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DIGITAL SUMS AND DIVIDE-AND-CONQUER RECURRENCES:

FOURIER EXPANSIONS AND ABSOLUTE CONVERGENCE

PETER J. GRABNER † AND HSIEN-KUEI HWANG

Abstract. We propose means for computing the Fourier expansions of periodic functions
appearing in higher moments of the sum-of-digits function and in the solutions of some
divide-and-conquer recurrences. The expansions are shown to be absolutely convergent. We
also give a new approach to efficiently compute numerically the coefficients involved to high
precision.

1. Introduction

Let ν(n) denote the number of 1’s in the binary representation of n. Properties of this
function have been extensively studied in the literature due partly to its natural and frequent
appearance in many concrete problems in diverse fields; see [16] and [42] and the references
therein. For more examples, see [1], [2], [5], [7], [8], [12], [20], [34].

The well-known Trollope-Delange formula (see [13], [46]) for the sum function of ν(n) has
attracted much attention in the literature since it represents one of the most concrete examples
of producing continuous but nowhere differentiable functions in analysis: for n ≥ 1,

n−1S(n) := n−1
∑

0≤k<n

ν(k)

=
1

2
log2 n+ F1(log2 n),

where F1(x) is a continuous, nowhere differentiable periodic function with period 1 whose
Fourier expansion can be written as

F1(x) =
ω log π

2
− ω

2
− 1

4
− ω

∑

k 6=0

ζ(χk)

χk(χk + 1)
e2kπix (x ∈ R),

where, here and throughout this paper, ω := 1/ log 2, ζ(s) denotes Riemann’s zeta function
and χk := 2kπiω.

If we assume that the first n nonnegative integers are equally likely, then n−1S(n) repre-
sents the mean value of the random variable Xn, counting the number of 1’s in the binary
representation of a random integer. The m-th moment of Xn is then given by n−1Sm(n),
where

Sm(n) :=
∑

0≤k<n

νm(k) (m ≥ 1).

For more information on probabilistic models for digital arithmetic functions, see [33].
Coquet [11] showed that for n,m ≥ 1,

n−1Sm(n) = 2−m(log2 n)
m +

∑

0≤j<m

(log2 n)
jGm,j(log2 n),(1.1)
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2 P. GRABNER AND H.-K. HWANG

where Gm,j(x) are periodic functions with period unity and satisfy the recurrence

∑

j≤ℓ<m

(

2

(

ℓ

j − 1

)

Gm,ℓ(x)−
(

m

ℓ

)

Gℓ,j−1(x)

)

=
(

21−j − 21−m
)

(

m

j − 1

)

,

for 1 ≤ j < m. This inductive formula makes it possible to express all functions Gm,j(x) in
terms of Fj(x) := Gj,0(x) for j = 1, . . . ,m. In particular,

Gm,m−1(x) = m2−m−1 (m− 1 + 4F1(x)) (m ≥ 1),

Gm,m−2(x) =

(

m

2

)

2−m−2
(

m2 − 5m+ 6 + 8(m− 2)F1(x) + 16F2(x)
)

(m ≥ 2),

Gm,m−3(x) =

(

m

3

)

2−m−3

(

(m− 3)(m2 − 9m+ 16) + 12(m− 3)(m− 4)F1(x)

+ 48(m − 3)F2(x) + 64F3(x)

)

(m ≥ 3),

so that

Var(Xn) =
1

4
log2 n+ F2(log2 n)− F 2

1 (log2 n).

See [11], [30], and [38] for more details.
Formula (1.1) was also derived using different approaches by several authors; see [14], [22],

[36], and [37]. Continuity and non-differentiability of the Gm,j ’s and similar periodic functions
occurring in the study of digital arithmetic functions are discussed in [44]. Although many
properties of the Gm,j ’s are known, the Fourier expansions of the Gm,j ’s remain open. It is
the purpose of this paper to propose an analytic approach to derive the Fourier expansions
of Gm,j . The approach is based on Perron-Mellin integrals and differencing argument similar
to those used in [16] and [27]; the hard parts are the detailed estimates of the associated
exponential sums in order to prove absolute convergence of the Fourier series.

The approach is best described by the second moment for which we present the proof in
some detail; the extension to higher moments is straightforward and is only sketched.

Define

ξ(x) := ⌊2x⌋ − 2 ⌊x⌋ − 1

2
=

{

−1
2 , ⌊x⌋ ≤ x < ⌊x⌋+ 1

2 ;
1
2 , ⌊x⌋+ 1

2 ≤ x < ⌊x⌋+ 1,

ξ(x) being a periodic step function of period 1. Let

(1.2)

Vm(s) =
1

2

∑

n≥1

νm(n)

(

1

(2n)s
− 2

(2n + 1)s
+

1

(2n + 2)s

)

= − s

2s

∫ ∞

1

νm(x)

xs+1
ξ(x) dx (m = 0, 1, . . .),

for ℜ(s) > −1, where ν(x) := ν(⌊x⌋).
Theorem 1. For n ≥ 1

n−1S2(n) =
1

4
(log2 n)

2 +

(

1

4
+ F1(log2 n)

)

log2 n+ F2(log2 n),

where F2(x) =
∑

k∈Z p2,ke
2kπix with

(1.3) p2,0 =
ω2

2

(

1− log π − ζ ′′(0)
)

− ω

2

(

log π + 4V ′
1(0)

)

− 19

24
,

and for k 6= 0

(1.4) p2,k =
ω

χk(χk + 1)

(

ω

(

1

χk
+

1

χk + 1
− ζ ′(χk)

)

+ ζ(χk)− 2V1(χk)

)

.
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The Fourier series is absolutely convergent.

Kirschenhofer [30] derived the following expression for the periodic function F2

(1.5) F2(x) = 21−{x}
∑

j,k≥0
j 6=k

∫ 2{x}−1

0

(

⌊

2j+1u
⌋

− 2
⌊

2ju
⌋

− 1

2

)(

⌊

2k+1u
⌋

− 2
⌊

2ku
⌋

− 1

2

)

du,

(see also [38]) which is of a similar form as Delange’s formula for F1 (see [13])

(1.6) F1(x) =
1− {x}

2
+ 21−{x}

∑

j≥0

∫ 2{x}−1

0

(

⌊

2j+1u
⌋

− 2
⌊

2ju
⌋

− 1

2

)

du.

In contrast to F1 whose Fourier expansion can be derived from (1.6) by straightforward
calculations, it is not obvious how to derive the Fourier coefficients (1.3) and (1.4) of F2(x)
from (1.5). However, our analytic approach avoids such calculations completely.

While the Fourier coefficients of F2(x) may seem “recursive” in some sense, the mean value
of F2 gives the first approximation to F2; see Figure 1. Also in Section 4 we provide new
means of computing the Fourier coefficients numerically to high precision, which is also of
interests per se.

0.2 0.4 0.6 0.8 1

-0.25

-0.2

-0.15
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-0.05

Figure 1. The function F2(x) compared with the trigonometric polynomial
formed with the first six Fourier coefficients.

We use the following notations for forward and backward differences throughout this paper

∇fn = fn − fn−1,

∆fn = fn+1 − fn.

The method of proof starts from the Mellin-Perron approach used in [16] and [27], which
consists in first computing the backward differences of ν(n) and then applying the summation
formula (defining f0 := 0)

n−1
∑

1≤k<n

fk = n−1
∑

1≤k<n

(n− k)∇fk

=
1

2πi

∫ c1+i∞

c1−i∞

ns

s(s+ 1)

∑

j≥1

∇fjj−s ds,(1.7)

for any sequence fn, where c1 > max{σ1, 0}, σ1 being the abscissa of absolute convergence
of the Dirichlet series

∑

j≥1∇fjj−s. The major difficulty lies in proving the estimate of the



4 P. GRABNER AND H.-K. HWANG

Dirichlet series Vm(σ ± it) for |t| → ∞ because the a priori bound Vm(it) = O(|t|1+ε) is not
sufficient to guarantee the absolute convergence of the Fourier series and the integral in (1.7).

