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Abstract. We use methods from asymptotic combinatorics, functional iterations

and harmonic analysis on graphs to give a rigorous proof of the fluctuating behaviour

of the transition probabilities for the simple random walk on the Sierpiński graph.

1. Introduction

The Sierpiński gasket is a well known planar fractal which has been studied from
different points of view since 1915, when Sierpiński introduced it as an example of
a curve all of whose points are ramification points. Since the 1980’s a notion of
Brownian motion on this fractal (and later other “nested fractals”, cf. [Li]) has
been developed. For an excellent introduction to this subject we refer to [B-P]. The
diffusion on fractals is defined as the weak limit of properly chosen rescalings of the
simple random walk (Xn)n≥0 on the “Sierpiński graph”.

Besides the study of Brownian motion on this fractal a theory of calculus has been
developed for functions on the Sierpiński gasket. The Laplacian as the infinitesimal
generator of the diffusion on nested fractals (cf. [Li]) has been studied extensively.
An equivalent approach to study this operator is to consider the limit of transition
operators on graphs approximating the fractal (cf. [Ki]). We refer to [B-K], [K-L]
and [La] as references for a detailed discussion of the distribution of eigenvalues of
the Laplacian for a class of compact self-similar fractals (including the gasket).

This note is devoted to a rigorous study of the asymptotic behaviour of the n-
step transition probabilities on the Sierpiński graph G. A detailed construction of
this graph is given in [B-P], so that we just recall it by the following picture.
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Figure 1. The Sierpiński graph G around the origin

The one-step transition probabilities are p(x, y) = 1/4 whenever x and y are
neighbours (and zero, otherwise). The n-step transition probabilities

(1.1) p(n)(x, y) = P[Xn = y | X0 = x]

have been studied by various methods and with varying degrees of rigor. [Ra] and
[R-T] use a physical argument to derive a functional equation for the Green function.
In [F-M], a heuristic (using implicitly a Tauberian argument, which cannot be used
here, as we shall see below) is presented in order to explain that the transition
probabilities behave like n− log 3/ log 5 when n→ ∞.

Recently, this has been (rigorously) confirmed by [Jo]. More precisely, inspired
by the methods of [B-P], [Jo] gives upper and lower bounds for the transition
densities of continuous-time random walk on the graph which are uniform in x and
y; the same methods apply for discrete time. Both in [B-P] and [Jo], the constants
involved in the upper and lower bounds are different.

Our result shows why these constants had to be different. We shall prove that

(1.2) p(n)(x, y) = n− log 3/ log 5F (logn/ log 5)
(

1 + o(1)
)

,

as n→ ∞, where F is a continuous, non-constant periodic function of period 1. We
use the method of “singularity analysis” due to Flajolet and Odlyzko [F-O]. This
method will also give an expression for the Fourier-coefficients of the function F ,
which in principle makes it possible to compute them numerically. This periodicity
phenomenon seems to reflect the self similarity of the fractal. We remark here
that a similar phenomenon occurs in the computation of the Hausdorff measure
of certain geometrically defined subsets of the (finite) Sierpiński gasket in [Gr] and
[G-T]. However, to our knowledge this is the first (non-trivial) example of a random
walk on a graph where oscillations of this type have been detected, compare with
§ 6 in [Wo]. Periodicity phenomena of the same type occur in several places in the
study of diffusion on fractals: the main term in the asymptotics of the counting
function of eigenvalues of the Laplacian contains a periodic factor (cf.[B-K], [K-L],
[La]) and branching processes used to model hitting times for the Brownian motion
exhibit (tiny) periodic fluctuations (cf.[B-P], [B-B]).

2. A functional equation for the Green function

The Green function of the random walk is the probability generating function
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(PGF) of the n-step transition probabilities from x to y in G :

G(x, y|z) =
∞
∑

n=0

p(n)(x, y)zn , z ∈ C .

We first use elementary path-arguments to derive the same functional equation as
in [Ra]. Viewing G as in Figure 1 as a graph in the plane, 2G denotes the graph
obtained by multiplying each point of G by two. It is isomorphic with G. Its vertices
are also vertices of G, and in G, the subset 2G is recurrent (visited by the random
walk infinitely often with probability one).

