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THE ZETA FUNCTION OF THE LAPLACIAN ON CERTAIN

FRACTALS

GREGORY DERFEL, PETER J. GRABNER†, AND FRITZ VOGL

Abstract. We prove that the zeta-function ζ∆ of the Laplacian ∆ on a self-
similar fractals with spectral decimation admits a meromorphic continuation
to the whole complex plane. We characterise the poles, compute their residues,
and give expressions for some special values of the zeta-function. Furthermore,
we discuss the presence of oscillations in the eigenvalue counting function,
thereby answering a question posed by J. Kigami and M. Lapidus for this
class of fractals.

1. Introduction

Diffusion on fractals has been studied extensively as a generalisation of usual
Brownian motion on manifolds. After its introduction in the physics literature
(cf. [30]) M. Barlow and E. Perkins [3] gave a very detailed study of the properties
of the diffusion on the Sierpiński gasket. Later T. Lindstrøm [23] generalised these
results to nested fractals. Especially, he derived results on the distribution of the
eigenvalues of the Laplacian associated to the diffusion. Here the Laplacian is seen
as the infinitesimal generator of Brownian motion. Alternatively, the Laplacian
can be obtained as the limit of properly rescaled difference operators on graphs
approximating the fractal structure (cf. [9, 14, 16]). Furthermore, the Laplace
operator can be obtained via Dirichlet forms (cf. [1]).

There exists a vast literature on properties of the spectrum of the Laplacian. For
instance, we refer to [2, 15, 16, 17, 18, 21, 24, 32, 34, 35, 36]. Especially, it has been
proved that the Laplacian on an infinite post-critically-finite (p. c. f.) self-similar
fractal has pure point spectrum (cf. [32]).

In the case of a compact self-similar fractal G equipped with the Hausdorff
measure H it is natural to ask for the behaviour of the counting function of the
eigenvalues under Dirichlet or Neumann boundary conditions

(1.1) L(x) =
∑

−∆u=µu
µ<x
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the trace of the heat kernel pt(x, y)

(1.2) P (t) =
∑

−∆u=µu

e−µt =

∫

G

pt(x, x) dH(x),

or the corresponding Dirichlet generating function

(1.3) ζ∆(s) =
∑

−∆u=µu

1

µs
,

the “zeta-function” of the Laplace operator (the eigenvalues are counted with mul-
tiplicities in all three sums). This zeta-function will be the subject of the present
paper.

In the case of the Laplacian on a Riemannian manifold, the meromorphic con-
tinuation of ζ∆ can be derived directly from the asymptotic expansion of the trace
of the heat-kernel (cf. [27, 31]). In this case it is known that ζ∆ admits a mero-
morphic continuation to the whole complex plane with at most simple poles at
d
2 ,

d
2 − 1, . . . , d

2 − ⌊d−1
2 ⌋, where d denotes the dimension of the manifold. Further-

more, the residues at these poles have a geometric meaning.
In the case of a fractal the situation is more delicate. The current knowledge on

the behaviour of the heat-kernel is not sufficient to provide enough information on
its trace to get the meromorphic continuation of ζ∆. In the present paper we will
present a method for the continuation of ζ∆ which is based on an asymptotic study
of the solution of Poincaré’s functional equation. In Section 3 we prove several
results relating the behaviour of the solution to properties of the according Julia
set. This approach for the analytic continuation of ζ∆ is restricted to a subclass of
self-similar fractals which exhibit spectral decimation (cf. [30]) with a polynomial
map (see Section 2). On the other hand it allows to attach a zeta function to every
polynomial which has a certain behaviour under iteration. Such zeta-functions have
been introduced in [42]; we give a totally different approach for their meromorphic
continuation and are also able to derive expressions for some special values.

In Section 6 we use the properties of the zeta function to confirm a conjecture
(cf.[17, p. 105]) about the presence of oscillations in the eigenvalue counting function
of the Laplacian for the class of fractals under consideration.

2. Eigenvalues of the Laplacian and spectral decimation

As it was observed in the case of the Sierpiński gasket and its higher dimensional
analogues in [9, 34, 35] the eigenvalues of the Laplace operator on certain finitely
ramified self-similar fractals exhibit the phenomenon of spectral decimation (cf. [9]
for the case of higher-dimensional Sierpiński gaskets and [25, 37, 42] for a more
general treatment).

Definition 1 (Spectral decimation). The Laplace operator on a p. c. f. self-similar
fractal G admits spectral decimation, if there exists a rational function R, a finite
set A and a constant λ > 1 such that all eigenvalues of ∆ can be written in the
form

(2.1) λm lim
n→∞

λnR(−n)({w}), w ∈ A,m ∈ N

where the preimages of w under n-fold iteration of R have to be chosen such that
the limit exists. Furthermore, the multiplicities of the eigenvalues depend only on
w and m, and the generating functions of the multiplicities are rational.
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The fact that all eigenvalues of ∆ are negative real implies that the Julia set of
R has to be contained in the negative real axis. We will exploit this fact later.