An essentially equivalent way for handling Sm(n) is to consider the second difference by
observing that Sm(n) satisfies a recurrence of the type

fn = f⌊n/2⌋ + f⌈n/2⌉ + gn (n ≥ 2),

with f1 given, where gn is some given sequence, and then to apply the summation formula
(see [15])

fn
n

= f1 + n−1
∑

1≤k<n

(n− k)∇∆fk

= f1 +
1

2πi

∫ c2+i∞

c2−i∞

ns

s(s+ 1)

∑

j≥1

∇∆fjj−sds,(1.8)

where c2 > max{σ2, 0}, σ2 being the abscissa of absolute convergence of the Dirichlet series
∑

j≥1∇∆fjj−s.
An advantage of this second difference approach is that it admits an extension to more

general recurrences of the type

fn = αf⌊n/2⌋ + βf⌈n/2⌉ + gn,(1.9)

with suitable initial conditions. Such recurrences appeared often in diverse problems; concrete
examples of such recurrences include:

(1) odd numbers in Pascal triangle and more generally the probability generating function
of Xn: n

−1
∑

0≤k<n θ
ν(k); see [16], [37], and Section 3.2;

(2) number of comparators used in Bose-Nelson sorting networks; see [4] and Section 3.6;
(3) number of comparators used in Batcher’s sorting networks; see [27];
(4) Karatsuba multiplications; see [32];
(5) number of AND-OR gates to simulate AND; see [31], [6], and Section 3.6;
(6) Euclidean matching heuristic; see [39];
(7) period of regularity of 1-additive sequences generated by (4, v), etc; see [5];
(8) recurrences with minimization or maximization; see [20], [28];
(9) Steinhaus problem; [12].

We will discuss some of these in detail. In particular, two different proofs are given of the
absolute convergence of the Fourier series of the periodic functionMθ(x), whereMθ(log2 n) =
n− log2(1+θ)

∑

0≤k<n θ
ν(k), for the range

√
2− 1 < θ <

√
2 + 1, θ 6= 1.

Apart from the natural application of our approach to the moments of the sum-of-digits
function of numbers in q-ary expansion, the associated recurrence being of the form (see [13],
[21])

fn =
∑

0≤j<q

f⌊(n+j)/q⌋ + gn,

our approach is also suitable for moments of the number of 1’s g(n) in Gray code representation
of integers whose underlying recurrence is of the form

g(n) = g(⌊n/2⌋) + 1

2

(

1− (−1)⌈n/2⌉
)

;

see [16], [17], [40] for more information. With more calculation, it is also applicable to the
Newman-Coquet sequence and other digital sums; see [10], [16], [21], [35].
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2. Moments of the sum-of-digits function

2.1. Integral representations and recurrences. Define

Ym(s) :=
∑

n≥1

∇νm(n)n−s (m ≥ 0).

Proposition 1. For m,n ≥ 1,

(2.1) n−1Sm(n) =
1

2πi

∫ 1+i∞

1−i∞

ns

s(s+ 1)
Ym(s) ds.

Proof. Apply (1.7). �

Observe that V0(s) = 2− 2−s − 2(1− 21−s)ζ(s) and Y0 = 1.

Lemma 1. For m ≥ 1 and ℜ(s) > −1

Ym(s) =
2s − 2

2s − 1
ζ(s) +

1

2(2s − 1)

∑

1≤j<m

(

m

j

)

Yj(s)−
1

1− 2−s

∑

1≤j<m

(

m

j

)

Vj(s).

Proof. By the recurrences

(2.2)
ν(2n) = ν(n)

ν(2n+ 1) = ν(n) + 1
(n ≥ 1),

with ν(0) = 0, we obtain

∇νm(2n) = ∇νm(n)− 1−
∑

1≤j<m

(

m

j

)

νj(n− 1)

∇νm(2n + 1) =
∑

0≤j<m

(

m

j

)

νj(n)

(n ≥ 1);

and the Dirichlet series Ym can be written as

Ym(s) = 2−s
∑

n≥1

∇νm(n)n−s +
∑

n≥0

(

(2n+ 1)−s − (2n + 2)−s
)

+
∑

1≤j<m

(

m

j

)

∑

n≥1

∇νj(n)
(

(2n+ 1)−s − (2n+ 2)−s
)

,

which gives

Ym(s) =
1

1− 2−s



(1− 21−s)ζ(s) +
∑

1≤j<m

(

m

j

)

∑

n≥1

νj(n)
(

(2n + 1)−s − (2n + 2)−s
)



 .

The required expression for Ym then follows from writing

(2n + 1)−s − (2n + 2)−s

=
1

2

(

(2n)−s − (2n+ 2)−s
)

− 1

2

(

(2n)−s − 2(2n + 1)−s + (2n+ 2)−s
)

.

�

From the above lemma, we can express Ym(s) completely in terms of Vj(s) (j = 0, . . . ,m−1)
by considering the exponential generating function of Ym.
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Lemma 2. For m ≥ 1

Ym(s) = 2(2s − 2)ζ(s)
∑

1≤k≤m

k!S(m,k)

2k(2s − 1)k

− 2s+1
∑

1≤h<m

(

m

h

)

Vm−h(s)
∑

1≤k≤h

k!S(h, k)

2k(2s − 1)k
,

where the S(n, k) denote the Stirling numbers of the second kind.

2.2. Growth properties of Dirichlet series. To evaluate the integral in (2.1), we need
more analytic properties of Ym(s). Lemma 2 gives the required analytic continuations of
Ym(s), so we concentrate in this section on growth orders of Ym(σ ± i∞), or, equivalently,
those of Vm(σ ± i∞) since the growth order of ζ(s) at s = σ ± i∞ is well known.

Recall (see (1.2)) that for ℜ(s) > −1

Vm(s) =
1

2

∑

n≥1

νm(n)

(

1

(2n)s
− 2

(2n + 1)s
+

1

(2n + 2)s

)

.

Proposition 2. For m ≥ 1

(2.3) Vm(−σ + it) =

{

O
(

|t|1/2(log |t|)2m+1
)

if σ = 0;

O
(

|t|σ+1/2(log |t|)2m
)

if 0 < σ < 1,

for |t| ≥ t0.

Proof. We prove the case m = 1 in detail and then sketch the proof in the general case.

By symmetry, assume that t > t0 > 0. Take L =
⌊

3−2σ
2−2σ log2 t

⌋

− 1 and N = 2L+1. Write,

for notational convenience,

∆2(2n)−s := (2n)−s − 2(2n + 1)−s + (2n + 2)−s.

Then

V1(−σ + it) =
1

2

∑

1≤n<N

ν(n)∆2(2n)σ−it +
1

2

∑

n≥N

ν(n)∆2(2n)σ−it

=: Υ1 +Υ2.

By the estimates

1− 2

(

1 +
1

2n

)σ−it

+

(

1 +
1

n

)σ−it

= O

(

t2

n2

)

(n≫ t),

and
∑

1≤n≤x

ν(n) = O (x log x) ,

we have

Υ2 = O



t2
∑

n≥N

ν(n)nσ−2





= O
(

t2Nσ−1 logN
)

= O
(

tσ+1/2 log t
)

.

For Υ1, we use the following expression

2Υ1 =
1

2π

∫ 2π

0
V (−σ + it, v)





∑

0≤n<N

ν(n)e−inv



 dv,
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where

(2.4) V (s, v) =
1

2

∑

n≥1

einv
(

1

(2n)s
− 2

(2n+ 1)s
+

1

(2n+ 2)s

)

.

Obviously,

(2.5) 2|Υ1| ≤ T max
0≤v≤2π

|V (−σ + it, v)| ,

where

T :=
1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∣

∑

0≤n<N

ν(n)e−inv

∣

∣

∣

∣

∣

∣

dv.

