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1. Introduction

Connections between the analysis on fractals and the iteration of rational functions were discovered
in the earliest publications on diffusion processes on certain self-similar sets, such as the Sierpiński
gasket (see, for instance [3, 38]). The connection stems from the fact that time on the succes-
sive approximations of the fractal is modelled by a branching process. The relation of branching
processes to the iteration of holomorphic functions is known for a long time (see [19]).

More precisely, in order to obtain a diffusion on a fractal, define a sequence of random walks
on approximating graphs and synchronise time so that the limiting process is non-constant and
continuous. This was the first approach to the diffusion process on the Sierpiński gasket given
in [3, 14, 26] and later generalised to other “nested fractals” in [29]. In our description we will
follow the lines of definition of self-similar graphs given in [24, 25] and adapt it for our purposes.

We consider a graph G = (V (G), E(G)) with vertices V (G) and undirected edges E(G)
denoted by {x, y}. We assume throughout that G does not contain multiple edges nor loops. For
C ⊂ V (G) we call ∂C the vertex boundary, which is given by the set of vertices in V (G)\C, which
are adjacent to a vertex in C. For F ⊂ V (G) we define the reduced graph GF by V (GF ) = F and
{x, y} ∈ E(GF ), if x and y are in the boundary of the same component of V (G) \F . This requires
that removing the set F disconnects the graph G into different components.

The following definition is taken from [25]. It is motivated by the properties of the infinite
Sierpiński gasket (see Figure 1). Furthermore, it will turn out that this definition of self-similarity
of a graph is reflected by according functional equations for the Green function (the generating
function of the transition probabilities) and by rational function relations between the eigenvalues
of the transition Laplace operator, which will be exploited later.

Definition 1. A connected infinite graph G is called self-similar with respect to F ⊂ V (G) and
ϕ : V (G) → V (GF ), if

1. no vertices in F are adjacent in G,
2. the intersection of the boundaries of two different components of V (G) \ F does not contain

more than one point,
3. ϕ is an isomorphism of G and GF .

A random walk on G is given by transition probabilities p(x, y), which are positive, if and
only if {x, y} ∈ E(G). For a trajectory (Yn)n∈N0 of this random walk with Y0 = x ∈ F we define
stopping times recursively by

Tm+1 = min {k > Tm | Yk ∈ F \ {YTm
}} , T0 = 0.

The author is supported by the Austrian Science Fund (FWF): projects F5503 (part of the Special Research
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Mathematics”), and I1136 (French-Austrian international cooperation “Fractals and Numeration”).
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Figure 1. The Sierpiński graph G in black with the graph GF in grey. The
corresponding set F consists of the grey vertices.

Then (YTm
)m∈N0 is a random walk on GF . Since the underlying graphs G and GF are isomorphic,

it is natural to require that (ϕ−1(YTm
))m∈N0 is the same stochastic process as (Yn)n∈N0 . This

requires the validity of equations for the basic transition probabilities

P
(

YTn+1 = ϕ(y) | YTn
= ϕ(x)

)

= P (Yn+1 = y | Yn = x) = p(x, y). (1.1)

These are usually non-linear rational equations for the transition probabilities p(x, y). The exis-
tence of solutions of these equations has been the subject of several investigations, and we refer
to [31, 32, 33, 41] for further details.

The process (Yn)n∈N0 on G and its “shadow” (YTn
)n∈N0 on GF are equal, but they are on a

different time scale. Every transition YTn
→ YTn+1 on GF comes from a path YTn

→ YTn+1 · · · →
YTn+1−1 → YTn+1 in a component of V (G) \F . The time scaling factor between these processes is
given by

λ = E(Tn+1 − Tn) = E(T1).

This factor is ≥ 2 by assumption (1) on F . More precisely, the relation between the transition
time on GF and the transition time on G is given by a super-critical (λ > 1) branching process,
which replaces an edge {ϕ(x), ϕ(y)} ∈ GF by a path in G connecting the points x and y without
visiting a point in V (G) \ F (except for x, and for y in the last step).

In order to obtain a process on a fractal in Rd, we assume further that G is embedded in Rd

(i.e. V (G) ⊂ Rd). The self-similarity of the graph is carried over to the embedding by assuming
that there exists a β > 1 (the space scaling factor) such that F = V (GF ) = βV (G). The fractal
limiting structure is then given by

ZG =

∞
⋃

n=0

β−nV (G).