In many cases such as the higher dimensional Sierpiński gaskets, the rational
function R is a polynomial. The method for meromorphic continuation of ζ∆ given
in Section 5 makes use of this assumption. In a recent paper [42] A. Teplyaev
showed under the same assumption that the ζ-function of the Laplacian admits a
meromorphic continuation to ℜs > −ε for some ε > 0 depending on properties
of the Julia set of the polynomial given by spectral decimation. His method uses
ideas similar to those used in [10] for the meromorphic continuation of a Dirichlet
series attached to a polynomial. Complementary to the ideas used here, Teplyaev’s
method carries over to rational functions R.

3. Asymptotic behaviour of solutions of a functional equation

In this section we collect several results on the growth of the solution of the
Poincaré functional equation related to polynomials. We note here that Valiron
[44, Chapter VII] gave rather general results on the order of growth of the solution
of such functional equations. Throughout the paper we will use the notation

logλ z =
log z

logλ

for the logarithm to base λ. We first present a classical result.

Lemma 1 (Valiron [44]). Let p(x) = adx
d + · · · + a1x be a polynomial with real

coefficients, d ≥ 2, which satisfies p(0) = 0 and p′(0) = λ > 1. Any formal power

series solution Φ(z) of the functional equation

(3.1) Φ(λz) = p(Φ(z)), Φ(0) = 0, Φ′(0) = 1

is an entire function of order

ρ =
logm

log |λ| .

Furthermore, denote M(r) = max|z|≤r |f(z)|. Then

logM(r) ∼ rρQ

(

log r

log |λ|

)

, r → ∞,

where Q is a 1-periodic function bounded between two positive constants.

The following theorem gives a more precise description of the growth order of Φ
under assumptions on the behaviour of p under iteration.

Theorem 1. Let p(x) = adx
d + · · · + a1x be a polynomial with real coefficients,

d ≥ 2, which satisfies p(0) = 0 and p′(0) = λ > 1. Furthermore, suppose that F∞,

the Fatou component of ∞ of p, contains an angular region of the form

Wβ = {z ∈ C \ {0} | | arg z| < β}
for some β > 0. Let Φ be an entire solution of the functional equation (3.1). Then

for any ε > 0 and any M > 0 the asymptotic relation

(3.2) Φ(z) =
1

d−1
√
ad

exp
(

zρF (logλ z) + o
(

|z|−M
))

holds uniformly for | arg z| ≤ β−ε, where ρ = logλ d and F is a periodic holomorphic

function of period 1 on the strip {w ∈ C | |ℑw| < β
log λ

}. The real part of zρF (logλ z)

is always positive; F takes real values on the real axis.
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Proof. After Lemma 1 it remains to prove only the assertion about the asymptotic
behaviour of Φ.

Since p is a polynomial of degree d ≥ 2, there exists a real number R > 0, such
that |z| ≥ R ⇒ |p(z)| ≥ 2|z|, which implies that (p(n)(z))n tends to infinity for
|z| > R. Fix ε > 0. Then by local conformity of Φ around 0 there exists r > 0 such
that

Φ ({z ∈ C \ {0} | |z| ≤ r, | arg z| ≤ β − ε}) ⊂ Wβ .

By definition of the Fatou set the sequence (p(n)(z))n is equicontinuous on Wβ and

therefore contains a subsequence (p(nk)(z))k, which converges to ∞ uniformly on

Mε = Φ
(

{z ∈ C \ {0} | r
λ
≤ |z| ≤ r, | arg z| ≤ β − ε}

)

by the fact that ∞ is an attracting fixed point of p and our assumptions on the
Fatou component of ∞. Thus there exists an N such that |p(N)(z)| > R for all
z ∈ Mε, which implies that (p(n)(z))n converges to ∞ uniformly on Mε. Inserting
this fact into (3.1) this implies that

(3.3) lim
z→∞

|Φ(z)| = ∞ uniformly for | arg z| ≤ β − ε.

Furthermore, for any K > 1 there exists a C > 0 such that

|Φ(z)| ≥ C|z|K for | arg z| ≤ β − ε.

Now note that our assumption on the Fatou set implies that there are no zeros
of Φ in Wβ . Therefore,

Ψ(z) = logΦ(z)

is analytic in Wβ and satisfies the functional equation

(3.4) Ψ(λz) = dΨ(z) + log ad + r(z) with r(z) = log
p(Φ(z))

adΦ(z)d
.