Using the identity

ν(n) =
∑

0≤j≤⌊log2 n⌋

(⌊ n

2j

⌋

− 2
⌊ n

2j+1

⌋)

,

we have
∑

0≤n<N

ν(n)e−inv =
∑

0≤j≤L

∑

0≤n<N

(⌊ n

2j

⌋

− 2
⌊ n

2j+1

⌋)

e−inv

=
∑

0≤j≤L

∑

0≤n<N
n≡{2j ,2j+1,...,2j+1−1} mod 2j+1

e−inv

=
∑

0≤j≤L

e−2j iv(1− e−2L+1iv)

(1− e−iv)(1 + e−2j iv)
.

Thus

T ≤
∑

0≤j≤L

Tj , where Tj :=
1

2π

∫ 2π

0

∣

∣

∣

∣

∣

1− e−2L+1iv

(1− e−iv)(1 + e−2j iv)

∣

∣

∣

∣

∣

dv.

The integrals Tj are estimated as follows.

Tj =
1

π

∫ 2π

0

∣

∣

∣

∣

sin(2Lv)

sin v cos(2j−1v)

∣

∣

∣

∣

dv =
1

2j−1π

∫ 2jπ

0

∣

∣

∣

∣

sin(2L−j+1v)

sin(v/2j) cos v

∣

∣

∣

∣

dv

=
1

2j−1π

∑

0≤ℓ<2j

∫ (ℓ+1)π

ℓπ

∣

∣

∣

∣

sin(2L−j+1v)

sin(v/2j) cos v

∣

∣

∣

∣

dv

=
1

2j−1π

∑

0≤ℓ<2j

∫ π

0

∣

∣

∣

∣

sin(2L−j+1v)

sin((v + ℓπ)/2j) cos v

∣

∣

∣

∣

dv

=:
1

2j−1π

∑

0≤ℓ<2j

Iℓ.

For I0, we have the upper bounds:

I0 = O

(

∫ 2−L

0
2L dv +

∫ π/2−2−L+j

2−L

dv

v(π/2 − v)

+

∫ π/2+2−L+j

π/2−2−L+j

2L−j dv +

∫ π

π/2+2−L+j

dv

π/2− v

)

= O(L).

Similarly,

Iℓ = O(L− j) = O(L),
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for 1 ≤ ℓ < 2j .
Thus

Tj = O(L),

uniformly in j, 0 ≤ j ≤ L. It follows that

(2.6) T = O(L2) = O
(

(log t)2
)

.

It remains to estimate the function V (s, v) on vertical lines. For that purpose we observe
that V (s, v) can be written in terms of the periodic (or Lerch) zeta function (see [29]) ϕ(s, v) :=
∑

n≥1 e
invn−s as follows.

V (s, v) =
1

2

(

2−s
(

1− e−iv/2
)2
ϕ(s, v) + eiv/2ϕ(s, v/2) − 1

)

.

From the functional equation of ϕ(s, v) (see [29]) and Stirling’s formula, it follows that

ϕ(−σ + it, v) = O(|t|σ+1/2) for σ > 0 and ϕ(it, v) = O(|t|1/2 log |t|). Thus we have the
estimate

(2.7) V (−σ + it, v) =

{

O
(

|t|1/2 log |t|
)

if σ = 0;

O
(

|t|σ+1/2
)

if σ > 0,

uniformly for v ∈ R. Inserting (2.6) and (2.7) into (2.5) yields the desired estimate for
V1(−σ + it).

The general case when m ≥ 2 can be proved similarly as above using the formula

∑

n<N

νm(n)∆2(2n)−s =
1

(2π)m

∫ 2π

0
· · ·
∫ 2π

0
V (s, v1 + · · ·+ vm)

×





∑

0≤n<N

ν(n)e−inv1



 · · ·





∑

0≤n<N

ν(n)e−invm



 dv1 · · · dvm

≤ Tm max
0≤v1≤2π

···
0≤vm≤2π

|V (s, v1 + · · ·+ vm)| .

�

2.3. Evaluation of the Mellin-integral. By (2.1) with m = 2, we have

(2.8) n−1S2(n) =
1

2πi

∫ 1+i∞

1−i∞

ns

s(s+ 1)
Y2(s) ds,

where

Y2(s) = 2s
2s − 2

(2s − 1)2
ζ(s)− 2V1(s)

1− 2−s
.

Note that by (1.2), V1(0) = 0, so that the integrand on the right-hand side of (2.8) has a
triple pole at s = 0, and double poles at s = χk, k 6= 0. By the growth property (2.3), we
can (by absolute convergence) shift the line of integration to, say ℜ(s) = −1/4 and by taking
into account all residues encountered on the imaginary axis. The result is

n−1S2(n) =
1

4
(log2 n)

2 +

(

1

4
+ F1(log2 n)

)

log2 n+ F2(log2 n) + Jn,

where

Jn :=
1

2πi

∫ −1/4+i∞

−1/4−i∞

ns

s(s+ 1)
Y2(s) ds.

We show that the integral is identically zero by applying the following result.
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Proposition 3. Let q > −1. Let U(s) := s2−s
∫∞
1 u(x)ξ(x)x−s−1 dx for some non-negative,

real arithmetic function u(x) = u⌊x⌋. If U(s) satisfies the two conditions:
(i) U(s) converges for ℜ(s) ≥ q − ε, where ε > 0;
(ii) |U(q − ε+ it)| = O(|t|δ), where 0 < δ < 1.

Then the integral

1

2πi

∫ q−ε+i∞

q−ε−i∞

ns

s(s+ 1)

U(s)

(1− 2q−s)k
ds

is identically zero for all integers n, k ≥ 1 and for ε > 0.

Proof. See [27] for the proof of the case k = 1; the same proof can be rephrased for any
k ≥ 1. �

2.4. Higher moments. Using Proposition 1 and Lemma 2, we can express the Fourier co-

efficients of the functions Fm(x) in terms of ζ(k)(0)’s and of V
(j)
k (0)’s, 1 ≤ k ≤ m and

1 ≤ j ≤ m − k. The expressions become rather messy for larger values of m; thus we only
state the results for the mean values of the functions F3 and F4:

p3,0 = −ω
3

4

(

3− 3 log π − 3ζ ′′(0) + ζ ′′′(0)
)

+
ω2

8

(

3 + 3 log π + 3ζ ′′(0) + 24V ′
1(0) − 12V ′′

1 (0)
)

+ ω

(

11

8
− log π − 3V ′

1(0)− 3V ′
2(0)

)

− 31

32
;(2.9)

p4,0 =
ω4

8

(

12 − 12 log π − 12ζ ′′(0) + 4ζ ′′′(0)− ζ(4)(0)
)

− ω3

(

3

2
+ 6V ′

1(0) − 3V ′′
1 (0) + V ′′′

1 (0)

)

− ω2

(

11

4
− 11

4
log π − 11

4
ζ ′′(0) − 9V ′

1(0)− 6V ′
2(0) +

9

2
V ′′
1 (0) + 3V ′′

2 (0)

)

+ ω

(

13

4
− log π

2
− 4V ′

1(0) − 6V ′
2(0) − 4V ′

3(0)

)

− 83

160
.(2.10)

In Section 4 we will obtain numerical approximations to these values.

3. Divide-and-conquer recurrences

The tools used above are applicable to recurrences of the type (1.9); in this section we
study some concrete examples.

