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ANALYSIS OF LINEAR COMBINATION ALGORITHMS IN

CRYPTOGRAPHY

PETER J. GRABNER†, CLEMENS HEUBERGER‡, HELMUT PRODINGER∗,
AND JÖRG M. THUSWALDNER¶

Abstract. Several cryptosystems rely on fast calculations of linear combinations in groups.
One way to achieve this is to use joint signed binary digit expansions of small “weight.” We study
two algorithms, one based on non adjacent forms of the coefficients of the linear combination, the
other based on a certain joint sparse form specifically adapted to this problem. Both methods
are sped up using the sliding windows approach combined with precomputed lookup tables.
We give explicit and asymptotic results for the number of group operations needed assuming
uniform distribution of the coefficients. Expected values, variances and a central limit theorem
are proved using generating functions.

Furthermore, we provide a new algorithm which calculates the digits of an optimal expansion
of pairs of integers from left to right. This avoids storing the whole expansion, which is needed
with the previously known right to left methods, and allows an online computation.

1. Introduction

In many public key cryptosystems, raising one or more elements of a given group to large powers
plays an important role (cf. for instance [2, 9]). In practice, the underlying groups are often chosen
to be the multiplicative group of a finite field Fq or the group law of an elliptic curve (elliptic curve
cryptosystems).

Let P be an element of a given group, whose group law is written additively throughout the
paper. What we need is to form nP for large n ∈ N in a short amount of time. One way to do this
is the binary method (cf. [14]). This method uses the operations of “doubling” and “adding P”. If
we write n in its binary representation, the number of doublings is fixed by ⌊log2 n⌋ and each one

in this representation corresponds to an addition. Thus the cost of the multiplication depends on
the length of the binary representation of n and the number of ones in this representation. The
goal of the methods presented in this paper is to decrease the cost by finding representations of
integers containing few nonzero digits.

If addition and subtraction are equally costly in the underlying group, it makes sense to work
with signed binary representations, i.e., binary representations with digits {0,±1}. The advantage
of these representations is their redundancy: in general, n has many different signed binary rep-
resentations. Let n be written in a signed binary representation. Then the number of non-zero
digits is called the Hamming weight of this representation. Since each non-zero digit causes a group
addition (1 causes addition of P , −1 causes subtraction of P ), one is interested in finding a rep-
resentation of n having minimal Hamming weight. Such a minimal representation was exhibited
by Reitwiesner [11]. Since it has no adjacent non-zero digits, this type of representation is often
called non-adjacent form or NAF, for short. On average, only one third of the digits of a NAF is
different from zero. Morain and Olivos [10] first observed that NAFs are useful for calculating nP
for large n quickly.
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Recently, Solinas [12] considered the problem of computingmP+nQ at once, without computing
each of the summands separately. Using unsigned binary representations of m and n this can
be done with the help of the operations “doubling” and “adding P , Q, or P + Q”. We are
again interested in diminishing the number of additions. Assume that the additions of the three
quantities are equally costly. If we write the binary representations m =

∑
aj2

j and n =
∑

bj2
j

in the form aℓ

bℓ
· · · a0

b0
, the cost of the calculation of mP + nQ depends on the number of non-

zero columns in this joint representation. This number is called the joint Hamming weight of
this (joint) representation. If addition and subtraction are equally costly, again by using signed
representations of m and n, one can reduce the joint Hamming weight considerably (note that
for signed representations we have to deal with the addition of ±P , ±Q, ±P ±Q and ±P ∓Q).
One way to do this consists in writing m and n in their NAF. However, in the above mentioned
paper, Solinas found an even “cheaper” way of representing m and n: the so called Joint Sparse

Form. It turns out that his construction yields the minimal joint Hamming weight among all joint
expansions of two numbers. In Grabner et al. [3] this concept was simplified and extended to the
joint representation of d ≥ 2 numbers and its properties are studied in detail. The representation
used in [3] is therefore called Simple Joint Sparse Form, or SJSF for short.

The detailed definitions of joint NAFs and SJSF for d integers are given in Section 2 and
Section 3, respectively.

In all these algorithms we determined nP andmP+nQ by doubling and adding some quantities.
There is a modification of these algorithms by using so called windows or window methods (cf. for
instance Gordon [2, Section 3] or Avanzi [1]). This is a rather easy concept. We explain it for the
case of the computation of mP + nQ with m, n written in binary representation. First select a
window size w. Then precompute all sums of the form rP + sQ such that r and s have a binary
representation of length at most w. Now we can compute mP + nQ by multiplying by 2w and
adding one of the precomputed values. Of course, this makes the algorithms faster at the cost of
precomputation tables. There are many ways to refine this concept and to consider adaptations
which are suitable to special representations. An easy modification consists in jumping over zero
vectors at the beginning of a window. If we use window methods where zero digits are forced after
a bounded number of non-zero digits we may adapt the size of the window after each step in order
to exploit these zeros. The latter modification is possible for instance in the case of SJSF. We
explain all this in more detail when we apply windows to our algorithms later.

In the present paper we are concerned with the joint representation of d-tuples of integers. In
Section 2 we dwell upon joint NAFs with windows. In particular, we give a detailed analysis
of the average cost of calculating linear combinations n1P1 + · · · + ndPd by examining the joint
Hamming weight of joint NAFs. We give expressions of the average cost, its variance as well as
its distribution. This extends and refines the work of Avanzi [1].

In Section 3 we perform a detailed runtime analysis of the SJSF of d integers using window
methods. Contrary to the joint NAF the SJSF guarantees that after at most d non-zero columns
(or digits) there occurs a zero column. It is natural to adapt the size of the windows dynamically
in a way that we can expect zero columns at the beginning of each new window. In this way we
can exploit the existing zeros in an optimal way. In this case it is a nontrivial problem to compute
the size of the precomputation tables. We give an asymptotic formula for their size. We note that
Solinas [12] does not consider windows and Avanzi [1] considers Solinas’ Joint Sparse Form with
a fixed window size of 2.