The function r(z) is analytic in

{z ∈ C | |z| > r0, | arg z| < β}
for some r0 > 0. Setting Ψ(z) = zρφ(z)− log ad

d−1 with ρ = logλ d yields

(3.5) φ(λz) = φ(z) +
r(z)

dzρ
.

By our previous knowledge on Φ(z) for z → ∞ in | arg z| < β it follows that r(z)
tends to 0 faster than any negative power of |z| uniformly in any angular region
| arg z| ≤ β − ε. Iterating (3.5) yields

(3.6) φ(λnz) = φ(z) +
1

zρ

n−1
∑

k=0

r(λkz)

dk+1
.

We set
F (logλ z) = lim

n→∞
φ(λnz),

which exists by our knowledge on r(z) and (3.6). Clearly, F (w) is periodic with

period 1, holomorphic in |ℑw| < β
log λ

and

φ(z) = F (logλ z)−
1

zρ

∞
∑

k=0

r(λkz)

dk+1
= F (logλ z) + o(|z|−M )

for any positive M .
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Putting everything together, we obtain

Ψ(z) = zρF (logλ z)−
log ad
d− 1

+ o(|z|−M ),

which implies (3.2). The statement on the real part of zρF (logλ z) follows from
|Φ(z)| → ∞ for |z| → ∞ in Wβ . �

Corollary 2. The limit

lim
n→∞

logΦ(λnz)

dnzρ

exists for all z ∈ Φ(−1)(F∞). This limit gives the analytic continuation of F (logλ z)
to Φ(−1)(F∞).

Proof. The proof of the asymptotic formula for Ψ(z) used only that Φ(λnz) → ∞
for n → ∞. This relation holds for any point z ∈ Φ(−1)(F∞). �

Remark 1. Constancy of the periodic function F occurring in the statement of
Theorem 1 has been the subject of a series of papers in the context of branching
processes [5, 8], where it turns out that the constancy of F is implied by the exis-
tence of a continuous time extension of the according branching process (cf. [13]).
Furthermore, it is conjectured that also the opposite implication is true. Usually,
on the real axis the function F exhibits very small oscillations around a mean
value, which can only be observed using high precision numerical computations.
Therefore, theoretical conditions for the presence of such oscillations are of special
interest.

For the purposes of this paper we give the following condition for non-constancy
of the periodic function F .

Theorem 3. Let Φ be the solution of the functional equation (3.1). Assume that

there exists an angle γ such that Φ({reiγ | r > 0}) intersects the Fatou-component

F∞ as well as the Julia-set Jp. Then the periodic function F in (3.2) is not

constant.

Proof. We note first that Jp is a compact subset of C, since p is a polynomial
(cf. [4]). Assume that F (logλ z) = C. Then by Corollary 2 we have

lim
n→∞

logΦ(λnz)

dnzρ
= C

for z ∈ Φ(−1)(F∞). For any r > 0 with Φ(reiγ) ∈ Jp we have Φ(rλneiγ) ∈ Jp for
all n. Thus by our assumptions, for any k ∈ N, any ε > 0, and any M > 0 there
exists r > M , such that Φ(reiγ) ∈ F∞ and

inf{|Φ(reiγ)− z| | z ∈ Jp} < ε.

Then we have

lim
n→∞

logΦ(λn+kreiγ)

rρdn+keiργ
= C

lim
n→∞

log p(k)(Φ(λnreiγ))

dn(p(k)(Φ(reiγ)))ρ
= C.

On the other hand

lim
n→∞

logΦ(λn+kreiγ)

rρdn+keiργ
= lim

n→∞

log p(k)(Φ(λnreiγ))

dn(p(k)(Φ(reiγ)))ρ
(p(k)(Φ(reiγ)))ρ

dkrρeiγρ
= C.
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Since p(k)(Φ(reiγ)) is contained in a bounded set and r can be chosen arbitrarily
large. This gives a contradiction. �

Corollary 4. Assume that Jp ⊂ R− and that Φ is unbounded on R−. Then the

periodic function F in Theorem 1 is not constant.

Proof. Φ(R−) intersects the Julia set Jp, since Φ attains negative values close to
0, and 0 ∈ Jp. Φ(R−) intersects F∞, since Φ takes arbitrarily large values. Then
Theorem 3 gives the assertion with γ = π. �

Remark 2. The example of p(x) = x(4 + x), where Φ(z) = 4 sinh2 1
2

√
z, shows

that the assumption on the unboundedness of Φ on R− cannot be omitted.

Corollary 5. If ρ < 1
2 , then the periodic function F in Theorem 1 is not constant.