3.1. Integral representation. Recall that ∇∆fn := fn+1 − 2fn + fn−1.

Proposition 4. Let α and β be two positive constants. Consider the recurrence

fn = αf⌊n/2⌋ + βf⌈n/2⌉ + gn, (n ≥ 2),(3.1)

with f1 and the sequence {gn}n≥2 given. Let the abscissa of convergence of the Dirichlet
series W (s) :=

∑

n≥1∇∆fn n−s be σf . Suppose that c > max{0, σf , log2(α + β) − 1}. Then

the solution of (3.1) satisfies

fn
n

= f1 +
1

2πi

∫ c+i∞

c−i∞

ns

s(s+ 1)

W (s)

1− (α+ β)2−s−1
ds,(3.2)
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where (∆f(x) := ∆f(⌊x⌋), f0 = g0 = g1 = 0)

(3.3) W (s) = (α+ β − 2)f1
(

1− 2−s−1
)

+
∑

n≥1

∇∆gn
ns

+
(α− β)s

2s

∫ ∞

1

∆f(x)

xs+1
ξ(x) dx.

Proof. Define f(z) :=
∑

n≥1 fnz
n and g(z) :=

∑

n≥2 gnz
n. Then the relation (3.1) translates

into

f(z) =
1

z
(β + (α+ β)z + αz2)f(z2) + g(z) + (1− β)f1z

=
α+ β

2

(1 + z)2

z
f(z2) +

β − α

2

1− z2

z
f(z2)

+ g(z) + (1− β)f1z.

Multiplying now both sides by (1− z)2/z yields

(1− z)2

z
f(z) =

α+ β

2

(1− z2)2

z2
f(z2) +

β − α

2
(1− z)2

1− z2

z2
f(z2)

+
(1− z)2

z
g(z) + (1− β)f1(1− z)2,

or in terms of coefficients

∑

n≥1

∇∆fnzn =
α+ β

2

∑

n≥1

∇∆fnz2n +
β − α

2

∑

n≥1

∆fnz
2n(1− z)2

+
∑

n≥1

∇∆gnzn +
α+ β − 2

2
f1z(2− z).

Translating into Dirichlet series, or using the transformation z 7→ e−t and then taking the
Mellin transform of both sides, we obtain

W (s) =
α+ β

2s+1
W (s) +

β − α

2

∑

n≥1

∆fn∆
2(2n)−s

+
∑

n≥1

∇∆gnn−s + (α+ β − 2)f1(1− 2−s−1).

Solving this equation and then applying (1.8), we obtain (3.2). This completes the proof. �

Note that

s

2s

∫ ∞

1

∆f(x)

xs+1
ξ(x) dx =

f1
2s+1

(

1 +
1

2s
− 2s+1

3s

)

− 1

2

∑

n≥2

fn

(

1

(2n − 2)s
− 2

(2n − 1)s
+

2

(2n+ 1)s
− 1

(2n+ 2)s

)

,

the series on the right-hand side usually having a wider half-plane of convergence. Also note
that when α = β = 1, the solution (3.2) reduces to that given in [15].

The integral representation (3.2), coupling with analytic properties of Y (s) and Proposi-
tion 3, can be applied to a variety of problems. We discuss the odd numbers in Pascal triangle
and exponential sums of ν(n) in some detail, and indicate other digital problems.
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3.2. Odd numbers in Pascal triangle. The number of odd entries in the j-th row of the
Pascal triangle is given by 2ν(j); thus the number of odd binomial coefficients in the first n
rows of the Pascal triangle is enumerated by

Φ(n) :=
∑

0≤k<n

2ν(k);

see [16] and the references therein. In particular, Flajolet et al. [16] showed that

(3.4) Φ(n) = nρM2(log2 n) (ρ := log2 3),

where M2 is continuous of period 1 and satisfies a Lipschitz condition of order ρ− 1 ≈ 0.58.
A (C, 1)-summable Fourier series for M2 is also computed in [16]. Note that the uniqueness
property is lacking for series being merely (C, 1)-summable, e.g., 1/2+

∑

n≥1 cosnx = 0 (C, 1),
for all x not an even multiple of π.

We propose two different approaches to derive absolutely convergent Fourier expansion for
M2. The first approach is based on the arguments used above and theory of transfer operators,
and the second relies on the pseudo-Tauberian argument used in [16] and Bernstein’s theorem
for Fourier series (see [47, p. 240] or Proposition 6 below).

3.2.1. Absolutely convergent Fourier series for M2(x): A purely analytic approach.
We proceed along the same line of arguments used above for Sm(n) to derive an absolutely
convergent Fourier series for M2(x).

Theorem 2. The periodic function M2 in (3.4) has the Fourier expansion

(3.5) M2(x) = ω
∑

k∈Z

A2(ρ− 1 + χk)

(ρ− 1 + χk)(ρ+ χk)
e2kπix,

where for ℜ(s) > ρ− 2, A2 is defined by

A2(s) = 1− 2−1−s − 1

2

∑

j≥1

2ν(j)
(

(2j)−s − 2(2j + 1)−s + (2j + 2)−s
)

,

and

(3.6) A2(ρ− 1 + χk) := O
(

|k|0.9961
)

.

The Fourier series (3.5) is absolutely convergent.

Proof. We start from the obvious recurrence

(3.7)

{

Φ(n) = 2Φ(⌊n/2⌋) + Φ(⌈n/2⌉), (n ≥ 2);
Φ(1) = 1.

We assume at the moment the validity of (3.6) whose proof is more technical and is given
below. Applying Proposition 4, we obtain

Φ(n) = n+
1

2πi

∫ 2+i∞

2−i∞

ns+1

s(s+ 1)

A2(s)

1− 3 · 2−s−1
ds

= n+ nρM2(log2 n) + I1 + I2,

where (for some ε > 0 small enough)

I1 =
1

2πi

∫ ρ−1−ε+i∞

ρ−1−ε−i∞

ns+1

s(s+ 1)

1− 2−1−s

1− 3 · 2−s−1
ds;

and

I2 =
1

2πi

∫ ρ−1−ε+i∞

ρ−1−ε−i∞

ns+1

s(s+ 1)

A2(s)− 1 + 2−s−1

1− 3 · 2−s−1
ds.
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Now by successively moving the line of integration to the left, we obtain I1 = −n (the
residue of the integrand at s = 0). Observe that

A2(s)− 1 + 2−s−1 = s2−s

∫ ∞

1
2ν(x)x−s−1 ξ(x) dx.

Thus the contribution of I2 is zero by applying Proposition 3. �

Growth order of A2(s). We still need to prove (3.6). The proof lies much deeper than that
for Vm(s) and relies on tools from transfer operators.

We will actually prove more, namely,

A2(ρ− 1 + it) = O (|t|c3 log |t|) ,

for |t| ≥ t0, where

c3 :=
3 log λ2

2ρ(log2 λ2 + (2− ρ) log 2)
+

1

2ρ
< 0.99602.

Here λ2 ≈ 2.08852 is given in (3.11) below. By convexity of the order function of Dirichlet
series (see [23, Chapter III] [43, Part II] [45, §9.41]), it suffices to show that

A2(it) = O (|t|c4 log |t|) ,(3.8)

where c4 := ρc3 < ρ. To that purpose, write

B2(s) =
∑

n≥1

2ν(n)∆2(2n)−s,

so that A2(s) = 1 − 2−s−1 − B2(s)/2. Take L := ⌊c5 log |t|⌋, where c5 will be specified later.
Let N := 2L and decompose the series into two parts:

B2(s) =





∑

n<N

+
∑

n≥N



 2ν(n)∆2(2n)−s.

The constant c5 will be chosen so that the two parts roughly satisfy the same estimate.
The second part is easily estimated as follows.