A path in G is simply a sequence ω = [x0, x1, . . . , xn] such that xi+1 ∼ xi for
all i (∼ denotes neighbourhood). The length of ω is |ω| = n. This includes paths
of length zero. We write Ω(x, y) for the set of all paths from x to y, and Λ(x, y)
for those paths from x to y which meet y only at the end. For a path ω, we
define its weight W (ω|z) = z|ω|, where z ∈ C, and for a set Ω of paths, we set
W (Ω|z) =

∑

ω∈ΩW (ω|z). Then we have

G(x, y|z) =W
(

Ω(x, y)| z
4

)

.

Now let x, y ∈ G and consider a path ω = [2x = x0, x1, . . . , xn = 2y] in G. Define
τj = τj(ω) by

(2.1) τ0 = 0 and for j ≥ 1 τj = {i > τj−1 : xi ∈ 2G , xi 6= xτj−1
} ,

0 ≤ j ≤ k, where k = k(ω) is the maximal index for which the last set is nonempty;
τk ≤ n and xτk = 2y. The shadow of ω in 2G is [xτ0 , . . . , xτk ], which in G corresponds
to

σ(ω) =
[

1
2
xτ0 , . . .

1
2
xτk

]

∈ Ω(x, y) .

For vertices x, y ∈ G, x ∼ y, we now define

Ω0(2x) = σ−1[x] = {ω ∈ Ω(2x, 2x) : k(ω) = 0} and

Λ1(2x, 2y) = σ−1[2x, 2y] ∩ Λ(2x, 2y) = {ω ∈ Λ(2x, 2y) : k(ω) = 1} .

Lemma 1. (a) W
(

Ω0(2x)| z4
)

= 1 + f(z) , where f(z) =
2z2

8− 2z − 3z2
.

(b) W
(

Λ1(2x, 2y)| z4
)

= 1
4φ(z) , where φ(z) =

z2

4− 3z
.

Proof. (a) Ω0(2x) consists of all paths starting and ending at 2x which do not leave
the subgraph G0 = G0(2x) of G shown in Figure 2. For different x, these graphs
are isomorphic. If A0 is the adjacency matrix of G0, then the element at position
(2x, 2x) of An

0 is the number of paths in G0 starting and ending at 2x. Thus,

W
(

Ω0(2x)| z4
)

is the (2x, 2x)-element of
(

I − z
4A0

)−1
, where I denotes the identity

matrix. We omit the elementary computation, which can be simplified by using the
symmetries of G0.

2x
Figure 2. The Graph G0



4 P.J. GRABNER & W. WOESS

(b) Analogously, Λ1(2x, 2y) consists of all paths which start at 2x, meet 2y only
at the end and do not leave the graph G1 = G1(2x, 2y) shown in Figure 3. Once
more the graphs are isomorphic for different pairs of neighbours.

Figure 3. The Graph G1

Write A1 for the adjacency matrix of G1, and G1(u, v|z) for the element at

position (u, v) of
(

I − z
4A1

)−1
. Then, using the fact that every path from 2x to 2y

decomposes into a path in Λ(2x, 2y) and a path in Ω(2y, 2y),

W
(

Λ1(2x, 2y)| z4
)

= G1(2x, 2y|z)/G1(2y, 2y|z) ,
which is equal to φ(z) by routine calculations. [As a matter of fact, we used Maple

for this task.] �

Let x, w, y ∈ G. If ω1 ∈ Ω(x, w) and ω2 ∈ Ω(w, y) then we can join the two and
obtain a path ω = ω1 ◦ω2 ∈ Ω(x, y). If A ⊂ Ω(x, w) and B ⊂ Ω(w, y) then we write
A ◦B = {ω1 ◦ ω2 : ω1 ∈ A , ω2 ∈ B}. We get W (A ◦B|z) =W (A|z)W (B|z).

Now take ω = [x = x0, x1, . . . , xn = y] ∈ Ω(x, y). Then we can decompose

σ−1(ω) = Λ1(2x, 2x1) ◦ Λ1(2x1, 2x2) ◦ · · · ◦ Λ1(2xn−1, 2y) ◦ Ω0(2y) .

Therefore, using Lemma 1,

(2.1) W
(

σ−1(ω)| z
4

)

=

(

φ(z)

4

)n
(

1 + f(z)
)

.