Proof. By [6, Theorem 3.1.5] a function of order < 1
2 is unbounded on any ray, and

so is Φ. Apply Corollary 4 to a ray, whose Φ-image intersects the Julia set of p to
obtain the assertion. �

Corollary 6. If the periodic function F in Theorem 1 is not constant, it has

infinitely many non-zero Fourier-coefficients.

Proof. Since p(0) = 0 and 0 lies on the boundary of F∞ by the hypotheses of
Theorem 1, infinitely many zeros of Φ lie on the boundary of Φ(−1)(F∞). From
this we get that F (logλ z) is unbounded when approaching these boundary points
of Φ(−1)(F∞), which implies that F has to have infinitely many non-zero Fourier-
coefficients. �

4. Spectral decimation and level sets of Φ

By (2.1) all eigenvalues of the Laplacian ∆ can be computed by iterating p(−1)

and rescaling. In this section we want to analyse this more precisely. The inverse
map of the polynomial function p has d = deg p branches, which we denote by
q1, . . . , qd. We denote by q1 the unique branch given by q1(0) = 0, which also
satisfies q′1(0) =

1
λ
. Given w ∈ C the elements of p(−n)({w}) are in correspondence

to words of length n over the alphabet {1, . . . , d}: associate to ℓ = (ℓ1, . . . , ℓn) ∈
{1, . . . , d}n the value zℓ = qℓn ◦ qn−1 ◦ · · · ◦ qℓ1(w). Then p(n)(zℓ) = w and all
elements of p(−n)({w}) are of this form.

Let ℓ = (ℓ1, ℓ2, . . .) ∈ {1, . . . , d}N. Then the limit

lim
n→∞

λnqℓn ◦ qn−1 ◦ · · · ◦ qℓ1(w)

exists if and only if there exists N ∈ N, such that ℓn = 1 for n ≥ N . This follows
from the fact that q1 is the only branch of p(−1) which maps 0 to itself.

Take zn ∈ λnp(−n)({w}). Then define un ∈ C by λ−nzn = Φ(λ−nun). Then
zn = λnΦ(λ−nun) and assuming that the limit limn→∞ zn exists as discussed above,
we have

z = lim
n→∞

zn = lim
n→∞

λnΦ(λ−nun) = lim
n→∞

un.

On the other hand w = p(n)(Φ(λ−nun)) = Φ(un) and therefore Φ(z) = w. Thus
the solutions of Φ(z) = w are exactly the possible limits of sequences (zn) as above.
Summing up, we have
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Lemma 2. Let ℓ = (ℓ1, ℓ2, . . .) ∈ {1, . . . , d}N with ℓN = ℓN+1 = . . . = 1 for some

N ∈ N. Then the limit

zℓ = lim
n→∞

λnqℓn ◦ qn−1 ◦ · · · ◦ qℓ1(w)

exists and satisfies Φ(zℓ) = w. All solutions of the equation Φ(z) = w can be

obtained as such a limit.

5. Weierstrass products and Dirichlet series

Since the solution Φ of the functional equation (3.1) is of order ρ, we can represent
Φw(z) = 1− 1

w
Φ(z) by an Hadamard product (for w 6= 0)

(5.1) Φw(z) = exp(c1(w)z + · · ·+ ck(w)z
k)

×
∞
∏

ℓ=1

(

1 +
z

µℓ(w)

)

exp

(

− z

µℓ(w)
+

z2

2µℓ(w)2
+ · · ·+ (−1)k

zk

kµℓ(w)k

)

,

where k = ⌊ρ⌋ denotes the integer part of ρ (cf. [6]). It is clear from the validity of
the functional equation (3.1) that Φw has infinitely many zeroes even in the case
of integer ρ.

It follows from Theorem 1 that logΦw(z) has a convergent Taylor series around
0:

(5.2) log Φw(z) =

∞
∑

ℓ=1

bℓ(w)z
ℓ.

Furthermore, assuming that the Julia set of p is a subset of the negative reals
and w < 0 as it is the case for spectral decimation, logΦw(z) is holomorphic in
{z ∈ C | | arg z| < β}. Computing the Taylor series of logΦw(z) around z = 0 and
comparing coefficients yields cℓ(w) = bℓ(w) for ℓ = 1, . . . , k.

Let

qm(z, w) =

m
∑

ℓ=1

bℓ(w)z
ℓ for m ∈ N

and consider the Mellin transform of logΦw(x) − qk(x,w)

(5.3) Mw(s) =

∞
∫

0

(logΦw(x) − qk(x,w)) x
s−1 dx.

