = Ee−zTr of the random
variable

Tr = {t | d(0, Xt) = r}

is φr(z) = φ(g(r)z), where φ(z) is the function given by (1.2). For 1
2 < r < 1 given

by the binary representation1 r =
∑∞
k=1

εk
2k

define

(2.5) yk+1,n =

{ 3yk,n
5−yk,n for εn+1−k = 0

6
4−yk,n

32−13yk,n
for εn+1−k = 1

y1,n = 1

for 1 ≤ k < n and

tk = lim
n→∞

yn−k,n.

Then the function g(r) is given by

(2.6) g(r) =
1

5

(
4− t0

2(2− t0)
,

1

2− t0
,

1

2− t0

)
·

∞∏

k=1

Mεk+1
(tk) ·




1
1
1


 ,

where

(2.7)

M0(y) =




1 0 0
y(32−y)
(5−y)2

3
(5−y)2 0

9y(2−y)
5(5−y)2

2−y
(5−y)2

1
5−y




M1(y) =




1 0 0
8(4−y)(92−31y)

5(32−13y)2
24

(32−13y)2 0
272(4−y)(2−y)
5(32−13y)2

52(2−y)
(32−13y)2

4
32−13y


 .

1In case of ambiguity we choose the infinite representation.
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Furthermore,

g(1) =
4

7
, g

(
1

2
+

)
=

1

5

and g can be continued to all other values of r by the relation g(2r) = 5g(r). The
function g is continuous for all real r > 0 except for dyadic rationals, where it is left
continuous and has a jump discontinuity. This mirrors the structure of the gasket.

Proof. The functional equation for φr is an immediate consequence of the consid-
erations in [B-P, pp. 571ff]. It only remains to prove that g(r) can be computed as
described in the theorem. We notice that by the definition of the process Xt and
the fact that g(r) = ETr we have

(2.8) g(r) = lim
n→∞

5−n
(
∂F[2nr]

∂x
(1, 1, 1) +

∂F[2nr]

∂y
(1, 1, 1) +

∂F[2nr]

∂z
(1, 1, 1)

)
,

which yields g(2r) = 5g(r) immediately (we will prove the existence of this limit
later). Thus we can restrict our considerations to 1

2 < r < 1.
Introducing the temporary notation

Φ0(x, y, z) = (f1(x), f2(x, y), f3(x, y, z)) , Φ1(x, y, z) = (f1(x), f4(x, y), f5(x, y, z))

we have

F[2nr](x, y, z) = F2 ◦ Φ1−ε2 ◦ Φ1−ε3 ◦ · · · ◦ Φ1−εk−1
◦ Φεk ◦ · · · ◦Φεn(x, y, z),

if εk+1 = · · · = εn = 0 and εk = 1. This is due to the fact that the transformation

n 7→
{ n

2
for n even

n+1
2 for n odd

interchanges the digits 0 and 1 except for a block of 0’s starting with the least
significant digit and the first 1 (reading from right to left).

We are interested in the orbit of the point (1, 1, 1) under the transformations

(2.9) Φ1−ε2 ◦ Φ1−ε3 ◦ · · · ◦ Φ1−εk−1
◦ Φεk ◦ · · · ◦ Φεn .

We notice that

(2.10) f1(1) = 1, f2(1, y)+f3(1, y, 2−y) = 2 and f4(1, y)+f5(1, y, 2−y) = 2,

which implies that for all applications of a mapping (2.9) to (1, 1, 1) y + z keeps

the value 2. Furthermore, the mappings h2(y) = f2(1, y) = 6 4−y
32−13y and h4(y) =

f4(1, y) =
3y
5−y are contractions for 0 ≤ y ≤ 1 with h′2(y), h

′
4(y) ≤ 15

16 . Thus we have

(2.11)

|Φ1−ε2 ◦ · · · ◦ Φ1−εk(1, u, 2− u)− Φ1−ε2 ◦ · · · ◦ Φ1−εk(1, v, 2− v)| ≤
(
15

16

)k
|u− v|,

which implies uniform convergence of

tk = lim
n→∞

yn−k,n for 0 ≤ k ≤ n

2
.
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To conclude convergence of (2.5) we notice that the matrices 5M0(y) and 5M1(y)
are the Jacobians of Φ1 and Φ0, respectively, and their entries (except for the
[1, 1]-entry) are ≤ 0.9, which implies convergence of the infinite matrix product

∞∏

k=1

Mεk+1
(tk).

The values at r = 1 and the limit for r → 1
2+ can be computed as the limits

g(1) = lim
n→∞

5−n
(
∂F2n−1

∂x
(1, 1, 1) +

∂F2n−1

∂y
(1, 1, 1) +

∂F2n−1

∂z
(1, 1, 1)

)

g

(
1

2
+

)
= lim
n→∞

5−n
(
∂F2n−1+1

∂x
(1, 1, 1) +

∂F2n−1+1

∂y
(1, 1, 1) +

∂F2n−1+1

∂z
(1, 1, 1)

)
.