From the way we calculate the linear combinations n1P1 + · · ·+ ndPd we see that we proceed
through the representations of n1, . . . , nd starting from their most significant digit down their least
significant digit, or, in other words, from left to right. Unfortunately, as Avanzi [1] and Solinas [12]
both regret, the known algorithms for the SJSF produce the representations from right to left.
This has the disadvantage that we need to calculate the whole SJSF representation from right to
left before we can start to apply it from left to right in order to compute our linear combinations.
Especially if we have to deal with long representations this requires a large amount of memory.

Our last section, however, is devoted to a remedy to this unfortunate situation by providing
a transducer (with 32 “essential” states) which constructs a minimal joint representation from
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left to right for d = 2. This is done by first writing each of the numbers m, n separately in
a representation which gives us some freedom in changing their digits locally reading from the
left. Because of its resemblance to the well-known greedy expansion we call this representation
the alternating greedy expansion. Starting from this expansion we succeeded in constructing a
minimal joint representation of m, n from left to right. In contrast to [3] which gives a fractal
description of the SJSF from left to right, this new minimal representation is computable from
left to right.

2. Joint non-adjacent form

The present section is devoted to the complexity analysis of the joint distribution of integers
in non-adjacent form. Recall that a NAF is a signed binary representation of an integer x of the
shape

x =

J∑

j=0

xj2
j with xj ∈ {0,±1}

such that xjxj+1 = 0 for all j ∈ {0, . . . , J − 1}. For a given integer it is possible to compute its
NAF with help of the easy Algorithm 1.

Algorithm 1 Calculation of the Non-Adjacent Form.

Input: x integer
Output: (xj)0≤j≤ℓ non-adjacent form of x.
j ← 0
while x 6= 0 do

xj ← x mod 2
if xj = 1 and (x− xj)/2 ≡ 1 mod 2 then

xj ← −xj

end if

x← (x− xj)/2
j ← j + 1

end while

Note that Algorithm 1 is the same as the algorithm for computing the simple joint sparse form
for d = 1 (see Section 3). This algorithm can easily be interpreted as a three state transducer
(cf. Figure 1).

1 2 3

0|0

1|ε
0|01

1|01̄
0|ε

1|0

Figure 1. Transducer to compute the NAF from right to left.

Using this transducer an easy calculation yields that the expected value of the Hamming weight
of an expansion of length J is asymptotically J/3 (cf. [13]).

Let d ∈ N. In what follows we investigate d-tuples of NAFs. Such a d-tuple is called joint NAF.
Joint NAFs can be regarded as finite sequences of d-dimensional vectors. We write d-dimensional
vectors in boldface. For the coordinates of a vector we use the notational convention

x = (x(1), . . . , x(d)).

We set up an easy probabilistic model. Define the space

Nd :=
{
(. . . ,x1,x0) ∈ {0,±1}d×N0 | ∀j ∈ N0, k ∈ {1, . . . , d} : x(k)

j x
(k)
j+1 = 0

}

whose elements are called infinite joint NAFs. On Nd we define a probability measure by the
image of the Haar measure on Zd

2 := {0, 1}d×N0 via the map Zd
2 → Nd given by Algorithm 1. The

joint Hamming weight of a joint NAF (xj)j≥0 is the number of j ∈ N0 with xj 6= 0. In order to
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derive results on the distribution of the Hamming weight of NAFs we need information on the
number of nonzero entries in a vector xj . Thus we set

(2.1) A(x) :=
{
k ∈ {1, . . . , d} | x(k) 6= 0

}
.

Let x,y ∈ {0,±1}d satisfying x(k)y(k) = 0 for all k ∈ {1, . . . , d}. We define the random variable
Xj to be the j-th column of an infinite joint NAF. Then, keeping track of Algorithm 1 for each of
the coordinates, we derive

(2.2) P(Xj+1 = y | Xj = x) = 2−d−#A(y)+#A(x)

and

(2.3) P(X0 = y) = 2−d−#A(y).

As mentioned above, we are only interested in the Hamming weight of joint NAFs. Thus it suffices
to consider the random variables #A(Xj) rather than Xj itself. Using (2.2) we easily derive

pk,ℓ := P(#A(Xj+1) = ℓ | #A(Xj) = k) = 2−d+k

(
d− k

ℓ

)
.

These quantities will be helpful in order to study the number of group additions required for
multiple exponentiation algorithms which are used in cryptography (cf. Avanzi [1]). As mentioned
in the introduction, such algorithms can be accelerated by using window methods (cf. for instance
Gordon [2]). Suppose we want to compute the linear combination x(1)P1 + · · · + x(d)Pd in an
Abelian group G using joint NAFs with window length w. Then we need a table of precomputed
values given by

PreCompd,w :=




w−1∑

j=0

2j
(
y
(1)
j P1 + · · ·+ y

(d)
j Pd

) ∣∣(y0, . . . ,yw−1) ∈ {0,±1}d×w,y0 6= 0



 /{±1}.

It is clear that larger windows lead to less group additions at the cost of larger precomputation
tables on the other hand. From Avanzi [1] we know that

#PreCompd,w =
Idw − Idw−1

2
with Iw :=

2w+2 − (−1)w
3

.

This follows easily by noting that Iw is equal to the number of NAFs of length w, which can be
computed by analyzing Algorithm 1.

We now want to examine Algorithm 2 described by Avanzi [1], which produces joint NAFs
using windows. In particular, we want to derive distribution results for the random variable Wn,w

which counts the number of group additions in G when this algorithm is applied to (Xn−1, . . . ,X0)
(i.e., Wn,w counts the number of windows that are “opened” by Algorithm 2, in other words, it
counts how many group additions are required in order to compute a linear combination of group
elements using the joint NAF). Since w is fixed we write Wn instead of Wn,w.

To this matter we study the bivariate generating function

F (y, z) :=

∞∑

m=0

∞∑

n=0

P(Wn = m)ymzn.