On the other hand, σ−1
(

Ω(x, y)
)

= Ω(2x, 2y). We obtain

W
(

Ω(2x, 2y)| z
4

)

=
∑

ω∈Ω(x,y)

W
(

σ−1(ω)| z
4

)

=
(

1 + f(z)
)

W
(

Ω(x, y)| 1
4
φ(z)

)

.

We have proved the following.

Proposition 1. G(2x, 2y|z) =
(

1 + f(z)
)

G
(

x, y|φ(z)
)

.

Remark. We have chosen to deduce Proposition 1 via the combinatorics of paths in
order to underline its elementary nature in a way which can be easily understood not
only by probabilists, but also by physicists, combinatorialists, and others. (2.1) is
the “substitution construction” for generating functions, see [G-J]. The arguments
can of course be shortened slightly by using stopping times, compare with [B-P]
and [Jo]. If we write (Xn)n≥0 for the random walk (sequence of G-valued random
values), then (2.1) corresponds to considering the stopping times

t0 = 0 , tj = {n > tj−1 : Xn ∈ 2G , Xn 6= Xtj−1
} ,

where it is supposed that X0 ∈ 2G. Lemma 1(b) says that the increments tj − tj−1

are i.i.d. with PGF
E
(

zt1
)

= φ(z)

(which is of course known). Furthermore, writing

sj = max{n < tj : Xn = Xtj−1
} , j ≥ 1 ,

Lemma 1(a) implies the differences sj − tj−1 are also i.i.d. with PGF

E
(

zs1
)

= 1 + f(z) .
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3. Functional iterations and singularity analysis

In order to prove (1.2) for the return probabilities to the origin, we now work
with the functional equation of Proposition 1 for x = y = 0. It is similar to
the equation studied in [Od], the only difference being that Odlyzko’s equation is
additive, whereas ours is multiplicative. Nevertheless, the same ideas apply for the
solution. We first derive a formal power series expression for G(z) = G(0, 0|z) by
iterating the functional equation of Proposition 1, which becomes

(3.1) G(z) =
(

1 + f(z)
)

G
(

φ(z)
)

.

Notice that the Taylor expansion of φ(z) starts with z2, and that G(0) = 1. Thus
we have

(3.2) G(z) = lim
N→∞

N−1
∏

n=0

(

1 + f(φ(n)(z)
)

G
(

φ(N)(z)
)

=

∞
∏

n=0

(

1 + f(φ(n)(z)
)

,

where φ(n)(z) is the n-th iterate of φ(z), i.e.

φ(0)(z) = z, φ(n+1)(z) = φ(n) (φ(z)) .

In order to prove that this product converges in “almost all” points of the complex
plane, we have to investigate the behaviour of the iterates φ(n)(z). This will be
done by the following lemma.

Lemma 2. The sequence φ(n)(z) tends to 0 for all z in the complex plane except
for a Cantor subset of (−∞,−4] ∪ [1,∞). Convergence is quadratic for |z| < 1.
Furthermore, 1 is a repelling fixed point of φ.

Proof. We first notice that for ψ(z) = 1
z
we have

φ̃(z) := ψ ◦ φ ◦ ψ(z) = 4z2 − 3z .

Thus it suffices to prove that for all z ∈ C \ [−1
4 , 1] the iterates of φ̃ diverge to ∞

and to study the points in the interval [−1
4
, 1].

It is immediate that

|4z2 − 3z| > |z| for |z| > 1 and |4z2 − 3z − 1| > |z − 1| for |z − 1| > 3
2
,

which implies divergence to ∞ for the iterates on the union of the two regions
{z : |z| > 1} and {z : |z−1| > 3

2
}. For the remaining region {z : |z−1| ≤ 3

2
, |z| ≤ 1}

we note that ℑφ̃(x+ iy) = (2x− 3)y which implies |ℑφ̃(z)| > |ℑz| for ℑz 6= 0 and
therefore divergence outside the interval [−1

2 , 1]. It is easy real analysis to see that

the iterates of φ̃ diverge on [−1
2 ,−1

4 ). Theorem 9.8.1 in [Be] yields the statement
on the nature of the Julia set of φ. The quadratic convergence comes from the fact
that φ(z) starts with z2. We have |φ(z)| < |z|2 for |z| < 1. Finally, φ(1) = 1 and
φ′(1) = 5. �

It is now an immediate consequence of Lemma 2 that the product expansion
(3.2) converges uniformly on all compact subsets of the Fatou set of φ.