The assertion concerning continuity follows from (2.11). The discontinuity at dyadic
rationals comes from the fact that they are the only numbers with two different bi-
nary expansions, and those two expansion yield different values for g (corresponding
to the left and right limit). �

Corollary 1. For a dyadic rational 1
2 < r < 1 r =

∑K
k=1

εk
2k
, ε1 = εK = 1, the

value is given by

(2.12)

(
4− yK,K

2(2− yK,K)
,

1

2− yK,K
,

1

2− yK,K

)
·

·Mε2(yK−1,K) · · ·MεK−1
(y2,K) ·M1(y1,K)




1
1
1


 ,

where the yk,K are defined as in (2.5) but with y1,K = 12
13
.

Proof. We write r =
∑K−1
k=1

εk
2k

+
∑∞
k=K+1

1
2k
. Notice that the iterations of h2 tend

to 12
13 . The result follows by applying Theorem 1. �
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3. Analytic Study of the Function φ

In this section of the paper we will gather information on the analytic behaviour
of the function φ(z). This includes an asymptotic expansion for |z| → ∞ in | arg z| <
π, which contains a periodic fluctuating term, that can be related to the distribution
of the poles of φ(z). This periodic term (the “Karlin-McGregor function”) has been
investigated by several authors (cf. [K-M1], [K-M2], [Du2], [B-B1], [Du3]). It turns
out that the near-constancy of this function is a general phenomenon in the theory
of branching processes (cf. [B-B1]), which can be explained by the exponential
decay of its Fourier-coefficients. In section 5 we will use this information to prove
the series expansion (1.3) and to study its asymptotic behaviour for t→ 0.

Since ψ(z) = 1
φ(z)

turns out to be an entire function, we will formulate our results

for this function. ψ(z) satisfies the functional equation

(3.1) ψ(5z) = 4ψ(z)2 − 3ψ(z), ψ(0) = 1, ψ′(0) = 1.

Theorem 2. ψ(z) is an entire function of order α = log 2
log 5 , which has all its zeros

on the negative real axis. The asymptotic expansion

(3.2) ψ(z) = exp

(
zαG

(
log z

log 5

)
+ A log z +H

(
log z

log 5

))(
1 +Oθ

(
1

z
1
2−α−ε

))

is valid for | arg z| ≤ θ < π, where G(s) and H(s) are periodic functions of period
1, which are holomorphic in the strip |ℑs| < π

log 5
. The Fourier series of G is given

by

G(s) =
∞∑

k=−∞
gke

2kπis,

where

(3.3) gk =
π

2(− log 2 + 2kπi) sin π
log 5 (− log 2 + 2kπi)

M

(
α− 2kπi

log 5

)
.

The function M(s) is given as the Mellin transform of a measure defined in terms
of the preimages of 0 under the mapping z 7→ 4z2 − 3z (more details will be given
in the proof). This implies that

(3.4) |gk| ≤
11

20|k|M(α) exp

(
− 2π2

log 5
|k|
)
,

where M(α) = 0.8440757 . . . . Similar expressions and estimates can be given for
the Fourier coefficients of H(s). An expression for the constant A will be given in
the proof; its numerical value is A = 0.48098676974525901234 . . . .

Remark. The presence of the function G(s) in the asymptotic expansion of ψ(z)
explains the fluctuating behaviour of the function logφ(z) encountered in [B-P].
The first values of the Fourier coefficients

g0 = 1.95910517961221301415572878 . . .

g1 = −0.149367294300291232109 . . . · 10−5 − 0.67732032183085239648 . . . · 10−7 · i
g2 = 0.20018851872268301864 . . . · 10−13 − 0.83709946018454373757 . . . · 10−12 · i
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and the exponential estimate for the other values imply,

|G(s)− g0| ≤ 0.3123 · 10−5

|G′(s)| ≤ 0.1963 · 10−4.

Proof. We first prove that the Laplace-Stieltjes transform φ(z) (which is holomor-
phic in ℜz > 0 by the general theory of branching processes, cf. [Ha, Theorem 8.2])
has an analytic continuation into a neighbourhood of z = 0. For this purpose we

consider the sequence φ0(z) = e−z , φn+1(5z) =
φn(z)

2

4−3φn(z)
. For −1

2 ≤ x = ℜz it can

be proved by induction that

|φn(z)| ≤
1

1 + x
,

which implies the existence of a holomorphic limit by Montel’s theorem. This
limit is the function φ(z) for ℜz > 0 and this function therefore has an analytic
continuation to ℜz > −1

2 .

Thus ψ(z) = 1
φ(z) and φ(0) = 1 imply that ψ(z) is holomorphic in some neigh-

bourhood of z = 0 and therefore has a power series expansion ψ(z) =
∑∞
n=0 ψnz

n.
Equation (3.1) implies

(3.5) ψn =
4

5n − 5

n−1∑

k=1

ψkψn−k for n ≥ 2,

which follows by an application of Taylor’s theorem. We now proceed by induction
to prove that

(3.6) ψn ≤ 1

n!
.

This estimate is trivially satisfied for n = 0, 1. Assume that the estimate is true for
k ≤ n− 1 and n ≥ 2. Then we have

ψn ≤ 4

5n − 5

n−1∑

k=1

1

k!

1

(n− k)!
≤ 4

2n − 2

5n − 5

1

n!
≤ 1

n!
.