In order to get a closed expression for this function we note first that in view of Algorithm 2 each
d-tuple of NAFs can be written using the regular expression

(2.4) (0∗NBw−1)∗0∗{ε,N,NB, . . . , NBw−2}.
Here B := {0,±1}d, N := B \ {0}, and ε is the empty word. In addition, each coordinate has
to satisfy the NAF condition. Note that each occurrence of N in this regular expression causes a
group addition in Algorithm 2. Thus, we have to label each occurrence of N with y. Labelling
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Algorithm 2 Calculating linear combinations using joint NAF with windows.

Input: P1, . . . , Pd ∈ G, X ∈ {0,±1}d×(J+1) joint NAF of x ∈ Nd, w ∈ N, PreCompd,w
Output: P = x1P1 + · · ·+ xdPd

P ← 0
j ← J
while j ≥ 0 do

while j ≥ 0 and xj = 0 do

P ← 2P
j ← j − 1

end while

if j ≥ w then

j ← j − w
else

w ← j
j ← −1

end if

for k = 1, 2, . . . , d do

f (k) ←∑w−1
r=0 x

(k)
j+r+12

r

end for

s← largest non-negative integer such that 2s|f (k) for all k ∈ {1, . . . , d}
for k = 1, 2, . . . , d do

f (k) ← f (k)/2s

end for

P ← 2w−sP
P ← P +

∑d
k=1 f

(k)Pk {this can be looked up for free in PreCompd,w}
P ← 2sP

end while

each digit with z leads to the desired function. As usual, we encode the Markov chain defined by
pk,ℓ by matrices. Denote the (d+ 1)-dimensional identity matrix by I and set

P := z(pℓ,k)0≤k,ℓ≤d,

Z := z([k = 0]pℓ,k)0≤k,ℓ≤d,

G := z([k > 0]pℓ,k)0≤k,ℓ≤d,

where Iverson’s notation, popularized in [5], has been used: [P ] is defined to be 1 if condition P
is true, and 0 otherwise. Translating (2.4) into generating functions we get

(2.5) F (y, z) = (1, . . . , 1)S(y, z)T (y, z)(1, 0, . . . , 0)T

with

S(y, z) := (I − (I − Z)−1yGPw−1)−1,

T (y, z) := (I − Z)−1(I + yG(I − Pw−1)(I − P )−1).

We mention that S represents the expression (0∗NBw−1)∗ in (2.4), while T represents the possible
tails after this expression. The vectors at the left and right hand side of the matrix expression for
F can be explained as follows. Because of

P(X1 = y) = P(X1 = y | X0 = 0)

we always start with the digit vector 0. On the other hand, we can end up with an arbitrary digit
vector.

One can easily imagine that the expression (2.5) becomes more and more complex for increasing
dimensions d. Using Mathematica

R©, we computed F explicitly for 1 ≤ d ≤ 5. To give an
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impression of the expressions obtained, we include the resulting generating function for d = 1:

F (y, z) =
4y(1− z)zw − (−2)w

(
6− 2yzw − z(6− y(3− zw))

)

(1− z)
(
4y(1− z)zw − (−2)w(6− 2yzw − z(3 + yzw))

) .

Since these expressions become very large for d ≥ 2, we refrain from writing them down here and
refer to the file which is available at [4].

As usual, the generating functions of E(Wn) and E(Wn(Wn − 1)) are computed by taking the
first and second derivative w.r.t. y, respectively, and setting y = 1. From this we can easily
calculate the variance V(Wn). In view of (2.5) it is clear that for each choice of (d, w) we obtain
a rational function F . The main term in the asymptotic expansion of E(Wn) and V(Wn) comes
from the dominant double and triple pole of F , respectively. We state exactly those results which
fit into one line, the others (main terms and constant terms for E(Wn) and V(Wn) and 1 ≤ d ≤ 5)
are available at [4]. For d = 1, we have

E(Wn) =
3(−2)w

(−2)w(4 + 3w)− 4
n+

3(−2)ww(−8 − (−2)w + 3(−2)ww)
2(−4 + 4(−2)w + 3(−2)ww)2

+O(ρnw),

V(Wn) =
12(5(−8)w − 4w − 4(−2)w)

((−2)w(4 + 3w)− 4)3
n+Ow(1)

for some |ρw| < 1. For d = 2, we get

E(Wn) =
3(−2)w(8 + 9(−2)w)

−16 + 16 · 4w + 24(−2)ww + 27 · 4wwn+Ow(1),

V(Wn) =
48(−1 + (−2)w)(−2)w(1 + (−2)w)(128 + 464(−2)w + 560 · 4w + 261(−8)w)

(−16 + 16 · 4w + 24(−2)ww + 27 · 4ww)3
n+Ow(1),

and for d = 3,

E(Wn) ∼
9(−2)w(16 + 36(−2)w + 37 · 4w + 21(−8)w)

−64− 64(−2)w + 64(−8)w + 64 · 16w + 144(−2)ww + 324 · 4ww + 333(−8)ww + 189 · 16wwn.

We list these main terms for the pairs (d, w) with 1 ≤ d ≤ 5 and w ≤ 3 in Table 1.
Since the generating function F (y, z) fits into the general scheme of H.-K. Hwang’s “quasi-power

theorem” (cf. [7]), the random variable Wn satisfies a central limit theorem

lim
n→∞

P
(
Wn ≤ E(Wn) + x

√
V(Wn)

)
=

1√
2π

∫ x

−∞

e−
t
2

2 dt.

Theorem 1. Let w ≥ 1, d ≥ 1 and Wn,w be the random variable counting the number of group

additions when calculating X1P1+· · ·+XdPd using Algorithm 2, where X1, . . . , Xd are independent

random variables uniformly distributed on {0, . . . , 2n − 1}. Then

lim
n→∞

P
(
Wn,w ≤ E(Wn,w) + x

√
V(Wn,w)

)
=

1√
2π

∫ x

−∞

e−
t
2

2 dt,

where E(Wn,w) and V(Wn,w) are given in [4] for d ∈ {1, 2, 3, 4, 5} and in Table 1 for d ≤ 5 and

w ≤ 3.

We remark that the main terms of the expected values for d ∈ {1, 2, 3} are given by Avanzi [1].
In contrast to his approximate approach, our generating function approach allows us to extract
lower order information as well as higher moments and to prove a central limit theorem.