The function Mw(s) is holomorphic in the strip −k − 1 < ℜs < −ρ by general
properties of the Mellin transform (cf. [7]). In order to obtain a meromorphic
continuation of Mw(s) we split the integral in (5.3) into two parts:

M (1)
w (s) =

1
∫

0

(logΦw(x)− qk(x,w)) x
s−1 dx(5.4)

M (2)
w (s) =

∞
∫

1

(logΦw(x)− qk(x,w)) x
s−1 dx.(5.5)
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It is clear that M
(1)
w (s) is holomorphic in ℜs > −k − 1. From the expansion

(5.2) of logΦw(x) we immediately get a meromorphic continuation of M
(1)
w (s) into

ℜs > −r for r > k + 1, r ∈ N by the observation that

M (1)
w (s) =

1
∫

0

(logΦw(x)− qr−1(x,w)) x
s−1 dx+

r−1
∑

ℓ=k+1

bℓ(w)

s+ ℓ
.

The right hand side of this equation is a meromorphic function in ℜs > −r and

therefore provides the meromorphic continuation of M
(1)
w (s). Thus M

(1)
w (s) has

simple poles at s = −ℓ for ℓ ∈ {k + 1, k + 2, . . .} with residues bℓ(w).

We proceed similarly for M
(2)
w (s). This function is holomorphic for ℜs < −ρ.

From Theorem 1 we know that the periodic function F has a uniformly convergent
Fourier series

(5.6) F (u) =
∑

m∈Z

fme2πimu.

From the fact that F (u) is holomorphic for |ℑu| < βσ (here and later we set
σ = 1

log λ
) we actually get that

fm = Oε(exp(−2πσ(β − ε)|m|)) for all ε > 0.

Thus we can write

M (2)
w (s) =

∞
∫

1

(

logΦw(x)−qk(x,w)−
∑

m∈Z

fmxρ+2πimσ+
log ad
d− 1

+log(−w)

)

xs−1 dx

+
∑

m∈Z

fm
s+ ρ+ 2πimσ

−
(

log ad
d− 1

+ log(−w)

)

1

s
,

where the right hand side is a meromorphic function in C with simple poles at s =
−ρ− 2πimσ (m ∈ Z) with residue fm and at s = 0 with residue − log ad

d−1 − log(−w).

This provides the meromorphic continuation of M
(2)
w (s).

Thus we have proved

Lemma 3. The function Mw(s) given by (5.3) admits a meromorphic continuation

to the whole complex plane with simple poles at s = −ℓ for ℓ ∈ {k + 1, k + 2, . . .}
(with k = ⌊ρ⌋), s = 0, and s = −ρ− 2πimσ (m ∈ Z) with σ = 1

log λ
. The residues

at these poles are given by (the constants bℓ(w) are given by (5.2))

(5.7)

Res
s=−ℓ

Mw(s) = bℓ(w) for ℓ ∈ {k + 1, k + 2, . . .}

Res
s=0

Mw(s) = − log ad
d− 1

− log(−w)

Res
s=−ρ−2πimσ

Mw(s) = fm for m ∈ Z.

Under the conditions of Theorem 3, Corollary 4, or Corollary 5 infinitely many

values fm are non-zero.

Similar arguments applied to the function

(5.8) M0(s) =

∫ ∞

0

(

logΦ(x)− log x−
k
∑

ℓ=1

bℓx
ℓ

)

xs−1 dx
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with bℓ given by

(5.9) log
Φ(x)

x
=

∞
∑

ℓ=1

bℓx
ℓ

yield

Lemma 4. The function M0(s) given by (5.8) admits a meromorphic continuation

to the whole complex plane with simple poles at s = −ℓ for ℓ ∈ {k + 1, k + 2, . . .}
(with k = ⌊ρ⌋), and s = −ρ − 2πimσ (m ∈ Z) with σ = 1

log λ
, and a double pole

at s = 0. The residues at these poles (the principal part resp.) are given by (the
constants bℓ are given by (5.9))

(5.10)

Res
s=−ℓ

M0(s) = bℓ for ℓ ∈ {k + 1, k + 2, . . .}

M0(s) =
1

s2
− log ad

d− 1

1

s
+ · · ·

Res
s=−ρ−2πimσ

M0(s) = fm for m ∈ Z.

Under the conditions of Theorem 3, Corollary 4, or Corollary 5 infinitely many

values fm are non-zero.

In order to use the information derived for Mw(s) for the meromorphic contin-
uation of the Dirichlet series

(5.11) ζΦ,w(s) =
∑

Φ(−µ)=w
µ>0

µ−s

we derive an alternative expression for Mw(s) based on (5.1)

(5.12) Mw(s) =

∞
∫

0

(logΦw(x) − qk(x,w)) x
s−1 dx

=
∑

Φw(−µ)=0

∞
∫

0

(

log

(

1 +
x

µ

)

− x

µ
+

x2

2µ2
+ · · ·+ (−1)k

xk

kµk

)

xs−1 dx.