This implies that ψ(z) is an entire function of order at most 1 (cf. [Bo]).
In order to derive more precise information on the analytic behaviour of ψ(z),

we note that the zeros of ψ(z) can be given by

(3.7) −5n · 5m · ξm,j with n ≥ 1, m ≥ 0, 1 ≤ j ≤ max(1, 2m−1),

where the numbers ξm,j are given as follows: consider

Pm =

{
z | g(m)(z) =

3

4

}
,

where g(m)(z) denotes the m-th functional iterate of g(z) = 4z2−3z. Then #Pm =

2m and Pm ⊂ [−1
4 ,

3−
√
5

8 ] ∪ [ 3+
√
5

8 , 1], which is an immediate consequence of the
computation of the Julia set of g(z) in [G-W]. We note here, that the Julia set of g(z)
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is given by the closure of
⋃
m Pm. The numbers −ξm,j for m ≥ 1 are given by the

preimages of Pm ∩ [−1
4 ,

3−
√
5

8 ] (this set has 2m−1 elements) under ψ in the interval

[−3, 0] (numerical studies with Maple show that ψ′(z) > 0 for z ∈ [−3, 0]2 and
therefore the preimage is unique), ξ0,1 = −ψ(−1)( 34 ) = 0.26366111924136772879 . . . .
There can be no non-real zeros of ψ, since all the iterated preimages of g of 0 are
real. A complex zero of ψ would therefore yield complex values zn arbitrarily close
to 0 with ψ(zn) ∈ R. This is a contradiction to the fact that ψ′(0) 6= 0.

Since the order of ψ is finite we can consider the Dirichlet series

(3.8) ν(s) =
∑

ψ(−λ)=0

1

λs
=

∞∑

n=1

5−ns


ξ−s0,1 +

∞∑

m=1

5−ms
2m−1∑

j=1

ξ−sm,j


 ,

which is convergent for ℜs > β for some β ≤ 1. In order to find an analytic
continuation of ν(s), we investigate

(3.9) Mk(s) =
1

2k−1

2k−1∑

j=1

ξ−sk,j.

Lemma 1. There exists a measure µ supported on

=
⋃

m≥1

{ξm,j | j = 1, . . . , 2m−1}

such that

(3.10) Tk(f) =
1

2k−1

2k−1∑

j=1

f (ξk,j) =

∫

f

(x) dµ(s) +O
(
‖f ′‖∞

1
√
5
k

)

for any differentiable function f , where ‖f ′‖∞ denotes the supremum of the de-
rivative of f on [,max]. The Hausdorff dimension of satisfies α ≤ dim() ≤ 2α.
Furthermore, for any interval Iε of length ε > 0 we have

(3.11) µ(∩Iε) ≤ C1ε
α

for some positive constant C1.

Proof of the Lemma. Let ηm,1 < ηm,2 < · · · < ηm,2m be the elements of Pm. Then

by the monotonicity of the two branches of g(−1)

g1(x) =
3−

√
9 + 16x

8
and g2(x) =

3 +
√
9 + 16x

8

we have

ηk+1,j =

{
g1 (ηk,j) for 1 ≤ j ≤ 2k

g2
(
ηk,2k+1+1−j

)
for 2k + 1 ≤ j ≤ 2k+1.

2Clearly such estimates could also be obtained by using (3.6) and estimating power series.
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Induction proves that

ηk+1,2j−1 < ηk,j < ηk+1,2j for 1 ≤ j ≤ 2k

and

ηk+1,2j − ηk+1,2j−1 = O
(

1
√
5
k

)

uniformly in j. We note that
√
5 is the lower bound for the absolute value of the

derivative of g in [−1
4 ,

3−
√
5

8 ] ∪ [ 3+
√
5

8 , 1]. Since the derivative of ψ does not vanish
in [−3, 0], we have

(3.12) ξk,j − ξk+1,2j−1 = O
(

1
√
5
k

)
and ξk+1,2j − ξk,j = O

(
1

√
5
k

)

uniformly in 1 ≤ j ≤ 2k−1 (where we assume the ξk,j to be ordered).
Thus we have

Tk+1(f)− Tk(f) =
1

2k

2k−1∑

j=1

(f(ξk+1,2j−1)− f(ξk,j) + f(ξk+1,2j)− f(ξk,j))

= O
(
‖f ′‖∞

1
√
5
k

)

and (3.10) is proved.
The assertion on the Hausdorff dimension is a consequence of [Be, Thm 10.3.1]

(for the lower bound) and of (3.12) for the upper bound. The estimate (3.11) follows
immediately. �

Applying the result of the lemma to f(x) = x−s we obtain

Mk(s) =M(s) +Rk(s)

with M(s) =
∫ −s
x

dµ(x) and an entire function Rk(s), which satisfies Rk(σ + it) =

Oσ(|t|5−
k
2 ) and Rm(0) = 0. Inserting this into (3.8) we obtain

(3.13)

ν(s) =
ξ−s0,1

5s − 1
+

1

5s − 1

1

5s − 2
M(s)− 1

5s − 1
R(s)

R(s) =

∞∑

m=1

5−ms2m−1Rm(s),

where the sum converges for ℜs > α− 1
2
.