∑

n≥N

2ν(n)∆2(2n)−it = O



t2
∑

n≥N

2ν(n)n−2





= O

(

t2
∫ ∞

N
xρ−3 dx

)

= O
(

t2Nρ−2
)

= O
(

|t|2−c5(2−ρ) log 2
)

.(3.9)

We apply the same argument as that for Vm(it) to the first part:

∑

n<N

2ν(n)∆2(2n)−it =
1

2π

∫ 2π

0





∑

1≤n<N

einv∆2(2n)−it









∑

0≤n<N

2ν(n)e−inv



 dv

≤ T2 max
0≤v≤2π

|V (it, v)|

= O
(

T2|t|1/2 log |t|
)

,
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where V (s, v) is given in (2.4) and

T2 =
1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∣

∑

0≤n<N

2ν(n)e−inx

∣

∣

∣

∣

∣

∣

dx

=

∫ 1

0

∏

1≤j≤L

∣

∣

∣
1 + 2e−2jπix

∣

∣

∣
dx.(3.10)

We will show that

(3.11) T2 = O
(

λL2
)

,

where λ2 ≈ 2.08852. Assuming that this estimate holds, we can now choose c5 such that
2− c5(2− ρ) log 2 = c5 log λ2 + 1/2, giving

c5 :=
3

2(log2 λ2 + (2− ρ) log 2)
,

which yields (3.8).

Transfer operators. In order to derive a better estimate for T2 than the crude bound
T2 = O(3L), we apply transfer operators as studied in [9] and [24]. Our application is similar
to that used in Fouvry and Mauduit [19].

Consider the operator P2 defined by

P2[f ](x) := |1 + 2e−2πix|f(2x mod 1),

for f in the space Lip[0, 1] of Lipschitz functions from [0, 1] to itself with the norm

|||f ||| = sup
0≤x≤1

|f(x)|+ sup
0≤x<y≤1

∣

∣

∣

∣

f(x)− f(y)

x− y

∣

∣

∣

∣

.

With this operator, we can write
∏

1≤j≤L

∣

∣

∣
1 + 2e−2jπix

∣

∣

∣
= PL

2 [1](x),

where 1(x) ≡ 1 for 0 ≤ x ≤ 1, and the integral (3.10) can be written as
∫ 1

0

∏

1≤j≤L

∣

∣

∣1 + 2e−2jπix
∣

∣

∣ dx = 〈PL
2 [1],1〉 = 〈1, QL

2 [1]〉,

where Q2 denotes the adjoint operator of P2. This operator is given by

Q2[f ](x) =
1

2

(

∣

∣1 + 2e−πix
∣

∣ f
(x

2

)

+
∣

∣

∣
1 + 2e−πi(x+1)

∣

∣

∣
f

(

x+ 1

2

))

,

and is the transfer operator associated with the positive function |1 + e−2πix|. We need the
spectral decomposition of Q2 on Lip[0, 1].

Clearly, Q2 is a positive linear operator. It follows from the theory of quasi-compactness of
transfer operators (see [9] and [25]) that Q2 has a positive dominating eigenvalue λ2 (which
is simple and also the spectral radius) and a unique corresponding eigenfunction ψ2. From
positivity of the operator, it follows that, for any positive function f , we have

(3.12) min
x∈[0,1]

Q2[f ](x)

f(x)
≤ λ2 ≤ max

x∈[0,1]

Q2[f ](x)

f(x)
.

This estimate makes it possible to derive precise numerical estimates for λ2; see below.
From the fact that the dominating eigenvalue is simple, it follows that

QL
2 [1](x) = CλL2ψ2(x) +O((λ2 − ε)L) for some ε > 0,
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from which we can conclude that

T2 = λL2

∫ 1

0
ψ2(x) dx+O((λ2 − ε)L)

≍ λL2 .

Numerical approximations to λ2. The proof given above is not self-contained and left
open the computation of the exact value of λ2. We give a simple, straightforward, and self-
contained way to compute λ2 numerically as follows (see [19]).

Let

µk :=

(

max
0≤x≤1

Qk
2[1](x)

)1/k

(k = 1, 2, . . . ).

We can write T2 = T2(L) and, by splitting the integral at 1/2 and making the change of
variables x 7→ 2x, we have

T2(L) =

∫ 1

0
Q2[1](x)

∏

1≤j<L

∣

∣

∣
1 + 2e−2jπix

∣

∣

∣
dx

=

∫ 1

0
Qk

2 [1](x)
∏

1≤j≤L−k

∣

∣

∣
1 + 2e−2jπix

∣

∣

∣
dx

≤ µkkT2(L− k)

≤ µLk ,

for any k ≥ 1. This gives a way to approximate from above the value of λ2. For k = 1,

µ1 =
√
5 ≈ 2.236 . . .

For k = 2,

µ2 =

√√
5

2

(√

5 + 2
√
2 +

√

5− 2
√
2

)

≈ 2.185 . . . .

And for k ≥ 3, this gives successively (up to 10−3)

{µk}k≥3 = {2.157, 2.140, 2.130, 2.123, 2.118, 2.114, 2.111, 2.109, · · · }.
Note that the value µ7 ≈ 2.118 < 3/

√
2 ≈ 2.121 is already sufficient for our uses (for bounding

the growth magnitude of A2(ρ− 1± it) = O
(

|t|0.9997
)

to conclude absolute convergence).
A better but not independent means of approximating the value of λ2 is to use the property

that (see [25])

lim
k→∞

Qk+1
2 [1](x)

Qk
2 [1](x)

= λ2,

for all 0 ≤ x ≤ 1. This corresponds to inserting the function f(x) = Qk
2 [1](x) into (3.12).

Numerical studies of the above functions for k = 1, . . . , 10 show that the maximum of Qk
2 [1](x)

is attained for x = 1
2 and the minimum is attained for x = 0. These values yield effective

upper and lower bounds for λ2 (truncated to the digits different from the next approximation):
{

Qk+1
2 [1](12 )

Qk
2 [1](

1
2 )

| k = 1, . . . , 10

}

= {2.13, 2.101, 2.092, 2.089, 2.0888, 2.0886, 2.08855, 2.08853, 2.088528, 2.088527}
{

Qk+1
2 [1](0)

Qk
2 [1](0)

| k = 1, . . . , 10

}

= {2.05, 2.079, 2.086, 2.087, 2.0883, 2.0884, 2.08851, 2.088521, 2.088524, 2.088525}.
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Thus λ2 ≈ 2.08852, as required. This completes the proof of (3.11) and that of (3.5).

3.2.2. Absolutely convergent Fourier series for M2(x): Bernstein’s theorem. The
approach is modified from that used by Flajolet et al. [16]. Instead of considering Φ(n) and
then applying (1.7), we start from the representation (see also [26])

∑

1≤k<n

Φ(k) =
∑

0≤k<n

(n− 1− k)2ν(k)

=
n2

2
− Φ(n)

2
+

1

2πi

∫ 2+i∞

2−i∞

ns+2

s(s+ 1)(s + 2)

∑

j≥1

∇∆Φ(j)j−s ds.(3.13)

By (3.3),
∑

j≥1

∇∆Φ(j)j−s =
A2(s)

1− 3 · 2−s−1
=

1− 2−s−1 −B2(s)/2

1− 3 · 2−s−1
.

To derive the growth rate of B2(σ± it) for large |t|, we use the following simple estimate: for
ρ− 2 < σ ≤ ρ and large |t|,

B2(σ + it) =





∑

1≤k≤|t|

+
∑

k>|t|



 2ν(k)∆2(2k)−σ−it

= O





∑

k≤|t|

2ν(k)k−σ + t2
∑

k>|t|

2ν(k)k−σ−2





= O
(

|t|ρ−σ
)

.

In particular, B2(ρ− 1 + χk) = O(|k|). We then obtain by (3.13)

∑

1≤k<n

Φ(k) ∼ ωnρ+1
∑

k∈Z

A2(ρ− 1 + χk)

(ρ− 1 + χk)(ρ+ χk)(ρ+ 1 + χk)
nχk ,

where the Fourier series is absolutely convergent.
To get the Fourier expansion for M2(x), we use the following pseudo-Tauberian argument.