Furthermore, the second integral in (5.12) can be evaluated as

(5.13) Mw(s) = ζΦ,w(−s)
π

s sinπs
by the fact that for −k − 1 < ℜs < −k

∞
∫

0

(

log(1 + x)− x+
x2

2
+ · · ·+ (−1)k

xk

k

)

xs−1 dx =
π

s sinπs

and the fact that the right hand side is the Mellin transform of a “harmonic sum”
(cf. [28, 29]). Equation (5.13) provides us with the meromorphic continuation of
ζΦ,w(s). This is somewhat a reversion of the ideas used in [26].

Summing up, we have obtained

Theorem 7. Let Φ be the solution of the functional equation (3.1). Then the

Dirichlet generating function ζΦ,w(s) of the solutions of the equation Φ(−µ) = w
for w < 0 given in (5.11) admits a meromorphic continuation to the whole complex

plane. Under the conditions of Theorem 3, Corollary 4, or Corollary 5 there exist
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infinitely many simple poles at points of the form s = ρ+2πimσ (σ = 1
log λ

, m ∈ Z).

The following special values are known (ρ = log d
log λ

and fm are given by (5.6))

Res
ρ+2πimσ

ζΦ,w(s) = −fm
π

(ρ+ 2πimσ) sinπ (ρ+ 2πimσ) for m ∈ Z

ζΦ,w(m) = 0 for m < ρ,m ∈ Z

ζ′Φ,w(0) =
log ad
d− 1

+ log(−w)

ζΦ,w(m) = (−1)m−1mbm(w) for m ∈ N,

where bm(w) is given by (5.2).

Similar arguments applied to Φ(x)/x yield

Theorem 8. Let Φ be the solution of the functional equation (3.1). Then the

Dirichlet generating function ζΦ,0(s) of the solutions of the equation Φ(−µ) = 0
for µ > 0 given in (5.11) admits a meromorphic continuation to the whole complex

plane. Under the conditions of Theorem 3, Corollary 4, or Corollary 5 there exist

infinitely many simple poles at points of the form s = ρ+2πimσ (σ = 1
log λ

, m ∈ Z).

The following special values are known (ρ = log d
log λ

)

Res
ρ+2πimσ

ζΦ,0(s) = −fm
π

(ρ+ 2πimσ) sinπ (ρ+ 2πimσ) for m ∈ Z

ζΦ,0(m) = 0 for m < ρ,m ∈ Z \ {0}
ζΦ,0(0) = 1

ζ′Φ,0(0) =
log ad
d− 1

ζΦ,0(m) = (−1)m−1mbm for m ∈ N,

where bm is given by (5.9).

Remark 3. By Lemma 2 we have

ζΦ,w(s) = lim
n→∞

∑

z∈p(−n)({w})

(λnz)−s,

which is the function ζp,w(2s) studied in [41, 42].

6. Meromorphic continuation of the zeta-function

Up to now we have only considered the eigenvalues originating from m = 0 in
(2.1) for fixed w ∈ A. In general the multiplicity of eigenvalues for m > 0 is given
by a linear recurrent sequence βm(w). This sequence has a rational generating
function

Bw(x) =
∞
∑

m=0

βm(w)xm =
Pw(x)

Qw(x)

with Pw, Qw ∈ Z[x]. Let rw denote the radius of convergence of Bw, then by
Pringsheim’s theorem x = rw is a pole of Bw; let kw denote the order of this pole.
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Then the positivity of βm(w) implies that the coefficient ckw
(w) in the Laurent-

expansion around x = rw

Bw(x) =
ckw

(w)
(

1− x
rw

)kw

+ · · ·

is positive.
Putting everything together, we can write

(6.1) ζ∆(s) =
∑

−∆u=µu

1

µs
=
∑

w∈A

Pw(λ
−s)

Qw(λ−s)
ζΦ,w(s),

which provides the meromorphic continuation of ζ∆ to the whole complex plane. If
logλ d < 1

2dS then all the functions ζΦ,w(s) are holomorphic in ℜs > 1
2dS − ε for

some ε > 0. Since ζ∆(s) has a simple pole at s = 1
2dS by the fact that L(x) ≍ x

1
2dS ,

at least one of the rational functions Bw(x) has to have a pole at x = λ− 1
2dS . All

poles of functions Bw at x = λ− 1
2dS have to be simple. Let W denote the set of

those w with rw = λ− 1
2dS . By our observation on the sign of c1(w) for w ∈ W the

Dirichlet series

η(s) = −
∑

w∈W

c1(w)ζΦ,w(s)

has positive coefficients. We apply [22, Theorem 9.5, p. 184] to the function η(s)
to see that η(12dS + ikτ) = 0 cannot hold for fixed τ and all k ∈ Z \ {0}. Thus the
function

∑

w∈W

Bw(λ
−s)ζΦ,w(s)

has a simple pole at s = 1
2dS and at least two non-real poles on the line ℜs = 1

2dS .
Since the remaining summands in (6.1) have no poles on this line, these points
remain poles of ζ∆(s).