The next objective in order to prove (1.2) is the analysis of the singularity z = 1
of (3.2). We summarize the result in the following lemma.
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Proposition 2. The function G(z) has the local singular expansion

G(z) = (1− z)
η−1

K

(

log(1− z)

log 5

)

(

1 +Oα,ε

(

|z − 1|1−ε
))

for | arg(1− z)| ≤ α < π and for all ε > 0, where η = log 3
log 5 and K(s) is a periodic

function of period 1, which is holomorphic in the strip |ℑs| < π
log 5

.

Proof. We imitate the construction used in [Od] to study the nature of the singu-
larity. We substitute

(3.3) G(z) = G̃(z)(1− z)η−1

into (3.1). This yields the functional equation

(3.4) G̃(z) =
(

1 + f(z)
)

(

1− z

1− φ(z)

)−η+1

G̃
(

φ(z)
)

and by the same arguments as above the overconvergent product expansion

G̃(z) =

∞
∏

k=0

(

1 + f
(

φ(k)(z)
))

(

1− φ(k)(z)

1− φ(k+1)(z)

)−η+1

.

We notice that φ(z) has a local inverse around z = 1 (φ′(1) = 5 6= 0) which we
denote by φ(−1)(z). This function has an attracting fixed point at z = 1. We
introduce the functions

(3.5)
G∗(z) =

−1
∏

k=−∞

(

1 + f
(

φ(k)(z)
)

)

(

1− φ(k)(z)

1− φ(k+1)(z)

)−η+1

and

H(z) = G̃(z)G∗(z) .

G∗ is holomorphic in some neighbourhood of z = 1 and therefore H(z) is holomor-
phic in {z ∈ C \ [1,∞) : |z − 1| < c}.

By the general theory of functional iterations (cf. [Be]), there exists a function
ξ(z) holomorphic in a neighbourhood of z = 1 such that

ξ ◦ φ(−1) ◦ ξ(−1)(z) = 1 +
1

5
(z − 1) and ξ(1) = ξ′(1) = 1.

We use this function to define K(z) = H
(

ξ(−1)(z)
)

, which is a holomorphic function
in {z ∈ C \ [1,∞) : |z − 1| < c′}. Furthermore, this function satisfies

(3.6) K(z) = K

(

1 +
1

5
(z − 1)

)

.

The last relation can be used to give an analytic continuation of K(z) to C \ [1,∞).
Since K is a periodic function in log(1− z)/ log 5 which is holomorphic in
| arg(1− z)| < π, it has a Fourier expansion

(3.7) K(z) =
∞
∑

k=−∞

ak exp

(

−2kπi
log(1− z)

log 5

)
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where the coefficients satisfy

ak = Oε

(

exp
(

−
(

2π2

log 5 − ε
)

|k|
))

for all ε > 0

(this explains the exponential decay of the Fourier coefficients of the function φ(q)
in [F-M, (2.8)]). The coefficients are given by the integral

(3.8) ak =

1
∫

0

K
(

1− 5−t
)

exp(−2kπit) dt .

In order to get the proposed error term, we prove

(3.9) K(z)−H(z) = Oα,ε

(

|z − 1|1−ε
)

for z → 1 and | arg(1− z)| ≤ α .

Fix δ > 0 and define the sets Cδ = {z ∈ C | |φ(−1)′(z)| > 1
5+δ

, | arg(1− z)| ≤ α} and

Dδ = Cδ \ φ(−1)(Cδ), which is contained in some annulus around the point z = 1.
Since H is holomorphic in Dδ its derivative is bounded there. By using the equation
H
(

φ(−1)(z)
)

= H(z) we obtain

(3.10) H ′(z) = Oα,δ

(

|z − 1|− log(5+δ)/ log 5
)

.

Combining ξ(−1)(z) = z +O(|z − 1|2) and (3.10) we obtain

K(z)−H(z) = H
(

ξ(−1)(z)
)

−H(z) = H
(

z +O
(

|z − 1|2
))

−H(z)

= Oα,δ

(

|z − 1|2−log(5+δ)/ log 5
)

.