Proposition 5 (Flajolet et al. [16]). Let f be a continuous, periodic function of period 1,
and let τ be a complex number with ℜ(τ) > 0. Then there exists a continuously differentiable
function g of period 1, such that

1

N τ+1

∑

n<N

nτf(log2 n) = g(log2N) + o(1),

∫ 1

0
g(x) dx =

1

τ + 1

∫ 1

0
f(x) dx.

Applying this Proposition with τ = ρ− 1 + χk yields

(3.14) M2(x) = ω
∑

k∈Z

A2(ρ− 1 + χk)

(ρ− 1 + χk)(ρ+ χk)
e2kπix;

convergence of the series on the right-hand side needs other theories, which in turn demand
more functional properties of M2(x).

By the recurrence (3.7), we obtain Φ(2k) = 3k and then deduce that (see [42], [41])

Φ(n) =
∑

1≤j≤k

2j−13bj ,
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where n = 2b1 + · · · + 2bk with b1 > · · · > bk ≥ 0. Define a function w in [0, 1] as follows (see
[16])

w





∑

j≥0

2−dj



 =
∑

j≥0

2j3−dj (0 = d0 < d1 < · · · ).

Then

M2(x) = 3−{x}w(2{x}).

With this representation, it is easily seen thatM2(x) is continuous, implying that the series
in (3.14) is at least (C, 1)-summable.

Also it can be checked that M2(x) satisfies a Lipschitz condition of order ρ− 1 ≈ 0.58. We
recall a classical result of Bernstein (see [47, p. 240]).

Proposition 6. If f is a real-valued function defined on [0, 1] and satisfies a Lipschitz con-
dition of order λ > 1/2, namely,

|f(x)− f(y)| ≤ K|x− y|λ (x, y ∈ [0, 1]),

for some positive constant K, then the Fourier series of f converges absolutely and uniformly.

Applying this result, we conclude that the series in (3.14) is absolutely and uniformly
convergent.

A comparative discussion of the two approaches is given below.

3.3. General exponential sums of ν(n). We consider more general sums of the type

(3.15) Φθ(n) :=
∑

0≤k<n

θν(k),

which is essentially the probability generating function of Xn. Such a consideration offers not
only absolutely convergent Fourier series for the periodic functions Φθ(n)/n

log2(1+θ) for some
values of θ, but also gives a rather informative comparison of both approaches used above.

Okada et al. [37] showed that

(3.16) Φθ(n) = nlog2(1+θ)Mθ(log2 n) (θ > 0),

where Mθ(x) is continuous and 1-periodic.

Theorem 3. For
√
2−1 < θ <

√
2+1, θ 6= 1 the sum function Φθ(n) given by (3.15) satisfies

(3.16), where the periodic function Mθ is given by the absolutely and uniformly convergent
Fourier series

Mθ(x) = ω
∑

k∈Z

Aθ(ρθ − 1 + χk)

(ρθ − 1 + χk)(ρθ + χk)
e2πikx,

where ρθ := log2(1 + θ) and Aθ is defined by

(3.17) Aθ(s) := (θ − 1)



1− 2−1−s − 1

2

∑

n≥1

θν(n)∆2(2n)−s



 .

We first prove the theorem using the second approach based on Lipschitz condition and
Bernstein’s theorem. For more methodological interests, we also apply the first approach,
which covers only the interval 0.471316 < θ < 2.12173, θ 6= 1. Although the second approach
applies to a wider range, it relies the absolute convergence on a Lipschitz condition that is
not necessarily available or easily proved in general. In contrast, the first approach does not
need any a priori functional properties of the periodic function.
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3.3.1. Lipschitz condition and Bernstein’s theorem. The approach that we applied for Φ(n)
can be easily amended for Φθ(n) for general values of θ; it suffices to replace 2 by θ there. It
is easily checked that the periodic function Mθ satisfies a Lipschitz condition of order ρθ − 1

if θ < 1, which is greater than 1/2 if θ >
√
2 − 1, and it is Lipschitz continuous of order

log2(1 + θ−1) if θ > 1, which is greater than 1/2 if θ <
√
2 + 1. This completes the proof.

3.3.2. 1 < θ < 2.12173. Since Φθ(n) satisfies (3.1), we can apply (3.2); the only missing part
is the growth order of A2(s) at σ ± i∞.

The same reasoning as described above for the case θ = 2 can be applied for θ < 3, since
the sum

Bθ(s) =
∑

n≥1

θν(n)∆2(2n)−s

converges for ℜ(s) = 0 for these values of θ. Then we use the same arguments as above to
derive the estimates

∑

n≥N

θν(n)∆2(2n)−it = O

(

t2
∫ ∞

N
xρθ−3 dx

)

= O
(

t2Nρ
θ
−2
)

,(3.18)

where N will be specified below, and
∑

n<N

θν(n)∆2(2n)−it = O
(

Tθ|t|1/2 log |t|
)

,

where

(3.19) Tθ =

∫ 1

0

∏

1≤j≤L

∣

∣

∣
1 + θe−2jπix

∣

∣

∣
dx.

By the same transfer operator approach, we obtain

(3.20) Tθ = O
(

N log2 λθ |t|1/2 log |t|
)

;

Figure 2 shows the graph of λθ as a function of θ.

0.5 1 1.5 2

1.2

1.4

1.6

1.8

2

Figure 2. The dominating eigenvalue λθ as a function of θ.

We now take N = 2⌊c6 log |t|⌋ and choose the value c6 such that the two estimates (3.20) and
(3.18) have the same order of magnitude. This yields the estimate

(3.21) Bθ(it) = O (|t|eθ) with eθ =
1

2
+

3 log2 λθ
2(2 + log2 λθ − ρθ)

,
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from which we conclude, again by convexity of the order function of Dirichlet series, that

(3.22) Bθ(ρ− 1 + it) = O
(

|t|eθ/ρθ
)

.

Using the numerical estimates for λθ we obtain that
eθ
ρθ

< 1 for 1 < θ < 2.12173.

3.3.3. 0.471316 < θ < 1. In this case ρθ < 1 and therefore the zeros of 1− (θ + 1)2−s−1 have
real part ρθ−1 < 0. By the definition of the transfer operator Pθ in Section 3.3.2, we see that
the identity θP1/θ = Pθ holds for θ > 0. From this it follows immediately that θλ1/θ = λθ
holds for the dominant eigenvalue. Thus we have the estimate

Bθ(ρθ − 1 + it) = O



|t|3/2−ρ
θTθ + t2

∑

n≥N

θν(n)n−1−ρ
θ



(3.23)

= O
(

|t|3/2−ρ
θTθ + t2N−1

)

,(3.24)

where Tθ is given in (3.19) and N = 2L. We choose L to minimize the right-hand side; this
gives

L =

⌊

1/2 + log2(θ + 1)

1 + log2 λθ
log2 |t|

⌋

.

From this estimate we get

Bθ(ρθ − 1 + it) = O

(

|t|2−
1+2ρ

θ
2+2 log2 λθ

)

.

For θ = 1/2 we have λ1/2 < 1.04426319 and therefore the exponent equals 0.9788. This case
was encountered in [5]. We note here that the exponent in the estimate for Bθ is less than 1
for θ > 0.471316.

3.4. Newman-Coquet formula. Newman [35] first observed that the sum

N3(n) =
∑

k<n

(−1)ν(3k)

is always positive. Coquet [10] gave the exact formula

N3(n) = nlog4 3H3(log4 n) +







0 if n is even;

(−1)ν(3n−1)

3
if n is odd,

and showed that H3 satisfies a Lipschitz condition of order log4 3 > 1/2. The study of the
sum S3(n) leads to the Dirichlet series

(3.25) Ψk(s) =
∑

n≥1

(−1)ν(3n+k)

(

1

ns
− 1

(n+ 1)s

)

for k = 0, 1, 2.