Since the function ψ(z) has positive power series coefficients and it is known by
[B-P, Proposition 3.1] that |φ(z)| ≥ exp(−c|z|α), ψ(z) is of order α. By classical
results (cf. [Bo]) ψ(z) can be written as a Weierstraß product

(3.14) ψ(z) =
∏

ψ(−λ)=0

(
1 +

z

λ

)
.
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We now compute the Mellin transform of the logarithm of ψ(z):

∫ ∞

0

logψ(x)xs−1 dx =
π

s sinπs
ν(−s) for − 1 < ℜs < −α.

The idea of studying functions of finite order by analyzing the Mellin transform of
their logarithm goes back to Mellin [Me]. We now use Mellin’s inversion formula
(cf. [Do], [Iv, Appendix 2]) to produce an asymptotic expansion of logψ(z) with a
o(1) error term to obtain (3.2). For | arg z| < π we have

logψ(z) =
1

2πi

− 2
3+i∞∫

− 2
3−i∞

π

s sinπs
ν(−s)z−s ds.

By shifting the line of integration to ℜs = 1
2 − α − ε and taking the residues into

account (notice that the the integrand is tending to 0 like e−(π−θ)|ℑs|) we obtain

logψ(z) =zα
∑

k∈Z

gke
2kπi log zlog 5 + A log z +

∑

k∈Z

hke
2kπi log zlog 5+

1

2πi

1
2−α−ε+i∞∫

1
2−α−ε−i∞

π

s sinπs
ν(−s)z−s ds,

where the terms of order zα originate from the poles at the roots of 5−s = 2 and
the logarithmic terms are due to the second order pole at s = 0. Notice that the
first order poles at s = 0 of the two first terms in (3.13) cancel since M(0) = 1
and the third term has no pole in s = 0 because all the Rm’s vanish there. The
coefficient A of log z is given by

1 +
M ′(0)

log 5
+
R′(0)

log 5
+

log ξ0,1
log 5

= 0.48098676974525901234 . . . .

Similar expressions involving evaluations of R can be given for the Fourier coeffi-
cients of H. The remaining integral is estimated trivially to obtain the error term
indicated in the theorem. Notice that this estimate depends on the value of θ. �

4. Distribution of the Zeros of ψ

By classical theorems (cf. [Bo]) it is well known that the number of zeros of ψ
of modulus less than x is of order of magnitude xα. Since the function ψ(z) fails
to have a proximate order (cf. [Le], [B-G-T]) the theorems of Levin-Pfluger and
Valiron-Titchmarsh (cf. [B-G-T, chapter 7]), which give a precise relation between
the proximate order of an entire function and the distribution of its zeros cannot be
applied. Therefore the proof of the following theorem will make use of the precise
description of the zeros in (3.7).

Theorem 3. The zeros of ψ satisfy

(4.1)
∑

ψ(−t)=0
t<x

1 = xαK

(
log x

log 5

)
+O

(
x
α+3α2

2+3α

)
,
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whereK(s) is a periodic continuous singular function of period 1.3 As a consequence
of this asymptotic behaviour of the counting function the n-th zero λn satisfies

(4.2) C2n
1
α ≤ λn ≤ C3n

1
α

for some positive constants C2, C3 and sufficiently large n.

Remark. The proof of this theorem will make use of a Berry-Esseen type inequality
for the difference between the counting function of the ξk,j’s and the measure µ.
Since µ is a probability measure supported on a fractal set, it cannot be absolutely
continuous, and therefore the usual Berry-Esseen inequalities cannot be used, as
they use the absolute continuity of at least one of the two measures they compare.

The more usual way to prove estimates for the growth of the zeros would be
to apply Tauberian theorems to the Dirichlet generating function ν(s), which is
impossible, because there are infinitely many poles on the line ℜs = α. Applying
the Mellin-Perron summation formula (cf. [Ap], [Iv], [Te]) would only yield an
asymptotic formula for

∑

ψ(−t)=0
t<x

(
1− t

x

)
,

which is certainly weaker than our theorem.

Proposition 2. Let f1(x) and f2(x) be two probability distribution functions with
their Fourier-Stieltjes transforms defined by

d̂fk(t) =

∫ ∞

−∞
e−2πitx dfk(x), k = 1, 2.

Suppose that (d̂f1(t) − d̂f2(t))t
−1 is integrable on a neighbourhood of zero and f2

satisfies

|f2(x)− f2(y)| ≤ C4|x− y|β

for some 0 < β < 1. Then the following inequality holds for all real x and all δ > 0

(4.3)

∣∣∣∣∣∣
f1(x)− f2(x)−

δ∫

−δ

Ĵ(δ−1t)(2πit)−1
(
d̂f1(t)− d̂f2(t)

)
e2πixt dt

∣∣∣∣∣∣

≤
(
C4 +

1

π2

)
δ−

2β
2+β +

1

2δ

δ∫

−δ

(
1− |t|

δ

)(
d̂f1(t)− d̂f2(t)

)
e2πixt dt,

where

Ĵ(t) = πt(1− |t|) cotπt+ |t|.