Combining (3.3), (3.5), (3.7) and (3.9), we derive the statement of the proposi-
tion. Finally, we want to prove that the periodic function K cannot be a constant.
Suppose that it were constant, then H would be constant. As G̃(z) = H(z)/G∗(z),

this would give us an analytic continuation of G̃ to some neighbourhood of z = 1.
Now φ(2)(6− 2

√
5) = 1 and the preimages φ(−n)(6− 2

√
5) tend to 1 if n tends to

∞. Thus we have a sequence of points zn → 1 such that φ(n)(zn) = 1. Inserting
those points into (3.4) yields a value for G(zn) as a product of factors > 1 times
G(1) which gives a contradiction to the continuity of G. �

The following theorem is now an immediate consequence of an application of
the method of “singularity analysis” (cf. [F-O]) to the results of Proposition 2.
We use uniform convergence of the Fourier series of K(s). We note here that a
(real) Tauberian theorem would not exhibit the fluctuating nature of the transition
probabilities.

Theorem 1. The transition probabilities p(n)(0, 0) satisfy the asymptotic relation

p(n)(0, 0) = n− log 3/ log 5 F

(

logn

log 5

)

(

1 +Oε

(

nε−1
))

for all ε > 0 ,
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where F is a periodic C∞-function of period 1 whose Fourier series is given by

F (x) =
∞
∑

k=−∞

ak Γ

(

1− log 3

log 5
+

2kπi

log 5

)−1
exp(2kπix) .

The numbers ak are given as the Fourier coefficients of the function K(z) in (3.7).

Remark. Notice that

|Γ(1− η + it)| =
√
2π |t| 12−η exp

(

−π
2 |t|

) (

1 + o(1)
)

.

This and (3.7) imply that

ak Γ

(

1− η +
2kπi

log 5

)−1

= Oε

(

exp
(

−
(

π2

log 5 − ε
)

|k|
))

for all ε > 0 .

The integral representation of the ak’s makes it even possible to compute the
first coefficients numerically (we used Mathematica to do this):

a0 = 0.7740718 . . . , a1 = 3.6437 · 10−6 − 2.9988 · 10−6i .

Finally, we notice that the value of the first Fourier coefficient and the exponential
decay of the others suggest that the fluctuation is quite small (see Figure 4).

4. A ratio limit theorem

In order to complete the proof of (1.2), we now give a simple ratio limit theorem
whose proof follows previous results which were restricted to groups [LP], [Ge].

Let X be an arbitrary countable set, and let P =
(

p(x, y)
)

x,y∈X
be the transition

matrix of an irreducible Markov chain on X . We suppose that P has finite range,
i.e., each row of P has only finitely many non-zero entries.

Irreducible means that for every x, y, there is n such that p(n)(x, y) > 0. The
“spectral radius” ρ = lim supn p

(n)(x, y)1/n is then independent of x and y.
A ρ-harmonic function is a function h : X → R such that Ph = ρ · h, where

Ph(x) =
∑

y p(x, y)h(y). Irreducibility yields that a non-negative, non-zero ρ-
harmonic function is strictly positive in each point. If P is recurrent, i.e.,
G(x, y|1) = ∞ for some (⇐⇒ all) x, y then ρ = 1 and all positive harmonic
(1-harmonic) functions are constant.

Suppose that P is aperiodic, that is, gcd{n : p(n)(x, x) > 0} = 1. Then P is
called strongly aperiodic, if there is n0 such that

inf
{

p(n)(x, x) : x ∈ X} > 0 for all n ≥ n0 .

Theorem 2. Suppose that (1) P has finite range and is strongly aperiodic and (2)
up to multiplication with constants, there is a unique positive ρ-harmonic function
h. Then, for all x, y ∈ X,

lim
n→∞

p(n)(x, y)

p(n)(y, y)
=
h(x)

h(y)
.
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In particular, when P is strongly aperiodic and recurrent then the limit is equal to
one.