In order to obtain the analytic continuations of Ψk, we split the range of summations into
odd and even summands as before, obtaining the system of equations

(3.26)











Ψ0(s) = 2−s−1Ψ0(s)− 2−s−1Ψ1(s) + 1− 2−s + Y0(s) + Y1(s),

Ψ1(s) = −2−s−1Ψ0(s) + 2−s−1Ψ2(s)− 1 + 2−s − Y0(s)− Y2(s),

Ψ2(s) = 2−s−1Ψ1(s)− 2−s−1Ψ2(s) + 1− 2−s + Y1(s) + Y2(s),

where

(3.27) Yk(s) =
1

2

∑

n≥1

(−1)ν(3n+k)

(

1

(2n)s
− 2

(2n + 1)s
+

1

(2n + 2)s

)

(k = 0, 1, 2).
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Solving (3.26), we obtain

Ψ0(s) =
1

4s+1 − 3

(

4s+1 − 5 + 2−s + 4(4s + 2s)Y0(s) + (4s+1 + 2s+1 − 2)Y1(s) + 2s+1Y2(s)
)

and similar expressions for Ψ1(s) and Ψ2(s). This provides an analytic continuation of Ψ0(s)
for ℜ(s) > log4 3− 2, with single poles at the solutions of 4s+1 = 3.

For the growth order of Yk(s) along vertical lines, we again use the method developed in
Section 3.2.1. In this case, three operators have to be studied:

Pk : f 7→
∣

∣

∣
1− e2πi(x+k/3)

∣

∣

∣
f(2x mod 1) (k = 0, 1, 2).

It turns out that the dominating eigenvalue of P1 and P2 equals 1.27277. The dominating
eigenvalue of P0 equals 1.32265. Proceeding as in Section 3.2 yields Yk(it) = O(|t|0.87154).
From this we obtain that

Yk(log4 3− 1 + it) = O
(

|t|1.07906
)

(1.07906 ≈ 0.87154 + 1− log4 3),

which is too weak to conclude absolute convergence of the Fourier series directly. Thus we
use the same line of arguments as in Section 3.3.1 to obtain the Fourier expansion H3(x) =
∑

k∈Z hke
2kπix, where

hk =
1

3 log 4

1

zk(zk + 1)

(

−2 + 2
(−1)k√

3
+ (3 + 2(−1)k

√
3)Y0(zk)

+ (1 + (−1)k
√
3)Y1(zk) + (−1)k

√
3Y2(zk)

)

,

with zk = log4 3− 1+2kπi/ log 4. This Fourier series is absolutely and uniformly convergent.

3.5. AND/OR problem. The AND/OR problem is as follows (see [31]). Given n OR gates
and some AND gates, which are indistinguishable from each other. If one is to compute the
AND function of two values correctly, how many gates are necessary to construct an error-free
circuit? It is shown, in the special case of a modular circuit, that (see [6]) the size fn of the
smallest circuit tolerates exactly n− 1 OR gates satisfies f1 = 1 and

fn = f⌊n/2⌋ + 2f⌈n/2⌉ (n ≥ 2),

or, in terms of ν0(n), the number of 0’s in the dyadic representation of n,

fn = 1 + 2
∑

1≤k<n

2ν0(k).

The same set of tools applies and we have

(3.28) fn = nρZ(log2 n) (ρ = log2 3),

where Z(x) is continuous and 1-periodic; see Figure 3 for a plot.

3.6. Bose-Nelson sorting network. The recurrence in question is now f1 = 0 and

fn = f⌊n/2⌋ + 2f⌈n/2⌉ + ⌊n/2⌋ (n ≥ 2).

Inserting this into (3.3) gives the corresponding Dirichlet generating function

Y (s) = (1− 21−s)ζ(s) +
1

2

∑

n≥2

∆fn∆
2(2n)−s.

To prove absolute convergence of the Fourier series, we need to estimate the integral

(3.29)
1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∣

∑

0≤n<N

∆fne
−inv

∣

∣

∣

∣

∣

∣

dv =

∫ 1

0

∑

1≤j≤L

∣

∣

∣

∣

∣

∣

1− e−2L+1πiv

1− e−2j+1πiv

∏

1≤ℓ<j

(

2 + e−2ℓπiv
)

∣

∣

∣

∣

∣

∣

dv.
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Figure 3. The periodic functions M2(x) (bottom) and 2Z(x) (top).

This can be done by observing that the integral

∫ 1

0

∣

∣

∣

∣

∣

∣

1− e−2L+1πiv

1− e−2j+1πiv

∏

1≤ℓ<j

(

2 + e−2ℓπiv
)

∣

∣

∣

∣

∣

∣

dv

can be estimated by 2L−jλj2 by the discussion in Section 3.2.1. Summing up, we get an
estimate of order λL2 for the integral in (3.29). The same arguments as in Section 3.2 yield
the estimate Y (ρ− 1 + it) = O(|t|0.9961).

Thus fn satisfies the exact formula

(3.30) fn = nρK(log2 n)− n (ρ := log2 3),

where K is given by the absolutely and uniformly convergent Fourier series

K(x) = ω
∑

k∈Z

Y (ρ− 1 + χk)

(ρ− 1 + χk)(ρ+ χk)
e2kπix.

Note that by the digital sum expression for fn + n (see [4])

fn + n =
∑

1≤j≤k

3bj



1 +
∑

1≤ℓ<j

2bℓ−bj+ℓ−j+1



 ,

where n = 2b1 + · · · + 2bk , b1 > · · · > bk ≥ 0, and by the same argument used for M2(x),
we can show that K(x) is Lipschitz continuous of order log2 3 − 1 > 1/2; thus Bernstein’s
theorem is also applicable to conclude absolute convergence of the Fourier series.

4. Numerical computations

In this section we propose a simple approach to compute the Fourier coefficients to high
precision of the periodic functions studied in this paper.

4.1. A 1/2-balancing principle. We describe here our approach by Riemann’s zeta func-
tion:

ζ(s) =
∑

n≥1

n−s (ℜ(s) > 1).
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A simple way of computing the values of ζ(s) is to use the functional equation

ζ(s) = 1 + 2−s
∑

n≥1

n−s + 2−s
∑

n≥1

(n+ 1/2)−s

=
1

1− 21−s



1 + 2−s
∑

m≥1

(

s+m− 1

m

)

(−1)m

2m
ζ(s+m)



 ,(4.1)

obtained by expanding the factor (n + 1/2)−s in increasing powers of n−1. Note that this
equation also provides an analytic continuation of ζ(s) to almost the whole plane (up to points
where 2s+k = 2 for integer k ≥ 0).

A much better way of computing ζ(s) is to use the formula

(4.2) ζ(s) =
Λ(s) + 2s

2s − 1
where Λ(s) :=

∑

n≥1

(n+ 1/2)−s.

(The function s 7→ Λ(s) + 2s is sometimes called the Dirichlet lambda function.) The reason
is that Λ(s) can be computed by the functional equation

(4.3) Λ(s) =
1

1− 21−s



(2/3)s + 21−s
∑

m≥1

(

s+ 2m− 1

2m

)

Λ(s+ 2m)

16m



 ,

where the terms are convergent much faster (the terms behaving like mℜ(s)−136−m for large
m and fixed s) than those in (4.1). This equation is obtained similarly as for (4.1) and has
the feature that the contribution from odd summands and that from even summands are to
some extent balanced.

While equation (4.2) cannot numerically compete with several known formulæ for ζ(k)
for integral k ≥ 2 with much better convergence than (4.3) (see [3]), it is very efficient for
general values of s. Other features of (4.2) are: (i) it is an independent equation, namely, the
evaluation does not rely on any known values like π or powers of π; (ii) the underlying principle
of balancing the contribution from odd and even summands can be applied to many other
Dirichlet series whose coefficients satisfy a relation of the form (3.1); (iii) it is computationally
simpler for, say complex parameters of s, than almost all known formulæ for ζ(s); and (iv)
unlike (4.1), the evaluation of (4.3) involves only positive terms when s > 1, making it less
sensible to numerical errors. Indeed, we originally obtained (4.3) by trying to drop the factor
(−1)j in (4.1).