Iterating this graph decimation we obtain a sequence Gk = (β−kV (G), E(G)) of (isomorphic)

graphs on different scales. The random walks (Y
(k)
n )n∈N0 on Gk are connected by time scales with

the scaling factor λ. From the theory of branching processes (cf. [19]) it follows that the time
on level k scaled by λ−k tends to a random variable. From this it follows that β−kY⌊tλk⌋ weakly
tends to a (continuous time) stochastic process (Xt)t≥0 on the fractal ZG. Notice, that β has to be
chosen so that the limiting process (Xt)t≥0 is continuous and not constant; thus there is of course
only one (intrinsic) choice for β.
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On the level of generating functions, the transition between the random walks on the graphs
Gk and Gk+1 is encoded by the relation

G(x, y | z) = f(z)G(ϕ(x), ϕ(y) | ψ(z)) (1.2)

for the Green function

G(x, y | z) =

∞
∑

n=0

pn(x, y)z
n,

where pn(x, y) denotes the n-step transition probability between x and y (cf. [15, 16, 25]). The
generating function f encodes paths starting and ending in x without visiting any other point of
F , whereas ψ(z) is the probability generating function of all paths starting in a point of a ∈ F ,
ending in a point of b ∈ F , b 6= a, without visiting any point of F different from a, except for the
last step.

The Laplace operator on ZG is then defined as the infinitesimal generator of the semigroup
of operators given by

Atf(x) = Exf(Xt),

namely

△ f = lim
t→0+

Atf − f

t
, (1.3)

defined for functions f , for which the limit exists.

It has been first observed by Fukushima and Shima [13, 42, 43] that the eigenvalues of the
Laplacian on the Sierpiński gasket and its higher dimensional analogues exhibit the phenomenon
of spectral decimation (see also earlier work by Bellissard [5,6]). Later on, spectral decimation for
more general fractals has been studied by Malozemov, Strichartz, and Teplyaev [1,2,30,45,47,48].

Definition 2 (Spectral decimation). The Laplace operator on a p. c. f. self-similar fractal ZG admits
spectral decimation, if there exists a rational function R, a finite set A and a constant λ > 1 such
that all eigenvalues of △ can be written in the form

λm lim
n→∞

λnR(−n)({w}), w ∈ A, m ∈ N (1.4)

where the preimages of w under n-fold iteration of R have to be chosen such that the limit
exists. Furthermore, the multiplicities βm(w) of the eigenvalues depend only on w and m, and the
generating functions of the multiplicities are rational.

The fact that all eigenvalues of △ are negative real implies that the Julia set of R has to be
contained in the negative real axis. We will exploit this fact later.

The function R occurring in the definition of spectral decimation is conjugate to the function
ψ occurring in (1.2) by a linear fractional transformation ξ, i. e. R = ξ ◦ ψ ◦ ξ−1. In some cases
such as the higher dimensional Sierpiński gaskets, the rational function R is a polynomial. This is
the case that will be discussed further in this paper.
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2. Polynomial iteration

In order to discuss the consequences of spectral decimation further, we need to introduce some
concepts and notation from the iteration theory of polynomials. Throughout, we will denote by
p(n) the n-fold iterate of the (polynomial) function p, i. e.

p0(z) = z, p(n+1)(z) = p(p(n)(z)). (2.1)

Let p be a real polynomial of degree d. We always assume that p(0) = 0 and p′(0) = a1 = λ
with |λ| > 1. We refer to [4, 34] as general references for complex dynamics.