3. Simple Joint Sparse Form

In this section we adapt the windowmethod to exponentiation studied in [1] to the d-dimensional
Simple Joint Sparse Form introduced in [3]. We shortly summarize the definition of this joint
expansion of elements of Zd.
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(d, w) 1
n
E(Wn,w)

1
n
V(Wn,w)

(1, 1) 1
3 ≈ 0.333333 2

27 ≈ 0.074074

(1, 2) 1
3 ≈ 0.333333 2

27 ≈ 0.074074

(1, 3) 2
9 ≈ 0.222222 2

81 ≈ 0.024691

(2, 1) 5
9 ≈ 0.555556 4

27 ≈ 0.148148

(2, 2) 11
27 ≈ 0.407407 80

2187 ≈ 0.036580

(2, 3) 32
117 ≈ 0.273504 2464

177957 ≈ 0.013846

(3, 1) 19
27 ≈ 0.703704 1064

6561 ≈ 0.162170

(3, 2) 131
297 ≈ 0.441077 196210

8732691 ≈ 0.022468

(3, 3) 1082
3645 ≈ 0.296845 1822366

199290375 ≈ 0.009144

(4, 1) 65
81 ≈ 0.802469 41776

295245 ≈ 0.141496

(4, 2) 3469
7533 ≈ 0.460507 242550560

15832158831 ≈ 0.015320

(4, 3) 22976
74115 ≈ 0.310005 95487386176

15078376202625 ≈ 0.006333

(5, 1) 211
243 ≈ 0.868313 644320

5845851 ≈ 0.110218

(5, 2) 32297
68283 ≈ 0.472987 7065325354906

648539908339455 ≈ 0.010894

(5, 3) 11961398
37601091 ≈ 0.318113 963646563298519282

218773676422818911097 ≈ 0.004405

Table 1. Asymptotic means and variances of Wn,w/n for small d, w.

In [3] it is shown that for each d-tuple of integers (x(1), . . . , x(d)) there is a unique joint expansion
(xJ , . . . ,x2,x1,x0), i.e.,

x(k) =

J∑

j=0

x
(k)
j 2j with x

(k)
j ∈ {0,±1},

such that

(3.1) A(xj+1) % A(xj) or A(xj+1) = ∅, 0 ≤ j < J

and xJ 6= 0, where A(x) has been defined in (2.1). This is called the Simple Joint Sparse Form

of x(1), . . . , x(d).

3.1. Algorithms and probabilistic model. Algorithm 3 can be used for the computation of
the Simple Joint Sparse Form of d integers. This algorithm was described in [3]; we need this
algorithm to derive the transition probabilities for the probabilistic model we use.

From (3.1) it is clear that the Simple Joint Sparse Form can have at most d consecutive non-
zero digit-vectors. When applying windows to the computation of x(1)P1 + · · · + x(d)Pd in an
Abelian group using the SJSF, it is natural to use these “guaranteed” 0 digit-vectors. Therefore
we consider Algorithm 4. Its idea is as follows: we organize the Simple Joint Sparse form into
blocks of non-zero columns with intermediate 0s. These blocks can have length at most d by (3.1).
In order to bound the length of the look-ahead, we also allow empty blocks. Then we collect w
consecutive blocks to form a window, where the leftmost block has to be non-empty. Consecutive
0s at the right end of the window are removed and treated by doublings. The remaining window
is looked up in a precomputed table. Zeros between windows are treated by doublings.

Let Jd be the space of all “infinite SJSFs”, i.e.,

(3.2) Jd =
{
(. . . ,x1,x0) ∈ {0,±1}d×N0 | ∀j ∈ N0 : A(xj) $ A(xj+1) or A(xj+1) = ∅

}
.

We now define a probability measure on Jd as the image of the Haar-measure on Zd
2 = {0, 1}d×N0

under the map Zd
2 → Jd given by Algorithm 3. This measure induces uniform distribution on all
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Algorithm 3 d-dimensional Simple Joint Sparse Form.

Input: x(1), . . . , x(d) integers

Output: (x
(k)
j )1≤k≤d

0≤j≤ℓ

Simple Joint Sparse Form of x(1), . . . , x(d)

j ← 0
A0 ← {k | x(k) odd}
while ∃k : x(k) 6= 0 do

x
(k)
j ← x(k) mod 2, 1 ≤ k ≤ d

Aj+1 ← {k | (x(k) − x
(k)
j )/2 ≡ 1 (mod 2)}

if Aj+1 ⊆ Aj then

for all k ∈ Aj+1 do

x
(k)
j ← −x(k)

j

end for

Aj+1 ← ∅
else

for all k ∈ Aj \Aj+1 do

x
(k)
j ← −x(k)

j

end for

Aj+1 ← Aj ∪ Aj+1

end if

x(k) ← (x(k) − x
(k)
j )/2, 1 ≤ k ≤ d

j ← j + 1
end while

Algorithm 4 Calculating linear combinations using Simple Joint Sparse Forms with windows.

Input: P1, . . . , Pd ∈ G, X ∈ {0,±1}d×(J+1) SJSF of (x(1), . . . , x(d)), w ≥ 1 integer, Q(Y ) =∑L

ℓ=0 2
ℓ(y

(1)
ℓ P1 + · · ·+ y

(d)
ℓ Pd) for all SJSF Y ∈ PreCompd,w

Output: P = x1P1 + · · ·+ xdPd

P ← 0
j ← J
while j ≥ 0 do

while j ≥ 0 and Xj = 0 do

P ← 2P
j ← j − 1

end while

find i such that Xi = 0 and such that there are exactly w − 1 0-digit vectors amongst the
digit vectors Xj , Xj−1, . . . , Xi+1 or i← −1
find k minimal with i < k ≤ j and Xk 6= 0

P ← 2k−i−1(2j−k+1P ±Q(±(Xj , Xj−1, . . . , Xk)))
j ← i

end while

possible input vectors in {0, . . . , 2N−1}d. Analyzing the congruence conditions used in Algorithm 3
yields (for x,y ∈ {0,±1}d satisfying A(x) $ A(y) or y = 0)

(3.3) P (Xj+1 = y | Xj = x) = 2−(d+#A(y)−#A(x))

and

(3.4) P (X0 = y) = 2−(d+#A(y)).