Proof. Strong aperiodicity implies that

(4.1) lim
n→∞

p(n+1)(x, y)

p(n)(x, y)
= ρ ,

see [Ge] and Theorem 5.2(b) in [Wo]. Now fix y ∈ X . By irreducibility, for each x
there is nx such that p(nx)(y, x) > 0. Let Cx = 1

/

p(nx)(y, x). Then

p(n)(x, y)

p(n)(y, y)
= Cx

p(nx)(y, x)p(n)(x, y)

p(n)(y, y)
≤ Cx

p(n+nx)(y, y)

p(n)(y, y)
→ Cx ρ

nx .

Thus, the sequence of functions x 7→ p(n)(x, y)/p(n)(y, y) is bounded pointwise in
x, that is, relatively compact with respect to pointwise convergence. Let (n′) be a
sequence of natural numbers such that the limit

lim
n′

p(n
′)(x, y)

p(n′)(y, y)
= g(x)

exists for all x. Using finite range and (4.1),

(4.2) Pg(x) = lim
n′

∑

w p(x, w)p
(n′)(x, y)

p(n′)(y, y)
= lim

n′

p(n
′+1)(x, y)

p(n′)(y, y)
= ρ g(x) .

We have g(y) = 1, and g is ρ-harmonic. Therefore it must be g(x) = h(x)/h(y).
Consequently, every convergent subsequence has the same limit, and relative com-
pactness yields the result. �

Remark. When P is recurrent, one does not need the finite range assumption: one
cannot exchange limits in the first identity of (4.2), but using Fatou’s lemma, one
gets Pg(x) ≤ g(x) : the function g is superharmonic. In the recurrent case, all
non-negative superharmonic functions are constant, whence g ≡ 1.

Corollary. For simple random walk on the Sierpiński gasket, one has

lim
n→∞

p(n)(x, y)

p(n)(0, 0)
= 1

for all x, y ∈ G.

Proof. On G, we have p(2)(x, x) = 1
4 and, as each vertex is common to two triangles

at least, p(3)(x, x) ≥ 1
16 . As every n ≥ 2 can be written n = 2k+3ℓ with k, ℓ ∈ N0,

strong aperiodicity follows. Using Theorem 2 and symmetry of P ,

p(n)(x, y)

p(n)(0, 0)
=
p(n)(x, y)

p(n)(y, y)

p(n)(y, y)

p(n)(0, y)

p(n)(y, 0)

p(n)(0, 0)
→ 1 . �
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5. Concluding Remarks

1. The description of the Green function by means of functional iterations can
also be used to calculate p(n)(x, y) numerically for moderate values of n. We used
the equations

G(0, u|z) = z

4− 3z
G
(

0, u|φ(z)
)

+
2z

8− 2z − z2
G(0, 0|z)

G(0, t|z) = z

2

(

G(0, u|z) +G
(

0, u|φ(z)
)

)

G(u,−t|z) = G(0, u|z)G(0, t|z)
G(0, 0|z) ,

which can be derived by using the nearest neighbour relations for the Green function
and Proposition 1. We note here that such functional equations relating G(x, y|z)
to G(a, b|z) with a, b ∈ {0, u, v, t, 2u, 2v} exist for any choice of x and y. This would
yield an alternative though more tedious proof of (1.2).

The numerical experiments using Maple produced the following picture, where
nηp(n)(x, y) is plotted against logn/ log 5 for some of the points indicated in Fig-
ure 1.
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Figure 4.

2. Our method does not seem to lend itself to asymptotic evaluations of transition
probabilities which are uniform in time and space variables. Conversely, it also
seems that the method of [Jo] for obtaining uniform estimates via stopping time
arguments will not be applicable for finding the periodic oscillations.

3. The methods used in this paper can immediately be applied to any higher
dimensional version of the Sierpiński gasket (as defined in [Ki]). In that case the
properties of the corresponding function φ remain the same as in Lemma 1.
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4. For general nested fractals as defined in [Li] and [E-I] the method has to be
modified: for every edge having different transition probability in an elementary
cell of the fractal one additional variable for the generating functions has to be
introduced. Instead of iterations of one function one has to consider iterations of
several multivariate functions. It seems plausible that the fluctuating behaviour of
transition probabilities will occur also in those cases.
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Japan J. Indust. Appl. Math. 8 (1991), 127–141.



12 P.J. GRABNER & W. WOESS
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