We denote the Riemann sphere by C∞ and consider p as a map on C∞. We recall that the
Fatou set F(p) is the set of all z ∈ C∞ which have an open neighbourhood U such that the
sequence (p(n))n∈N is equicontinuous on U in the chordal metric on C∞. By definition F(p) is
open. We will especially need the component of ∞ of F(p) given by

F∞(p) =
{

z ∈ C | lim
n→∞

p(n)(z) = ∞
}

, (2.2)

as well as the basin of attraction of a finite attracting fixed point w0 (p(w0) = w0, |p
′(w0)| < 1)

Fw0(p) =
{

z ∈ C | lim
n→∞

p(n)(z) = w0

}

. (2.3)

The complement of the Fatou set is the Julia set J (p) = C∞ \ F(p).
The filled Julia set is given by

K(p) =
{

z ∈ C∞ | (p(n)(z))n∈N is bounded
}

= C∞ \ F∞(p). (2.4)

Furthermore, it is known that (cf. [12])

∂K(p) = ∂F∞(p) = J (p). (2.5)

This relation only holds for polynomials; for the iteration of general rational functions the situation
is much more complicated.

3. Poincaré’s functional equation

We now want to analyse equation (1.4) further, assuming that R = p, a polynomial of degree d
with a fixed point at 0 with p′(0) = λ > 1. Let z be a complex number obtained as a limit

lim
n→∞

λnp(−n)({w}); (3.1)

this means that
lim
n→∞

p(n)(λ−nz) = w. (3.2)

It is a well known fact from the iteration theory of polynomials that the function sequence
(p(n)(λ−nz))n converges uniformly on compact sets to an entire function Φ(z). This function
satisfies the Poincaré functional equation

Φ(λz) = p(Φ(z)), Φ(0) = 0, Φ′(0) = 1. (3.3)

The function Φ provides a linearisation of the action of p around 0 and was studied intensively since
the fundamental work of H. Poincaré [36, 37]. The order of this function and precise asymptotic
information about its maximal function

MΦ(r) = max
|z|=r

|Φ(z)| (3.4)

were derived in [49,50]. In [8,9] a complete asymptotic expansion valid in certain angular regions
of the complex plane could be obtained. This was used in [10] to give an analytic continuation of
the spectral ζ-function

ζ△(s) =
∑

−△ u=µu

µ−s (3.5)

of the Laplace operator to the whole complex plane. For future reference, we denote the abscissa
of convergence of this Dirichlet series by 1

2dS , the spectral dimension. The factor 1
2 is added by
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convention so that the classical result of H. Weyl [51] for the asymptotic expansion of the eigenvalue
counting function on a compact d-dimensional manifold Ω

N△(x) =
∑

−△u=µu
µ<x

1, (3.6)

namely (ωd is the volume of the d-dimensional unit ball)

N△(x) ∼
ωd

(2π)d
vol(Ω)x

d
2

is reproduced as a special case.
The values z that can be obtained by (3.1) are exactly the solutions of the equation Φ(z) = w.

As is well known from the theory of entire functions (see [7]), the behaviour of the counting function
of the number of solutions of Φ(z) = w in a circle of radius r is directly connected to the growth
order of Φ, or more precisely, the maximal function MΦ(r) in (3.4).

4. Böttcher’s functional equation

As was pointed out in Section 3, the Poincaré-function Φ(z) given by (3.3) provides a local lin-
earisation of the polynomial function p around its fixed point z = 0. The construction of this
function as the limit (3.1) depends heavily on the fact that |λ| > 1 (repelling fixed point), where
λ = p′(0). A similar linearisation can be found for 0 < |λ| < 1 (attracting fixed point); the case of
an indifferent fixed point (|λ| = 1) is much more delicate and the existence of a local linearisation
depends heavily on Diophantine conditions on the argument of λ (see [4,34]). The case of vanishing
derivative λ = 0 (hyper-attracting fixed point) leads to a different kind of linearisation, which shall
be the subject of this section. Notice, that z = ∞ is such a fixed point for a polynomial of degree
d ≥ 2, if considered as a function on the Riemann sphere.

The Böttcher functional equation associated to the hyper-attracting fixed point ∞ of a poly-
nomial p(z) = adz

d + · · ·+ a0 of degree d ≥ 2 is given by

ad(g(z))
d = g(p(z)). (4.1)

The solution of this equation exists in some neighbourhood of∞ and can be expressed as a Laurent
series around ∞

g(z) = z +

∞
∑

n=0

cn
zn
.

Furthermore, the sequence of functions (a
− 1

d−1

d (p(n)(z))d
−n

)n converges uniformly to g on com-
pact subsets of C∞ contained in the domain of g (if the branches of the d-th roots are chosen
accordingly).