We are interested in the random variable Wn = Wn,w(X), which counts the number of group
additions when applying Algorithm 4 to (Xn−1, . . . ,X0). Since Wn depends only on

(#A(Xn−1), . . . ,#A(X0)),
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we compute the corresponding transition probabilities

(3.5) pk,ℓ := P (#A(Xj+1) = ℓ | #A(Xj) = k) =

{(
d−k
ℓ−k

)
2−(d−k) for ℓ > k,

2−(d−k) for ℓ = 0.

In order to study Wn we introduce the generating function

(3.6) F (y, z) =

∞∑

m=0

∞∑

n=0

P (Wn = m) ymzn.

We denote N = {0,±1}d \ {0}. A regular expression for a window containing w − 1 “interior 0s”
and it’s delimiting right 0 is given by

N(N∗0)w

(we remark here that the conditions (3.1) have to be satisfied). Since adjacent windows can be
separated by an arbitrary number of 0s and windows at the end of the expansion can be incomplete,
the generating function F (y, z) can be calculated by

(3.7) F (y, z) = (1, . . . , 1)
(
I − (I − V )−1yU

(
(I − U)−1V

)w)−1

(I − V )−1

×
(
I +

(
yU + yU(I − U)−1V + · · ·+ yU((I − U)−1V )w−1

)
(I − U)−1

)
(1, 0 . . . , 0)T ,

where

U = z([k > 0]pℓ,k)0≤k,ℓ≤d,

V = z([k = 0]pℓ,k)0≤k,ℓ≤d.

We remark here that the “exit vector” (1, 0, . . . , 0) simulates a 0 in position −1 which corresponds
to the fact that P(X0 = y) can be computed by setting x = 0 in (3.3).

For d ≤ 20 we computed the function F (y, z) using Mathematica
R©. Only the result for d = 2

fits on one line:

F (y, z) =

4− (4− 3y)z3 + z
(
4 + y

(
3− 23−2w

(
z(1 + z)2

)w))
− z2

(
4− y

(
6− 41−w

(
z(1 + z)2

)w))

(1− z)
(
4− z3 + z

(
7− 23−2wy

(
z(1 + z)

2
)w)

+ z2
(
2− 41−wy

(
z(1 + z)

2
)w)) .

The means and variances can be computed from the generating functions as above. We did these
computations for d = 1, . . . , 20 (cf. [4]). Table 2 gives the asymptotic main terms for 1 ≤ d ≤ 7.

By the same means we compute expectation and variance of the number Wn,0 of additions
using SJSFs without windows (see Table 3).

We summarize our results in the following theorem.

Theorem 2. Let w ≥ 1, d ≥ 1 and Wn,w be the random variable counting the number of group

additions when calculating X1P1+· · ·+XdPd using Algorithm 4, where X1, . . . , Xd are independent

random variables uniformly distributed on {0, . . . , 2n − 1}. Then

lim
n→∞

P
(
Wn,w ≤ E(Wn,w) + x

√
V(Wn,w)

)
=

1√
2π

∫ x

−∞

e−
t
2

2 dt,

where E(Wn,w) and V(Wn,w) are given in [4] for 1 ≤ d ≤ 20 and in Table 2 for d ≤ 7.

3.2. Counting the precomputed values. We now count the number of elements in the set
PreCompd,w of precomputed values. The following computations show that #PreCompd,w in-
creases exponentially in w and hyperexponentially in d. The set PreCompd,w consists of all finite
sequences of digit vectors satisfying (3.1), containing at most w−1 0-digit vectors, and which start
and end with a non-zero digit vector. Furthermore, we normalize the elements of PreCompd,w
by requiring that the first non-zero entry in the first column equals +1. Since any admissible
sequence of digit vectors can be followed by an arbitrary number of 0-digit vectors, we have

#PreCompd,w = #
({

X ∈ ({0,±1}d)∗ | X ∈ NN∗(0N∗)w−1 and X a SJSF
}
/{±1}

)
,
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d 1
n
E(Wn,w)

1
n
V(Wn,w)

1
2

3(w + 1)

2(w + 7)

27(w + 1)3

2
3

2(3w + 1)

9

16(3w+ 1)2

3
112

39(7w + 1)

784(1225w− 137)

59319(7w+ 1)
3

4
960

179(15w+ 1)

8640(82175w− 10751)

5735339(15w+ 1)
3

5
63488

6327(31w+ 1)

63488(3549810031w− 337187183)

253275687783(31w+ 1)
3

6
4128768

218357(63w+ 1)

12386304(5319844735149w− 322156222637)

10411213601145293(63w+ 1)
3

7
1065353216

29681427(127w+ 1)

1065353216(1110439852652223895w− 40282349901979031)

26148954556492040001483(127w+ 1)
3

Table 2. Asymptotic means and variances of Wn,w.

d 1
n
E(Wn,0)

1
n
V(Wn,0)

1 1
3 ≈ 0.3333 2

27 ≈ 0.0741

2 1
2 ≈ 0.5 1

16 ≈ 0.0625

3 23
39 ≈ 0.5897 2800

59319 ≈ 0.0472

4 115
179 ≈ 0.6425 210368

5735339 ≈ 0.0367

5 4279
6327 ≈ 0.6763 7565047808

253275687783 ≈ 0.0299

6 152821
218357 ≈ 0.6999 263523314106368

10411213601145293 ≈ 0.0253

7 21292819
29681427 ≈ 0.7174 577533922219434967040

26148954556492040001483 ≈ 0.0221

Table 3. Asymptotic means and variances of the number of additions when using
SJSF without windows.

where N = {0,±1}d \ {0}. Thus we have for w ≥ 1

#PreCompd,w =
1

2
(1, 0, . . . , 0)C(I − C)−1(B(I − C)−1)w−1(1, . . . , 1)T ,

where

B = ([ℓ = 0])0≤k,ℓ≤d, C = ([ℓ > k]

(
d− k

ℓ− k

)
2ℓ)0≤k,ℓ≤d.