3The term “singular” refers to the fact, that the function is not the integral of its derivative.
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Corollary 2. The discrepancy of the counting function

Ak(x) =
1

2k−1

∑

1≤j≤2k−1

ξk,j<x

1

and the measure µ([0, x]) can be estimated as follows

sup
x

|Ak(x)− µ([0, x])| = O
(
5−

α
2+3αk

)
.

Proof of the Proposition. The proof will follow the proof of the Berry-Esseen in-
equality in [Va], thus we will restrict ourselves to the points, where different ideas
have to be used. Vaaler’s proof of the usual Berry-Esseen inequality makes use of
the Beurling-Selberg extremal function

(4.4) B(z) =

(
sinπz

π

)( ∞∑

n=0

1

(z − n)2
−

∞∑

n=1

1

(z + n)2
+

2

z

)
,

which minimizes the integral

∫ ∞

−∞
(F (x)− sgn(x)) dx

for all entire functions F (z) of exponential type 2π satisfying F (x) ≥ sgn(x). In
[Va] this function and related functions are used to construct integral kernels for
Fourier analysis, which yield almost best possible approximation for characteristic
functions of intervals.

The proof uses the fact that the functions

Jδ(z) =

δ∫

−δ

Ĵ(δ−1t)e2πizt dt

Kδ(z) =

(
sinπδz

πδz

)2

have the property that for any increasing function f we have

(4.5) f(x) ≤ f ∗ Jδ(x) +
1

2δ
(df) ∗Kδ(x),

where ∗ denotes convolution. This yields the inequality

(4.6)
f1(x)− f2(x) ≤(f1 − f2) ∗ Jδ(x) +

1

2δ
(df1 − df2) ∗Kδ(x)+

f2 ∗ Jδ(x) +
1

2δ
(df2) ∗Kδ(x)− f2(x).

The first two terms on the right hand side yield the two Fourier inversion integrals
in (4.3) by the same arguments as used in [Va]. The three remaining terms have to
be estimated by different means.
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As in [Va] we have

f2 ∗ Jδ(x) +
1

2δ
(df2) ∗Kδ(x)− f2(x) =

1

2

∞∫

−∞

(B(δ(x− ξ))− sgn(δ(x− ξ))) df2(ξ).

Using the fact that B(x)− sgn(x) ≤ K(x) for all real x [Va, Lemma 5], we estimate
the last term by

(4.7)

∞∫

−∞

K(δ(x− ξ)) df2(ξ).

We now insert the estimate

K(δx) ≤
{

1 for |x| ≤ δ−
2

2+β

1
δ2π2|x|2 for |x| > δ−

2
2+β

into (4.7) to obtain the upper bound

(4.8)

∫

|x−ξ|≤δ−
2

2+β

df2(ξ) +

∫

|x−ξ|>δ−
2

2+β

1

δ2π2(x− ξ)2
df2(ξ).

The first integral is estimated by C4δ
− 2β

2+β using our assumptions on the f2-measure

of short intervals. The second integral is estimated by 1

π2δ2·δ−
4

2+β
= 1

π2 δ
− 2β

2+β , which

proves the proposition. �

Proof of the Corollary. We will use the estimates provided by Lemma 1 for the
difference of the Fourier-Stieltjes transforms

∣∣∣d̂Ak(t)− d̂µ(t)
∣∣∣ = O

(
|t|5−k

2

)
.

We now set f1(x) = Ak(x) and f2(x) = µ([0, x]). The assumption on the distribu-
tion function f2 with β = α is satisfied by (3.11). Inserting these estimates into
Proposition 2 we derive

sup
x

|Ak(x)− µ([0, x])| = O
(
5−

k
2

)
+O

(
δ5−

k
2

)
+O

(
δ−

2α
2+α

)
.

Choosing δ = 5
2+α
4+6αk we derive the desired estimate. �

We have now completed all preparations for the proof of Theorem 3.

Proof of the theorem. Throughout this prove we will use [x] to denote the integer
part of x and {x} to denote the fractional part of x, such that x = [x] + {x}.
Set m1 =(−1) ( 3−

√
5

8
) and m2 = max = ψ(−1)(−1

4
). These values can be easily

computed by Maple:

m1 = 1.149096803689766013202 . . . , m2 = 1.86286091513982018242 . . . .



FUNCTIONAL ITERATIONS . . . 17

We set X = log x−logm2

log 5 and use the description of the zeros by (3.7) to derive

(4.9)

S(x) =
∑

t<x

ψ(−t)=0

1 =

[
log x− log ξ0,1

log 5

]
+
∑

n+m≤X
2m−1+

∑

n+m=[X]+1

2m−1∑

j=1

χ[0,x·5−T−1)(ξm,j),

where the first term on the right hand side originates from the zeros given by
−ξ0,1 · 5n, the first sum collects the values of n and m such that ξm,j ≤ m2 ≤
x · 5−n−m, where j can take all possible values, and the second sum is extended
over those values of n and m, where x ·5−n−m < m2. Notice that all the summands
in the last sum are zero, if x · 5−[X]−1 < m1. We now sum up the first sum and use
Corollary 2 to obtain
(4.10)

S(x) =

[
log x

ξ0,1

log 5

]
− [X ]+2[X]−1+

[X]∑

m=1

2m−1
(
µ([0, m25

{X}−1)) +O
(
5−

α
2+3αm

))
.