The Böttcher function g(z) admits the integral representation, which also provides an analytic
continuation of g to any simply connected subset of C \ K(p)

g(z) = exp

(

∫

J (p)

log(z − x) dµ(x)

)

, (4.2)

where µ denotes the harmonic measure on J (p). The measure µ is the unique probability measure
supported on J (p) minimising the logarithmic energy

E(ν) =

∫

J (p)

∫

J (p)

log
1

|z − w|
dν(z) dν(w)

(see [39]). For the measure µ the corresponding potential

Uµ(z) =

∫

J (p)

log
1

|z − w|
dµ(w)

is constant on K(p); the constant equals 1
d−1 log ad, the logarithm of the capacity of J (p). This is

also the value of the energy E(µ).
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The measure µ can be obtained as the weak limit of the sequence of measures

1

dn

∑

p(n)(ξ)=x

δξ, (4.3)

where x is an arbitrarily chosen point and δξ denotes a unit point mass at ξ. The fact that (4.2)
and (4.1) yield the same function, follows immediately from p∗(µ) = dµ.

Equation (4.2) can be used to obtain an analytic continuation of g(z) to any simply con-

nected subset of C∞ \ K(p). Furthermore, if K(p) is connected, 1/(a
1/(d−1)
d g(z)) is the Riemann

mapping, mapping C∞ \ K(p) to the unit circle. The function log |g(z)| is the Green function for
the logarithmic potential on F∞(p) and

lim
z→z0

z∈F∞(p)

|g(z)| = a
− 1

d−1

d ⇔ z0 ∈ J (p).

In the case that K(p) is not connected, the mapping g : C \ K(p) → C is much more complicated.
For further details we refer to [28].

5. Asymptotic behaviour of Poincaré functions

Combining the solutions of the functional equations (3.3) and (4.1), we are now in the position
to obtain an asymptotic expansion of the Poincaré function Φ for real values of λ inside angular
regions, where Φ tends to ∞.

Consider the function h(z) = g(Φ(z)) in an angular region

Wα,β = {z ∈ C \ {0} | α < arg(z) < β},

where Φ tends to ∞. Then h satisfies the functional equation

adh(z)
d = h(λz),

which has the solution

h(z) = a
− 1

d−1

d exp (zρF (logλ z)) , (5.1)

where ρ = logλ d, and F is a periodic function of period 1, which is holomorphic on the strip

{z ∈ C |
α

logλ
< ℑ(z) <

β

log λ
}.

Furthermore, the fact that Φ tends to ∞ in Wα,β yields

∀z ∈Wα,β : ℜ(zρF (logλ z)) > 0.

Writing

g(−1)(w) = w +

∞
∑

n=0

bn
wn

,

we obtain the full asymptotic expansion

Φ(z) = a
− 1

d−1

d exp (zρF (logλ z)) +

∞
∑

n=0

bna
n

d−1

d exp (−nzρF (logλ z)) (5.2)

valid for z ∈Wα,β . This derivation is the content of [9, Theorem 2.1].
Taking the logarithm of (5.1) and using the fact that Φ(z) = z +O(z2) for z → 0, we obtain

log g(z) =

∫

J (p)

log(z − x) dµ(x) ∼ −
1

d− 1
log ad + zρF (logλ z) +O(z2ρ) (5.3)

for z → 0 in Wα,β . On the other hand, taking the logarithm of (5.2), we get

logΦ(z) = −
1

d− 1
log ad + zρF (logλ z) +O(exp(−zρF (logλ z))) (5.4)
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for z → ∞ again in Wα,β . This means that the same periodic function F can be observed in the
asymptotic behaviour of log g for z → 0 and log Φ for z → ∞. The function F encodes properties
of the Julia set J (p) in the following sense.

Theorem 3 ([9, Theorem 2.2]). The periodic function F is constant, if and only if the polynomial

is either linearly conjugate to zd or to the Chebyshev polynomial of the first kind Td(z). In the first

case the Julia set J (p) is a circle, in the second case the Julia set J (p) is a closed interval.

Remark 4. It is known from [17] that the circle and the interval are the only cases of smooth Julia
sets; these occur precisely for the polynomials described in the Theorem.