In order to study the behaviour for large d, we study the matrix B(I −C)−1 in more detail. It is
clear that all rows of B(I − C)−1 are equal. It can be proved by induction that the k-th entry in
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this row equals (
d

k

)
2kak,

where ak satisfies the recursion

(3.8) an =

n−1∑

k=0

(
n

k

)
2kak n ≥ 1, a0 = 1.

Since λd =
∑d

k=0

(
d
k

)
2kak = (2d + 1)ad is the only non-zero eigenvalue of B(I − C)−1, we get

#PreCompd,w = 1
2 (λd − 1)λw−1

d .

In order to study the asymptotic behaviour of an we substitute an = n!2(
n

2)bn. This is motivated
by the fact that the dominating summand in (3.8) occurs for k = n−1; this gives an ≈ n2n−1an−1.
We get the recursion

(3.9) bn =

n−1∑

k=0

1

(n− k)!
2(

k+1

2 )−(n2)bk

for bn. Since the term for k = n − 1 on the right hand side equals bn−1, the sequence bn is
monotonically increasing. It remains to show that bn is bounded. For this purpose we estimate

bn ≤ bn−1

(
1 +

n−2∑

k=0

1

(n− k)!
2(

k+1

2 )−(n2)

)
≤ bn−1

(
n∑

k=1

1

k!
2−

1
2
n(k−1)

)
,

where we have used
(
n
2

)
−
(
k+1
2

)
≥ 1

2n(n− k − 1). Using ex−1
x
≤ ex for x > 0 and extending the

finite sum on the right hand side to an infinite sum, we obtain

bn ≤ bn−1 exp
(
2−

1
2
n
)
≤ b0 exp

(
n∑

k=1

2−
k

2

)
.

Thus bn is bounded and we can form the generating function

(3.10) f(z) =

∞∑

n=0

bnz
n.

Inserting the recursion (3.9) into (3.10) yields

(3.11) f(z) = 1 +
∞∑

n=1

n−1∑

k=0

1

(n− k)!
2(

k+1

2 )−(n2)bkz
n = 1 +

∞∑

ℓ=1

1

ℓ!
2−(

ℓ

2)zℓ
∞∑

k=0

bk

(
2−(ℓ−1)z

)k
.

The inner sum in (3.11) is just f(2−(ℓ−1)z). Furthermore, the summand for ℓ = 1 equals zf(z).
This yields

(3.12) f(z) =
1

1− z

(
1 +

∞∑

ℓ=1

1

(ℓ+ 1)!2(
ℓ+1

2 )
zℓ+1f(2−ℓz)

)
,

from which we conclude that f has a meromorphic continuation to the whole complex plane with
simple poles at z = 2ℓ, ℓ ∈ N. The residue of f(z) at z = 1 equals

c = 1 +
∞∑

ℓ=1

1

(ℓ + 1)!2(
ℓ+1

2 )
f(2−ℓ)

= 1.57298 62035 88985 42167 40408 30458 77385 46604 92965 . . . .

Putting everything together we conclude that

(3.13) an ∼ cn!2(
n

2).

Summing up, we have
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Theorem 3. Let d, w ≥ 1. Then the number of precomputed values #PreCompd,w needed in

Algorithm 4 is given by

(3.14) #PreCompd,w =
1

2
(λd − 1)λw−1

d with λd ∼ cd!2(
d+1

2 ).

In order to compare the number of additions when computing linear combinations using SJSF
with and without windows, we introduce the notation

#PreCompd,0 = #
((
{0,±1}d \ {0}

)
/{±1}

)
=

3d − 1

2

for the number of precomputations needed for SJSF without windows. Table 4 shows the number
of precomputed values in the various situations.

d #PreCompd,w−d #PreCompd,0−d

1 3w−1 − 1 0

2 12 · 25w−1 − 2 2

3 301 · 603w−1 − 3 10

4 19320 · 38641w−1 − 4 36

Table 4. Number of precomputed values.

Table 5 shows the minimal values of n, such that

PreCompd,w +E(Wn,w) ≤ PreCompd,w−1+E(Wn,w−1).

d w = 1 w = 2 w = 3
1 1 19 110
2 65 1 793 112 001
3 1 249 1 081 666 1 793 670 987
4 62 748 4 602 740 129 511 331 633 697 389

Table 5. Threshold numbers n depending on the window size w and dimension d.

4. Calculating a minimal expansion from left to right

It is a major disadvantage of Joint Sparse Form representations of pairs of integers that they
can only be computed reading the binary expansion from right to left (cf. [3, 12]). However,
computing linear combinations using these representations requires the digits from left to right.
Therefore, the full representation has to be precomputed and stored.

However, as in the one dimensional case (cf. [6, 8]), it is possible to compute some minimal
joint expansion from left to right using a transducer automaton.

We start with a special representation of the two coordinates which has the property that carries
do not propagate too far. This is achieved by the condition that every two non-zero digits which
are adjacent or separated by 0s only, have different sign (alternating greedy expansion). Then
the expansions of the two coordinates are put together and local rules are applied to produce as
many 0

0 -digits as possible. The “carry absorption property” ensures that these local changes do
not affect the more significant digits.
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Definition 1. ε ∈ {−1, 0, 1}N0 is called an alternating greedy expansion of n ∈ Z, if the following
conditions are satisfied:

(1) Only a finite number of εj is nonzero,
(2) n =

∑
j≥0 εj2

j ,

(3) If εj = εℓ 6= 0 for some j < ℓ, then there is a k with j < k < ℓ such that εj = −εk = εℓ.

(4) For j := min{j : εj 6= 0} and j := max{j : εj 6= 0}, we have sign(n) = εj = −εj.
The last condition ensures uniqueness.

Proposition 1. For any integer n, there is a unique alternating greedy expansion. It can be

computed by Algorithm 5.

The proof is easy. �

Algorithm 5 Alternating Greedy Expansion.