The first two terms differ at most by 2 and the basis in the O-term is 0.8101 . . . .

Thus the error term is O(5
α+3α2

2+3α m) and we have

(4.11)

S(x) = 2[X] ·
(
1 + µ([0, m25

{X}−1))
)
+O

(
5ηT
)

= 2X · 2−{X} ·
(
1 + µ([0, m2 · 5{X}−1))

)
+O (xη)

= m−α
2 xα · 2−{X} ·

(
1 + µ([0, m2 · 5{X}−1))

)
+O (xη) ,

where η = α+3α2

2+3α . Notice that the measure µ satisfies (3.11), therefore its distribu-
tion function is continuous. The derivative exists and vanishes almost everywhere
by the fact, that the measure is supported on a Cantor set; this is a consequence
of [Be, Thm 9.8.1]. The function

(4.12) K

(
log x

log 5

)
= m−α

2 · 2−{X} ·
(
1 + µ([0, m2 · 5{X}−1))

)

therefore is proved to be continuous except for possible jump discontinuities in the
points, where {X} = 0. But, in these points the jumps of the first factor are
compensated by the jumps of the second factor. Thus the theorem is proved. �

Remark. Numerical experiments (see the plot of K(t) in Figure 7. below) suggest
that

0.470951109 . . . =
1

2mα
1

≤ K(t) ≤ 1

mα
2

= 0.764961577 . . . ,

which would imply that the constants in (4.2) could be chosen as

C2 < m2 = 1.8628609 . . . C3 > 5m1 = 5.745484018 . . .

for n sufficiently large.



18 PETER J. GRABNER

0.5

0.55

0.6

0.65

0.7

0.75

0 0.2 0.4 0.6 0.8 1

K(t)

t

Figure 7.

5. Properties of the Distribution Function of T

In this section we will prove that the distribution function can be given by the
infinite sum (1.3). In the classical case of Brownian motion on the unit interval this
expansion can be derived from the eigenfunction expansion of the transition density
(cf. [I-M, p.31]). This makes it plausible that the values −λn are (a subset of) the
eigenvalues of the Laplacian on the geodesic unit ball on the gasket (corresponding
to eigenfunctions with boundary values 0).

Although the eigenfunction expansion

pt(x, y) =
∑

µ

e−µtφµ(x)φµ(y)

(µ running through all the eigenvalues of the Laplacian, and φµ being the corre-
sponding normalized eigenfunctions) exists as a consequence of the general theory
of semigroups of operators (cf. [Ru], [Yo]) and the Hilbert-Schmidt theory of sym-
metric integral operators (cf. [R-N]), current knowledge of the properties of the
eigenfunctions does not allow to conclude (1.3). Furthermore, we will prove an
asymptotic expression for P(T < t) for t → 0, which refines the upper and lower
estimates for this quantity given in [Bi] and [B-P].

Theorem 4. The distribution function of the random variable T is given by

(5.1) 1−
∑

ψ(−λ)=0

1

λψ′(−λ)e
−λt.

The series is uniformly convergent for t ≥ 0.

The proof will make use of several lemmas.

Lemma 2. The function ψ satisfies

|ψ(−σ + it)| ≥ |ψ(−σ)| exp
(
C5t

2σ−2+α
)

for |t| ≤ C6σ, where the constant C5 > 0 only depends on C2, C3 and C6.
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Proof. We apply the following estimates to the product expansion (3.14)

∣∣∣∣1−
σ

λ
+
it

λ

∣∣∣∣ ≥
{ ∣∣1− σ

λ

∣∣ for λ < σ

∣∣1− σ
λ

∣∣
√

1 + t2

λ2 for λ ≥ σ.

Choose C′
5 such that

1 + t2 ≥ exp(C′
5t

2) for 0 ≤ |t| ≤ C6

and insert the two inequalities into (3.14) to obtain

(5.2) |ψ(−σ + it)| ≥ |ψ(−σ)| exp
(
C′

5

2
t2
∑

λ>σ

1

λ2

)
.

Applying (4.2) we have

(5.3)
∑

λ>σ

1

λ2
≥

∑

n>
(
σ
C2

)α
1

C2
3n

2
α

≥ C′′
5 σ

−2+α

and putting (5.2) and (5.3) together and setting C5 =
C′

5C
′′
5

2 yields the desired
estimate. �

Lemma 3. For | arg z| ≤ 3π
4 the following inequality holds for some positive con-

stant C7

ℜ
(
zαG

(
log z

log 5

))
≥ C7|z|α.

Proof. We write z = reiϕ and insert this into the Fourier series for G(s) to obtain

ℜ
(
eiαϕG

(
log r

log 5
+

iϕ

log 5

))
= g0 cosαϕ+

∑

k∈Z\{0}
ℜ
(
gke

iαϕe2kπi
log r
log 5

)
e−

2kπ
log 5ϕ

≥ g0 cosαϕ− 3π

2
·M(−α)

( ∞∑

k=1

e−
2π

log 5 (π−ϕ)k + e−
2π

log 5 (π+ϕ)k

)

≥ 1.959 · cosαϕ− 3.978 ·
(

1

e
2π

log 5 (π−ϕ) − 1
+

1

e
2π

log 5 (π+ϕ) − 1

)
.