6. Fractal zeta functions

We now return to the study of the spectrum of the Laplacian △ on a fractal admitting spectral
decimation with the polynomial p in the sense of Definition 2. In this case the Julia set J (p) is
contained in the negative real axis, which implies that ρ = logλ d ≤ 1

2 by [9, Theorem 4.1]. The

Poincaré function Φ is thus an entire function of order ρ ≤ 1
2 . Here, the case ρ = 1

2 can only occur,
if J (p) is an interval, or equivalently p is a Chebyshev polynomial. In the context of fractals with
spectral decimation, this occurs, if the fractal is a compact interval viewed as a self-similar fractal.
If this case is ruled out, we have ρ < 1

2 . Functions of order < 1
2 are unbounded on every ray

(see [7]). Furthermore, this together with the fact that Φ attains values in J (p) = K(p) only for
negative real arguments yields that

lim
z→∞

z∈W−π,π

Φ(z) = ∞. (6.1)

Especially, this implies that limx→+∞ Φ(x) = ∞ and thus (5.2) holds for z → +∞ along the
positive real axis.

Let −ξℓ(w) (ℓ = 1, 2 . . .) denote the solutions of Φ(z) = w; for w = 0, we set ξ0(0) = 0 and
ξℓ(0) 6= 0 for ℓ = 1, 2, . . .. Define

Φ0(z) =
1

z
Φ(z) and Φw(z) = 1−

1

w
Φ(z).

Then we have the following Hadamard product expansion

Φw(z) =
∞
∏

ℓ=1

(

1 +
z

ξℓ(w)

)

. (6.2)

Taking the Mellin transform of the logarithm of (6.2) yields

Mw(s) =

∫ ∞

0

log(Φw(x))x
s−1 dx =

π

s sinπs

∑

ℓ=1

ξℓ(w)
s (6.3)

for −1 < ℜ(s) < −ρ. The left inequality comes from the fact that log(Φw(x)) = O(x) for x → 0,
whereas the right inequality comes from the behaviour of Φ for x→ ∞ given in (5.2): log(Φw(x)) =
O(xρ).

The functions

ζΦ,w(s) =
∑

ℓ=1

ξℓ(w)
−s (6.4)

will be used to derive an expression for ζ△ later. In order to obtain an analytic continuation of
ζ△ to the whole complex plane, we will need analytic continuations of the functions ζΦ,w . We will
follow the lines of [11]; similar, but slightly different ideas were used in [10].

We consider the function

Ψw(z) =
p(Φ(z))− w

ad(Φ(z)− w)
=

Φw(λz)

ad(−w)d−1Φw(z)d

for w 6= 0. Taking the logarithm, we obtain

logΨw(z) = logΦw(λz)− d logΦw(z)− log ad − (d− 1) log(−w);
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this function tends to 0 like exp(−czρ) for z → +∞. Taking the Mellin transform and using
standard methods to obtain analytic continuations of such transforms, we obtain (we indicate the
region of validity of the equation in every line)

(λ−s − d)Mw(s)

=

∫ ∞

0

(logΦw(λx) − d logΦw(x)) x
s−1 dx (for − 1 < ℜs < −ρ)

=

∫ 1

0

(logΦw(λx) − d logΦw(x)) x
s−1 dx− (log ad + (d− 1) log(−w))

1

s

+

∫ ∞

1

(log Φw(λx) − d logΦw(x)− log ad − (d− 1) log(−w)) xs−1 dx (for ℜs > −1)

=

∫ ∞

0

log(Ψw(x))x
s−1 dx (for ℜs > 0).

The above computation shows that Mw(s) has a simple pole at s = 0 with residue

Res
s=0

Mw(s) =
log ad
d− 1

+ log(−w).

Furthermore, it provides an analytic continuation of Mw(s) to the half-plane ℜs > 0; the second
line also gives the analytic continuation to the half-plane ℜs > −1. Using (6.3) gives an analytic
continuation of ζΦ,w(s) to the half-plane ℜs < 0

ζΦ,w(s) =
s sinπs

π(λs − d)

∫ ∞

0

log(Ψw(x))x
−s−1 dx.

From this we derive the existence of “trivial zeros” ζΦ,w(−m) = (for m ∈ N0). Notice, that the
simple pole of Mw(s) at s = 0 is cancelled by the double zero of s sinπs. Observing this, we also
obtain

ζ′Φ,w(0) = −
log ad
d− 1

− log(−w).