Such a 1/2-balancing principle can be easily applied to some known constants like those
discussed in [18]. For example, starting from

π =
∑

n≥1

(

1

n− 1/4
− 1

n− 3/4

)

,

γ = 1 +
∑

n≥1

(

1

n+ 1
+ log

n

n+ 1

)

,

we have

π =
8

3
+ 8

∑

m≥1

Λ(2m)

16m
,

γ = 1 +
∑

m≥1

2mΛ(2m + 1)

(2m+ 1) 4m
− 2

∑

m≥1

Λ(2m)

4m
.
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4.2. Coefficients appearing in moments of ν(n). Motivated by the 1/2-balancing prin-
ciple, we consider the series

(4.4) ψk(s) =
∑

n≥1

ν(n)k
(

n+ 1
2

)s ,

instead of using directly Vk(s) or using the seemingly more natural series
∑

n≥1 ν
k(n)n−s. We

then express Vk in terms of ψk.
First, by splitting the sum in (4.4) into odd and even summands and using (2.2), we obtain

ψk(s) =
∑

n≥1

ν(2n)k
(

2n+ 1
2

)s +
∑

n≥0

ν(2n+ 1)k
(

2n+ 3
2

)s

= 2−sζ

(

s,
3

4

)

+ 21−sψk(s) + 21−s
∑

m≥1

(

s+ 2m− 1

2m

)

ψk(s+ 2m)

16m

+ 2−s
∑

1≤j<k

(

k

j

)

∑

m≥0

(

s+m− 1

m

)

(−1)m

4m
ψj(s +m).

Solving for ψk(s), we then obtain

ψk(s) =
1

2s − 2
ζ

(

s,
3

4

)

+
2

2s − 2

∑

m≥1

(

s+ 2m− 1

m

)

ψk(s+ 2m)

16m

+
1

2s − 2

∑

1≤j<k

(

k

j

)

∑

m≥0

(

s+m− 1

m

)

(−1)m

4m
ψj(s+m).(4.5)

To compute ψk(s) to within a given error ε, we choose m0 ∈ N so large that |ψk(s+m)−
(23 )

s+m| < ε for all m ≥ m0. Since ψk(s) ∼ (23 )
s for large s with ℜ(s) > 0, we can evaluate

the values ψk(s +m) (m = 0, . . . ,m0) by using (4.5), approximating ψk(s +m) for m > m0

by (2/3)s+m, and then truncating the infinite sum to obtain a numerical estimate to within
an error.

Note that the Hurwitz zeta function ζ(s, 3/4) can either be computed by using existing
built-in functions in computer algebra softwares or be computed directly by the formula

ζ(s, 3/4) = (4/3)s +
∑

m≥0

(

s+m− 1

m

)

(−1)m

4m
Λ(s+m).

It turns out that especially for the derivatives, this equation is much faster than the algorithm
implemented in Mathematica when computing the values to within the same error.

For V ′
k(0), we have the expression in terms of ψk(2j)’s

V ′
k(0) = −1

2

∑

n≥1

ν(n)k (log(2n)− 2 log(2n + 1) + log(2n + 2))

=
∑

m≥1

ψk(2m)

m4m
,

which gives the numerical approximation

V ′
1(0) = 0.16891 60545 92381 08766 41250 86505 72086 21392 02956 25995 . . .

This in turn provides a good approximation to the mean value of F2

p2,0 = −0.16743 75414 08216 30925 51550 10992 47202 32933 06264 89369 . . .
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For the second and third derivatives of Vk, we have

V ′′
k (0) =

∑

m≥1

1

m4m
{

(H2m−1 − log 2)ψk(2m) + ψ′
k(2m)

}

,

V ′′′
k (0) =

3

2

∑

m≥1

1

m4m

{(

(H2m−1 − log 2)2 −H
(2)
2m−1

)

ψk(2m)

+ 2(H2m−1 − log 2)ψ′
k(2m) + ψ′′

k(2m)
}

,

where Hk =
∑

1≤m≤k 1/m and H
(2)
k =

∑

1≤m≤k 1/m
2. From these, we obtain the following

numerical approximations to the values appearing in (2.9) and (2.10):

V ′′
1 (0) = −0.40632 91671 14929 22563 37014 58481 78635 30386 92416 64842 . . . ,

V ′′′
1 (0) = 1.12746 03441 76855 00723 94784 63671 80426 48344 45077 21808 . . . ,

V ′
2(0) = 0.31047 16129 81928 91222 32068 52261 52855 96918 44215 57523 . . . ,

V ′′
2 (0) = −1.20785 26305 05474 15248 60897 62038 67711 07449 26970 51090 . . . ,

V ′
3(0) = 0.79612 43185 47763 30582 71007 27435 50514 41134 19022 61579 . . .

From these we obtain

p3,0 = 0.03510 79771 90647 59775 76100 01574 86700 21149 58450 45765 . . . ,

p4,0 = 0.31334 81715 66982 67450 76841 74593 65540 16102 28008 82561 . . .

Our approach is also suitable for computing other Fourier coefficients. For example,

p2,1 =0.03625 04797 06516 31341 36434 95281 70383 70571 75744 31121 . . .

− 0.03167 02979 13892 95813 50796 92403 02205 98609 42456 99190 . . . i

p2,2 =0.01245 82164 62996 68591 21201 10896 53268 30883 63731 56116 . . .

− 0.02586 93530 81429 91501 58145 81406 92252 24536 92736 31896 . . . i.

4.3. Coefficients appearing in exponential sums of ν(n). Using similar arguments as
above, we obtain the functional equation

ηθ(s) =
θ

2s − θ − 1

(

4

3

)s

+
1

2s − θ − 1

∑

m≥1

(

s+m− 1

m

)

1 + θ(−1)m

4m
ηθ(s+m),(4.6)

for the series

ηθ(s) =
∑

n≥1

θν(n) (n+ 1/2)−s .

Iterating (4.6) again yields numerical approximations to ηθ(s). With these ηθ(s)’s, the values
of Bθ(s) can be computed by the expression

Bθ(s) = 21−s
∑

m≥1

(

s+ 2m− 1

2m

)

ηθ(s+ 2m)

16m
.

With s = ρ− 1, we obtain

B2(ρ− 1) = 0.22334 70274 23462 06739 82010 64124 73348 43558 40047 70137 . . . ,

which yields the mean value of the periodic function M2:

0.86360 49963 99079 60496 05033 61308 09499 10614 32997 57541 . . . ;

this agrees with that given in [16].
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4.4. Other coefficients. The mean value of the periodic function Z in (3.28) can be com-
puted similarly; its numerical value is

1.24965 73149 83882 77854 29433 00014 57215 00885 07064 01518 . . . .

In the case of the Bose-Nelson sorting network (see Section 3.6), the function

κ(s) :=
∑

n≥1

∆fn
(n+ 1/2)s

satisfies the functional equation

κ(s) =
1

2s − 3



ζ

(

s,
3

4

)

+
∑

m≥1

(

s+m− 1

m

)

2 + (−1)m

4m
κ(s +m)



 .

From this equation and the relation

1

2

∑

n≥1

∆fn

(

1

(2n)ρ−1
− 2

(2n+ 1)ρ−1
+

1

(2n+ 2)ρ−1

)

=
2

3

∑

m≥1

(

ρ+ 2m− 2

2m

)

κ(ρ+ 2m− 1)

4m
,

we can compute the mean value of the function K in (3.30), giving the approximate value

1.08958 03027 44297 39417 20270 53669 38508 47692 44469 52816 . . .

Similar calculations also yield an approximation to the mean value of the periodic function
H3 discussed in Section 3.4:

h0 = 1.40922 03477 84529 82145 02883 99558 66864 77313 78873 61184 . . .
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