Input: n positive integer.
Output: Alternating greedy expansion ε of n.
m← n
ε← 0

while m 6= 0 do

k ← ⌊log2 |m|⌋
if m = −2k then

εk = −1
Return(ε)

else

εk+1 ← sign(m)
m← m− εk+12

k+1

end if

end while

This “alternating greedy” expansion of single integers can be computed from the standard
binary expansion by a transducer automaton as shown in Figure 2.

0 −1

0|0

1|1

⊥|0 0|1̄

1|0

⊥|̄1

Figure 2. Transducer Automaton for computing an alternating greedy expan-
sion from left to right. The symbol ⊥ denotes the end of the sequence.

Now we think about a pair of integers (x, y), both given in the alternating greedy expansion.
When we parse this two rowed representation from left to right, we claim the following: if we
see a

b
c
d
e
f

···
··· , either a = b = 0, and we found a 0

0 , or if not then a
b
c
d
can be rewritten such that 0

0

is produced, or if this is not possible, a
b
c
d
e
f
can be rewritten such that 0

0 is produced. So, after

at most three digits, a 0
0 has been produced. In other words, a representation of length J has

the property that at least ⌊J/3⌋ digits are equal to 0
0 . Recall that the representation of Solinas

[12] (JSF) resp. the representation in [3] (SJSF) have this property. The Table 6 contains all
the necessary information. (The obvious variants when either interchanging the top resp. bottom
rows or exchanging 1↔ 1̄ are not explicitly stated.) Note that in a few instances one would have

some choices. E. g., if we see 1
0
0
1
1̄
1̄ , we decided to replace it by 1

0
0
0
1̄
1 , but we could have chosen

0
0
1
1
1
1̄ or 0

0
1
0
1
1 with the same effect.
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Read Write

0
0

0
0

1
1
0
0

1
1
0
0

1
1
1̄
1̄

0
0
1
1

1
1
1̄
0
0
0

1
1
1̄
0
0
0

1
1
1̄
0
0
1̄

0
0
1
1
0
1

1
1
1̄
0
1
0

1
1
0
0
1̄
0

1
1
1̄
0
1
1̄

0
0
1
1
1
1

1
0
1̄
x

0
0
1
x

1
0
0
1
0
0

1
0
0
1
0
0

1
0
0
1
0
1̄

1
0
0
0
0
1

1
0
0
1
1̄
0

0
0
1
1
1
0

1
0
0
1
1̄
1̄

1
0
0
0
1̄
1

Table 6. Rules for modifying a pair of alternating greedy expansions to a
minimal joint expansion.

Clearly, this can be realized by a transducer automaton, too.
Combining the two transducer automata, we get a single transducer automaton to calculate

a low weight expansion from the binary expansions of two integers. The resulting transducer
automaton is shown in Table 7 and in Figure 3 (note that the final state has not been drawn in
Figure 3).

We now prove that this transducer indeed calculates a minimal joint expansion. To this aim,

we denote by h(x, y) and h̃(x, y) the joint Hamming weights of the SJSF and the output of the
transducer for x and y, respectively. We set

wkn := #{(x, y) | 0 ≤ x, y < 2n, h(x, y) = k},
w̃kn := #{(x, y) | 0 ≤ x, y < 2n, h̃(x, y) = k},

F (Y, Z) :=
∑

k,n≥0

wknY
kZn,

F̃ (Y, Z) :=
∑

k,n≥0

w̃knY
kZn.

Let m̃
(δε)
ij := Y h, where h is the joint Hamming weight of the transition j = ( δ

ε
).i in the transducer.

If there is no such transition, we set m̃
(δε)
ij := 0. We set M̃ (δ,ε) := (m̃

(δε)
ij )1≤i,j≤32 and M̃ :=

∑
0≤δ,ε≤1 M̃

(δ,ε). Then it is easily seen that

F̃ (Y, Z) =
(
1, 0, . . . , 0

)
· (I − ZM̃)−1 · (M̃ (00))2 ·

(
1, 0, . . . , 0

)T
.

The factors M̃ (00) ensure that we return to state 1 writing all accumulated digits. An explicit
calculation yields

F̃ (Y, Z) = −1+(2−3Y )Z+(−1+13Y −9Y 2)Z2+Y (−10+37Y −18Y 2)Z3−2Y 2(16−23Y +8Y 2)Z4+8Y 3(−4+3Y )Z5

(−1+Z)(−1+Z+2Y Z2)(−1+Z+8Y Z2+16Y 2Z3) .

A similar calculation using the right-to-left transducer described in [3] yields

F̃ (Y, Z) = F (Y, Z).
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In: 0
0 In: 1