The last expression is easily shown by Maple to be greater than 0.8 in the interval
−3π

4 ≤ ϕ ≤ 3π
4 . �

Lemma 4. The function ψ(t) attains a value of modulus ≥ 9
16

in every interval
between two consecutive zeros.

Proof. Clearly, the derivative of ψ(z) vanishes between two consecutive zeros by
Rolle’s theorem. Thus we differentiate (3.1) and ask for conditions for the vanishing
of the derivative of ψ. The relation

(5.4) 5ψ′(5z) = ψ′(z) (8ψ(z)− 3)
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shows that the derivative of ψ at 5z can only vanish, if either ψ(z) = 3
8 , or ψ

′(z) = 0.

The first possibility implies that ψ(5z) = − 9
16

and we are done. In the second case
we iterate this argument to obtain

ψ′(5z) = ψ′(z) = · · · = ψ′(5−k+1z) = 0, ψ(5−kz) =
3

8
,

for some k ≥ 1. This implies that ψ(5z) = g(k+1)( 38 ), and it is an easy exercise to

show that |g(k+1)( 38 )| > 9
16 . �

Proof of the theorem. We first notice that φ(z) = 1
ψ(z) is the Laplace transform of

the density function of the random variable T . Thus 1
zψ(z) is the Laplace transform

of the distribution function of T . By the Laplace inversion theorem (cf. [Do], [Wi])
we have

(5.5) Φ(t) = P(T < t) =
1

2πi

1+i∞∫

1−i∞

est

sψ(s)
ds.

We shift the line of integration to the left to ℜs = −σ and collect residues at the
zeros of ψ. Thus we have

(5.6) Φ(t) = 1−
∑

λ<σ

ψ(−λ)=0

1

λψ′(−λ)e
−λt +

1

2πi

−σ+i∞∫

−σ−i∞

est

sψ(s)
ds.

We choose σ such that |ψ(−σ)| ≥ 9
16 and the sum is not altered. This is possible

by Lemma 4. We split the range of integration into two parts: for τ = ℑs we
estimate the integral by

(5.7)

∣∣∣∣∣∣∣
1

2πi

∫

|τ |≤σ

est

sψ(s)
ds

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

2πi

∫

|τ |>σ

est

sψ(s)
ds

∣∣∣∣∣∣∣
.

We use Lemma 2 and Lemma 4 to estimate the first integral by

(5.8) e−σt
16

9

1

2πσ

∫ σ

−σ
exp

(
−C5τ

2σ−2+α
)
dτ ≤ e−σt

√
π

C5
σ−α

2 .

An application of Lemma 3 to the second integral yields the upper estimate

(5.9)
e−σt

π

∫ ∞

σ

exp (−C7τ
α)
dτ

τ
≤ e−σt

1

C7πασα
exp (−C7σ

α)

for the second integral.
Putting (5.8) and (5.9) together and estimating the terms e−σt by 1 we obtain

the desired uniform convergence for σ → ∞. �

Finally, we prove a theorem, which gives precise information on the behaviour
of the distribution function for t → 0+. We note here that J.D. Biggins and
N.H. Bingham gave the first term in the asymptotic expansion of logΦ(t) for a
general branching process (cf. [B-B2, Theorem 3]).
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Theorem 5. The distribution function Φ(t) has the following asymptotic expansion
for t→ 0+

(5.10) Φ(t) = exp

(
−t− α

1−αQ

(
log 1

t

log 5
2

)
−B log

1

t
− S

(
log 1

t

log 5
2

))(
1 +O

(
t

1
10

))
,

where Q and S are periodic continuous functions of period 1 and

B =
A+ 1

1− α
− 2− α

2(1− α)
= 1.22307461365998120057 . . . ,

where A is the constant which occurred in (3.2).

Remark. Lower and upper bounds for Q(s) can be given in terms of estimates for
the functions G(s) and G′(s). Inserting those estimates into the expression for Q
in (5.15) below yields

0.56 ≤ Q(s) ≤ 1.19.

Similar estimates for general branching processes are given in [B-B2, Proposition 7].

Proof. We apply the saddle point method to (5.5). We remark here that the saddle
point method is one of the standard methods in the theory of large deviations (cf.
[El]).

Since the asymptotic expansion (3.2) is uniform with respect to the argument

and the function zαG( log zlog 5 ) + A log z +H( log zlog 5 ) is holomorphic in | arg z| < π, we

can apply the Laplace inversion formula to (3.2) and then estimate the error term.
This yields
(5.11)

Φ(t) =
1

2πi

σ+i∞∫

σ−i∞

exp

(
−zαG

(
log z

log 5

)
− (A+ 1) log z −H

(
log z

log 5

)
+ zt

)
dz×

×
(
1 +O(σα−

1
2+ε)

)
.