Summing up, we have proved:

Theorem 9. Let G be a p. c. f. self-similar compact fractal, whose Laplace operator

∆ admits spectral decimation in the sense of Definition 1 with a polynomial of degree

d. Then the Dirichlet generating function of the eigenvalues of ∆

ζ∆(s) =
∑

−∆u=µu

1

µs
,

has a meromorphic continuation to the whole complex plane with poles contained in

a finite union of sets {ρk+2πimσ | m ∈ Z}, where σ = 1
log λ

and λ is the parameter

coming from spectral decimation. There is a simple pole at s = 1
2dS (dS denoting

the spectral dimension of G). If logλ d < 1
2dS then ζ∆(s) has at least two non-real

poles on the line ℜs = 1
2dS.

Remark 4. The case of G = [0, 1] which gives the Riemann zeta function and has
logλ d = 1

2dS shows that the condition logλ d < 1
2dS is needed for the last assertion.

Theorem 10. Let G be a p. c. f. self-similar compact fractal, whose Laplace oper-

ator ∆ admits spectral decimation in the sense of Definition 1. Then the following

are equivalent:

(1) ζ∆(s) has at least two non-real poles in the set 1
2dS + 2πiσZ (σ = 1

log λ
).
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(2) the limit limx→∞ x− 1
2 dSL(x) does not exist, where L(x) denotes the eigen-

value counting function (1.1)

(3) the limit limt→0+ P (t)t
1
2dS does not exist, where P (t) denotes the trace of

the heat kernel (1.2).

Proof. “(1)⇔(2)”: the general theory of Dirichlet series (cf. [11]) implies that

ζ∆(s)(λ
s −λ

1
2 dS) is of polynomial growth along vertical lines. Thus for some k ∈ N

the last integral in the Mellin-Perron formula (cf. [39])

∑

µ<x

(

1− µ

x

)k

=
1

2πi

1
2dS+1+i∞
∫

1
2dS+1−i∞

ζ∆(s)x
s ds

s(s+ 1) · · · (s+ k)
=

∑

ℓ∈Z

Res
s= 1

2dS+2πiℓσ
ζ∆(s)xs 1

s(s+ 1) · · · (s+ k)

+
1

2πi

1
2dS−ε+i∞
∫

1
2dS−ε−i∞

ζ∆(s)x
s ds

s(s+ 1) · · · (s+ k)

converges for some ε > 0. The last integral is O(x
1
2dS−ε). The series constitutes

x
1
2dS times a Fourier series in logλ x, which is constant, if and only if there are no

non-real poles on the line ℜs = 1
2dS . Since the left-hand side of the equation is an

iterated integral of L(x), x− 1
2 dSL(x) shows oscillations, if and only if the right-hand

side does.
“(1)⇔(3)”: again by Mellin inversion we get

P (t) =
1

2πi

1
2dS+1+i∞
∫

1
2 dS+1−i∞

ζ∆(s)Γ(s)t
−s ds =

∑

ℓ∈Z

Res
s= 1

2dS+2πiℓσ
ζ∆(s)Γ(s)t

−s +
1

2πi

1
2dS−ε+i∞
∫

1
2 dS−ε−i∞

ζ∆(s)Γ(s)t
−s ds.

Again the series is t−
1
2dS times a Fourier series in logλ t and the last integral consti-

tutes an error term O(t−
1
2 dS+ε). The same argument as above proves the presence

of oscillations, if and only if ζ∆ has non-real poles on the line ℜs = 1
2dS . �

Remark 5. In [17, p. 105] it is conjectured that limx→∞ x− 1
2 dSL(x) does not exist

for non-integer dS in the “lattice case”. The non-existence of the limit has been
confirmed in the case of existence of localised eigenfunctions (cf. [2, 24, 32]) and in
the case of the existence of spectral gaps (cf. [38]).

Remark 6. In [19] it has been proved that the n-step transition probabilities
pn(x, y) (the discrete analogue of the heat-kernel) on certain self-similar graphs
satisfies an asymptotic relation

pn(x, y) ∼ n− 1
2dSF (logλ n)
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with a periodic function F . It is shown that F is not constant, if the Julia set of a
related rational function is a Cantor set. In [43] it is proved for the same class of
graphs that F is not constant, if dS is irrational.