0 In: 0
1 In: 1

1 In: ⊥
State Nr Out: To: Out: To: Out: To: Out: To: Out: To:

0
0 1 0

0 1 ε 3 ε 4 ε 5 0
0 2

⊥ 2 ε 2 ε 2 ε 2 ε 2 ε 2
1
0
1̄
0 3 0

0
1
0 1 1

0
0
0 6 0

0
1
1 7 ε 8 0

0
1
0 2

0
1
0
1̄ 4 0

0
0
1 1 0

0
1
1 6 0

1
0
0 7 ε 9 0

0
0
1 2

1
1
1̄
1̄ 5 0

0
1
1 1 ε 10 ε 11 1

1
0
0 12 0

0
1
1 2

1̄
0 6 ε 13 0

0 6 ε 14 ε 15 1̄
0 2

0
1̄ 7 ε 16 ε 17 0

0 7 ε 18 0
1̄ 2

1
0
0
1
1̄
1̄ 8 1

0
0
0
1̄
1 1 1

0
0
0
0
1 6 0

0
1
1
1
0 7 1

0
0
1
0
0 12 1

0
0
0
1̄
1 2

0
1
1
0
1̄
1̄ 9 0

1
0
0
1
1̄ 1 0

0
1
1
0
1 6 0

1
0
0
1
0 7 0

1
1
0
0
0 12 0

1
0
0
1
1̄ 2

1
1
0
1̄
1̄
0 10 0

0
1
1
1
0 1 1

1
0
1̄
0
0 6 0

0
1
1
1
1 7 1

1
0
0
0
1̄ 12 0

0
1
1
1
0 2

1
1
1̄
0
0
1̄ 11 0

0
1
1
0
1 1 0

0
1
1
1
1 6 1

1
1̄
0
0
0 7 1

1
0
0
1̄
0 12 0

0
1
1
0
1 2

1̄
1̄ 12 ε 19 ε 20 ε 21 0

0 12 1̄
1̄ 2

1̄
0
0
0 13 1̄

0
0
0 1 0

0
1̄
0 6 ε 22 0

0
1̄
1 12 1̄

0
0
0 2

1̄
1
0
1̄ 14 ε 23 0

0
1̄
1 6 1̄

1
0
0 7 ε 24 1̄

1
0
1̄ 2

0
1
1̄
1̄ 15 0

0
1̄
1 1 0

0
0
1 6 ε 25 0

1
0
0 12 0

0
1̄
1 2

0
1̄
0
0 16 0

1̄
0
0 1 ε 26 0

0
0
1̄ 7 0

0
1
1̄ 12 0

1̄
0
0 2

1
1̄
1̄
0 17 ε 27 1

1̄
0
0 6 0

0
1
1̄ 7 ε 28 1

1̄
1̄
0 2

1
0
1̄
1̄ 18 0

0
1
1̄ 1 ε 29 0

0
1
0 7 1

0
0
0 12 0

0
1
1̄ 2

1̄
1̄
0
0 19 1̄

1̄
0
0 1 ε 30 ε 31 0

0
1̄
1̄ 12 1̄

1̄
0
0 2

0
1̄
1̄
0 20 ε 32 0

1̄
0
0 6 0

0
1̄
1̄ 7 0

0
0
1̄ 12 0

1̄
1̄
0 2

1̄
0
0
1̄ 21 ε 33 0

0
1̄
1̄ 6 1̄

0
0
0 7 0

0
1̄
0 12 1̄

0
0
1̄ 2

1̄
0
0
1
0
1̄ 22 1̄

0
0
0
0
1 1 1̄

0
0
0
1
1 6 1̄

0
0
1
0
0 7 0

0
1̄
1
1̄
0 12 1̄

0
0
0
0
1 2

1̄
1
0
1̄
0
0 23 1̄

1
0
1̄
0
0 1 0

0
1̄
1
1̄
0 6 1̄

1
0
0
0
1̄ 7 0

0
1̄
1
1̄
1 12 1̄

1
0
1̄
0
0 2

1̄
1
1
0
1̄
1̄ 24 0

0
1̄
1
1̄
1 1 0

0
1̄
1
0
1 6 1̄

1
0
0
1
0 7 1̄

1
1
0
0
0 12 0

0
1̄
1
1̄
1 2

0
1
1̄
0
0
1̄ 25 0

0
1̄
1
0
1 1 0

1
0
0
1̄
1̄ 6 0

1
1̄
0
0
0 7 0

1
0
0
1̄
0 12 0

0
1̄
1
0
1 2

0
1̄
1
0
1̄
0 26 0

1̄
0
0
1
0 1 0

1̄
1
0
0
0 6 0

1̄
0
0
1
1 7 0

0
1
1̄
0
1̄ 12 0

1̄
0
0
1
0 2

1
1̄
1̄
0
0
0 27 1

1̄
1̄
0
0
0 1 1

1̄
0
0
1̄
0 6 0

0
1
1̄
0
1̄ 7 0

0
1
1̄
1
1̄ 12 1

1̄
1̄
0
0
0 2

1
1̄
0
1
1̄
1̄ 28 0

0
1
1̄
1
1̄ 1 1

1̄
0
0
0
1 6 0

0
1
1̄
1
0 7 1

1̄
0
1
0
0 12 0

0
1
1̄
1
1̄ 2

1
0
0
1̄
1̄
0 29 0

0
1
1̄
1
0 1 1

0
0
1̄
0
0 6 1

0
0
0
1̄
1̄ 7 1

0
0
0
0
1̄ 12 0

0
1
1̄
1
0 2

1̄
1̄
1
0
1̄
0 30 1̄

1̄
0
0
1
0 1 1̄

1̄
1
0
0
0 6 0

0
1̄
1̄
1̄
1̄ 7 0

0
1̄
1̄
0
1̄ 12 1̄

1̄
0
0
1
0 2

1̄
1̄
0
1
0
1̄ 31 1̄

1̄
0
0
0
1 1 0

0
1̄
1̄
1̄
1̄ 6 1̄

1̄
0
1
0
0 7 0

0
1̄
1̄
1̄
0 12 1̄

1̄
0
0
0
1 2

0
1̄
1̄
0
0
0 32 0

1̄
1̄
0
0
0 1 0

1̄
0
0
1̄
0 6 0

0
1̄
1̄
0
1̄ 7 0

1̄
0
0
1̄
1 12 0

1̄
1̄
0
0
0 2

1̄
0
0
1̄
0
0 33 1̄

0
0
1̄
0
0 1 0

0
1̄
1̄
1̄
0 6 1̄

0
0
0
0
1̄ 7 1̄

0
0
0
1
1̄ 12 1̄

0
0
1̄
0
0 2

Table 7. Transducer automaton for calculating a minimal joint expansion from
the binary expansion from left to right. The symbol ⊥ denotes the end of the
sequence.
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Figure 3. Transducer automaton for calculating a minimal joint expansion from
the binary expansion.

This implies w̃kn = wkn for all nonnegative k and n. Since h̃(x, y) ≥ h(x, y) for all x, y, this

proves that h̃(x, y) = h(x, y), as required.
So we proved the following theorem.

Theorem 4. Let x, y ∈ Z with binary expansions x =
∑J

j=0 xj2
j and y =

∑J

j=0 yj2
j. Then the

output (εJ+1 . . . ε0) of the transducer in Table 7 when reading (xJ

yJ
. . . x0

y0
⊥) is a joint expansion of

x and y of minimal joint Hamming weight.
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