Similar computations yield the analytic continuation of ζΦ,0 to the whole complex plane; this
function has “trivial” zeros ζΦ,0(−m) = 0 (for m ∈ N) and

ζΦ,0(0) = 1, ζ′Φ,0(0) = −
log ad
d− 1

.

Simple poles of ζΦ,w(s) can occur only at the solutions of λs = d, namely s = ρ + 2kπi/ logλ
(k ∈ Z). These poles are in correspondence with the growth order of Φ, which implies that there
is a pole at s = ρ. The other poles for k 6= 0 only occur, if the periodic function F in (5.2) is not
constant. Theorem 3 characterises the polynomials, for which the periodic function F is constant.

We now use the assumption that the multiplicities βm(w) of the eigenvalues λmξℓ(w) have a
rational generating function (see Definition 2). Let

Bw(x) =

∞
∑

m=0

βm(w)xm.

Then using our knowledge on the eigenvalues of △ together with our assumptions from the defi-
nition of spectral decimation, we obtain

ζ△(s) =
∑

w∈A

Bw(λ
−s)ζΦ,w(s). (6.5)

This expression provides the analytic continuation of the spectral zeta function to the whole
complex plane.

If ρ < 1
2dS then all the functions ζΦ,w(s) are holomorphic in a half-plane ℜs > 1

2dS − ε for

some ε > 0. On the other hand, ζ△(s) has a simple pole at s = 1
2dS by the fact that N△(x) ≍ x

1
2dS

(see [23]). Thus at least one of the rational functions Bw(x) has to have a pole at x = λ−
1
2dS .

Since all the rational functions Bw have positive power series coefficients (the multiplicities of the
eigenvalues), there can be no cancellation of poles, which implies that the functions Bw can have at
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most a simple pole at s = λ−
1
2dS . Let W denote the set of all w ∈ A, for which the corresponding

function Bw has a (simple) pole at x = λ−
1
2dS . Then we write the Laurent expansion of Bw(x)

around x = λ−
1
2dS in the form

Bw(x) =
c1(w)

1− xλ
1
2dS

+ · · · .

This implies that c1(w) > 0 by the combinatorial interpretation of Bw. Then the Dirichlet series

η(s) =
∑

w∈W

c1(w)ζΦ,w(s)

has positive coefficients. By [27, Theorem 9.5, p. 184] this implies that η(12dS + ikτ) = 0 cannot
hold for fixed τ > 0 and all k ∈ Z \ {0}. Thus the function

∑

w∈W

Bw(λ
−s)ζΦ,w(s)

has a simple pole at s = 1
2dS and at least two non-real poles on the line ℜs = 1

2dS . The remaining

summands in (6.5) do not have poles on the line ℜs = 1
2dS ; thus the function ζ△(s) has at least

two non-real poles on this line.
As a conclusion, we have reached the following theorem (see [10, Theorem 9]).

Theorem 5. Let ZG be a p. c. f. self-similar compact fractal, whose Laplace operator △ admits

spectral decimation in the sense of Definition 2 with a polynomial of degree d. Then the Dirichlet

generating function of the eigenvalues of △

ζ△(s) =
∑

−△u=µu

1

µs
,

has a meromorphic continuation to the whole complex plane with poles contained in a finite union

of sets {ρk + 2πimσ | m ∈ Z}, where σ = 1
log λ and λ is the parameter coming from spectral

decimation. There is a simple pole at s = 1
2dS . If logλ d < 1

2dS then ζ△(s) has at least two

non-real poles on the line ℜs = 1
2dS.

Remark 6. The case of G = [0, 1] which gives the Riemann zeta function and has logλ d = 1
2dS

shows that the condition logλ d <
1
2dS is needed for the last assertion. The case logλ d >

1
2dS

cannot occur.