For choosing the appropriate path of integration we have to solve the equation

(5.12) σα−1

(
αG

(
log σ

log 5

)
+

1

log 5
G′
(
log σ

log 5

))
+
A+ 1

σ
+

1

σ
H ′
(
log σ

log 5

)
= t,

which describes the location of the saddle point by the vanishing of the derivative
of the argument of the exponential in (5.11). Since the two last terms on the left
hand side tend to 0 and the saddle point turns out to be stable, we solve the simpler
equation

(5.13)

σα−1L

(
log σ

log 5

)
= t with

L

(
log σ

log 5

)
= αG

(
log σ

log 5

)
+

1

log 5
G′
(
log σ

log 5

)
.

By differentiating the logarithm of (3.14) twice we obtain

d2 logψ(z)−1

dz2
=
d2 logφ(z)

dz2
=

∑

ψ(−λ)=0

1

(z + λ)2
,
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which is positive for all positive real z. This implies that the left hand side of
(5.13), which is (up to an error term) the negative first derivative of log φ(z), is
monotonically decreasing. Therefore (5.13) has exactly one solution. Using the
periodicity of L and inserting 5σ into (5.13) we see that σ → 5σ corresponds to
t→ 2

5 t. Since the solution σ(t) depends continuously on t, we have

(5.14) σ(t) = t−
1

1−αΛ

(
log 1

t

log 5
2

)

for some continuous periodic function Λ. We note that σ(t) differs only by O(t
1

1−α )
from the solution of (5.12).

Observe now that the second derivative of the argument of the exponential is
given by

zα−2L1

(
log z

log 5

)
− A+ 1

z2
− 1

z2
L2

(
log z

log 5

)

for some continuous periodic functions L1 and L2. This shows that the second
derivative is tending to 0 like zα−2; the same argument shows that the third deriv-
ative tends to zero like zα−3. Furthermore, the second derivative is positive by the
arguments given above.

We now move the line of integration to ℜz = σ(t) and replace the argument of
the exponential by its Taylor expansion to obtain
(5.15)

Φ(t) = exp




−t− α

1−α



(
Λ

(
log 1

t

log 5
2

))α
G


 log 1

t

log 5
2

+
log Λ

(
log 1

t

log 5
2

)

log 5


− Λ

(
log 1

t

log 5
2

)


− A+ 1

1− α
log

1

t
−H


 log 1

t

log 5
2

+
logΛ

(
log 1

t

log 5
2

)

log 5








(
1 +O

(
t

1
1−α− 7

5

))
×

× 1

2π





∫

|τ |<t−
7
5

exp


−τ

2

2
t
2−α
1−α

(
Λ

(
log 1

t

log 5
2

))α−2

L1


 log 1

t

log 5
2

+
logΛ

(
log 1

t

log 5
2

)

log 5




 dτ×

×
(
1 +O

(
t

3
10

))
+

∫

|τ |≥t−
7
5

1

(σ(t) + iτ)ψ(σ(t) + iτ)
eitτ dτ





(
1 +O

(
t

1
10

))
.

Notice that the errors originating from the first and third derivative are bounded

by O(t
1

1−α− 7
5 ) and O(t

3−α
1−α− 21

5 ) = O(t
3
10 ), respectively. The factor of t−

α
1−α has to

be positive, since Φ(t) must tend to zero as t → 0. We equate the first integral
by extending the range of integration to infinity and observing that the error is
exponentially small. We put all the periodic functions together to obtain (5.10). It
remains to bound the second integral.

We use Lemma 3 to estimate

(5.16)

∣∣∣∣∣

∫

|τ |≥t−
7
5

1

(σ(t) + iτ)ψ(σ(t) + iτ)
eitτ dτ

∣∣∣∣∣ ≤
∫

|τ |≥t−
7
5

1

|τ | exp (−C7|τ |α) dτ.
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The integral can be bounded by

2

αC7
t
7α
5 exp

(
−C7t

− 7α
5

)
.

Inserting this estimate into (5.15) we derive that the last summand in (5.15) tends
to zero, as t→ 0. �

Remark. The same procedure as above yields similar asymptotic estimates for all
derivatives of Φ(t).

6. Concluding Remarks

The same ideas as described above can be used for the description of stopping
times for the Brownian motion on d-dimensional Sierpiński spaces as introduced in
[Ki]. The functional equation for the Laplace-Stieltjes transform of the distribution
function of the hitting time of the boundary of the unit ball is given by

φ ((d+ 3)z) =
φ(z)2

2d− (3d− 3)φ(z) + (d− 2)φ(z)2
, φ(0) = 1, φ′(0) = −1.

The corresponding function g(z), whose iterations have to be studied, is given by
g(z) = 2dz2 − (3d− 3)z + d− 2.

It was observed in [B-P] that in the case d = 1 (Brownian motion on the real
line) the functional equation reads

φ(2z) =
φ(z)2

2− φ(z)2
, φ(0) = 1, φ′(0) = −1,

which has the solution φ(z) = 1
cosh

√
2z
. This is in accordance with classical results

(cf. [I-M]).

Acknowledgement. I am indebted to two anonymous referees for their valu-
able remarks concerning the presentation of the paper and for pointing out several
references which I was not aware of.
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