7. Consequences and a conjecture

We introduce one further notion in connection with diffusion on a fractal, namely the trace of the
heat operator

P (t) = Tr(At) = Tr(et△) =
∑

−△ u=µu

e−µt. (7.1)

In the classical case of Riemannian manifold studied by H. Weyl [51], the behaviour of this function
for t → 0+ was used to prove asymptotic relations for the eigenvalue counting function N△.
Furthermore, precise information on the asymptotic behaviour of P (t) for t → 0+ can be used to
prove that the spectral zeta function of △ on a Riemannian manifold has an analytic continuation
to the whole complex plane (see [35, 40]). In the case of a fractal with spectral decimation, we
proceed in the opposite direction; starting from precise information on the eigenvalues we derive
the existence of an analytic continuation of ζ△ to the whole complex plane with the location of
all poles, from which we conclude asymptotic information about N△ and P (t). We sum this up
by citing the following theorem.

Theorem 7 ([10, Theorem 10]). Let ZG be a p. c. f. self-similar compact fractal, whose Laplace

operator △ admits spectral decimation in the sense of Definition 2. Then the following are equiv-

alent:

1. ζ△(s) has at least two non-real poles in the set 1
2dS + 2πi

log λZ,
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2. the limit limx→∞ x−
1
2dSN△(x) does not exist, where N△(x) denotes the eigenvalue counting

function (3.6),

3. the limit limt→0+ P (t)t
1
2dS does not exist, where P (t) denotes the trace of the heat kernel

(7.1).

Remark 8. Recently, N. Kajino [20, 21, 22] could prove an asymptotic expansion of the trace of
the heat kernel on a p. c. f. fractal and also on the generalised Sierpiński carpet

P (t) =

n
∑

k=0

t−αkGk(log t) +O
(

exp
(

−ct−γ
))

for t→ 0+

for certain exponents α0 > α1 > · · · > αn ≥ 0, periodic continuous functions Gk (k = 0, . . . , n),
and c, γ > 0. This result was obtained without precise knowledge of the eigenvalues and properties
of the zeta function. This was used in [44] to obtain an analytic continuation of the zeta function
ζ△ to the whole complex plane in these cases.

Remark 9. Theorems 5 and 7 together show that the limit limx→∞ x−
1
2dSN△(x) does not exist

for fractals admitting spectral decimation with a polynomial of degree d and logλ d <
1
2dS .

More precisely, in the case that logλ d <
1
2dS we obtain

N△(x) = x
1
2dSQ(logλ x) + o

(

x
1
2 dS

)

for x→ ∞

and

P (t) = t−
1
2dSR(logλ t) +O

(

t−
1
2dS+ε

)

for t→ 0+

for some ε > 0 and for continuous periodic functions with period 1, Q and R (see [10, 11]).

Remark 10. In [18] it was shown that there exist gaps in the spectrum of the Laplacian if and only
if the Julia set of the spectral decimation function R is totally disconnected. Spectral gaps (in the
sense that there exists a subsequence, along which the quotient of consecutive eigenvalues stays
bounded away from 1) yields uniform convergence of the Fourier series of continuous functions
along the subsequence mentioned above (see [46]).

In the context of fractals the polynomials occurring for spectral decimation have a negative
real Julia set J (p) (which is a Cantor set, except for the case when J (p) is an interval; this last
case only occurs, if the underlying fractal itself is an interval). Nevertheless, the Poincaré and
Böttcher functions can be defined and studied for any polynomial p of degree d ≥ 2. This was
done in [9]. There the asymptotic behaviour of the zero counting function of Φ

NΦ(x) =
∑

|ξ|<x
Φ(ξ)=0

1 (7.2)

could be related to the behaviour of the harmonic measure of small balls around the origin, namely

Theorem 11 ([9, Theorem 5.2]). Let Φ be the entire solution of (3.3), and let ρ = logλ d. Then the

limit

lim
x→∞

x−ρNΦ(x) (7.3)

exists, if and only if the limit

lim
t→0

t−ρµ(B(0, t)) (7.4)

exists.

We repeat the following conjecture about the existence of the limits (7.3) and (7.4)

Conjecture ([9]). The limits (7.3) and (7.4) exist, if and only if the polynomial p is either linearly
conjugate to a pure power or a Chebyshev polynomial of the first kind.
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Poincaré equations and fractal Zeta functions 13

Peter J. Grabner
Institut für Analysis und Computational Number Theory (Math A), NAWI-Graz, Technische Universität
Graz, Steyrergasse 30, 8010 Graz, Austria
e-mail: peter.grabner@tugraz.at