Remark 7. Theorems 9 and 10 together confirm the conjecture (cf. [17, p. 105])

that the limit limx→∞ x− 1
2dSL(x) does not exist for fractals admitting spectral

decimation in the sense of Definition 1 with a polynomial of degree d and logλ d <
1
2dS .

7. Examples

Example 1. In [9, 33] the eigenvalues of the self-similar Dirichlet-Laplacian on the
K-dimensional Sierpiński gasket have been identified. The K-dimensional gasket
admits spectral decimation with the polynomial pK(x) = x(K + 3 + x). The
eigenvalues of ∆ are derived from the preiterates of the elements of the set A =
{−2,−(K + 1),−(K + 3)} with multiplicities

βm(−2) =

{

1 for m = 1

0 otherwise,

βm(−(K + 1)) =
K − 1

2
(K + 1)m−1 − K + 1

2
for m ≥ 2,

βm(−(K + 3)) =
K − 1

2
(K + 1)m−1 +

K + 1

2
for m ≥ 1.

This yields (with λ = K + 3)

(7.1) ζ∆(s) = λ−sζΦ,−2(s) + ζΦ,−(K+1)(s)

∞
∑

m=2

βm(−(K + 1))λ−ms+

ζΦ,−(K+3)(s)

∞
∑

m=1

βm(−(K + 3))λ−ms =

λ−sζΦ,−2(s) +

(

K2 − 1

2(λs − (K + 1))
− K + 1

2(λs − 1)

)

λ−sζΦ,−(K+1)(s)+

(

K − 1

2(λs − (K + 1))
+

K + 1

2(λs − 1)

)

ζΦ,−(K+3)(s).

We first observe that the poles of ζΦ,·(s) at s = ρ + 2πimσ, which are given by
λs = 2, cancel by the fact that the residues of ζΦ,w at these points are independent
of w and the values of the rational factors sum up to 0. Furthermore, we observe

ζΦ,−(K+3)(s) = (λs − 1) ζΦ,0(s)

by the fact that Φ(z) = −(K + 3), if and only if Φ(λz) = 0 and Φ(z) 6= 0. This
implies that the poles at s = 2πimσ of the rational factor of the last summand in
(7.1) are cancelled. Using Mellin transform, we see that the cancellation of poles
on the line ℜs = 0 is equivalent to the existence of the limit

lim
x→∞

xlog
λ
(−w)

Φ(x)

∞
∏

n=1

(

1− 1

w
Φ(x)

)

We did some numerical computations, which indicate that there are oscillations
for w = −3 and K = 2. Nevertheless, the pole of the rational factor at s = 0 is
cancelled by the zero of ζΦ,−K−1.



14 G. DERFEL, P. J. GRABNER, AND F. VOGL

From this we derive, for instance,

ζ∆(0) =
K + 1

2

(

1− 2
log(K + 1)

log(K + 3)

)

ζ′∆(0) = log 2 +
2K2 + 3K + 1

2K
log(K + 1)− K2 + 3K − 2

4K
log(K + 3)

+
K + 1

4 log(K + 3)
ζ′′Φ,−K−3(0)−

K + 1

2 log(K + 3)
ζ′′Φ,−K−1(0)

ζ∆(1) =
K2 + 3K − 1

2(K + 2)(K + 3)

Example 2. In [40, 41, 42] the spectrum of the Neumann-Laplacian on the 2-
dimensional Sierpiński gasket has been studied. It has been shown that it admits
spectral decimation with the polynomial p(x) = x(5+x). The Neumann-eigenvalues
are derived from the preiterates of the set A = {−3,−5} with multiplicities

βm(−3) =
3m−1 + 3

2
for m ≥ 1

βm(−5) =
3m−1 − 1

2
for m ≥ 2.

This gives

ζ∆(s) = ζΦ,−3(s)
∞
∑

m=1

βm(−3)5−ms + ζΦ,−5(s)
∞
∑

m=2

βm(−5)5−ms =

(

1

2(5s − 3)
+

3

2(5s − 1)

)

ζΦ,−3(s) +

(

3

2(5s − 3)
− 1

2(5s − 1)

)

5−sζΦ,−5(s),

which is in accordance with [41, 42]. Notice that there is no pole at s = 0, the poles
at the solutions of 5s = 1 are cancelled in the second summand by the observation
in Example 1. Numerical experiments seem to indicate that the poles of the first
summand on the imaginary axis do not cancel with zeros of ζΦ,−3.

By the same arguments as in Example 1 the poles at the solutions of 5s = 2
are cancelled. Furthermore, in the second summand the poles at the solutions of
5s = 1 are cancelled by zeros of ζΦ,−5. The poles of the rational factors at s = 0
cancel and we obtain

ζ∆(0) =
3

2
log5 3−

1

2

ζ′∆(0) =
3ζ′′Φ,−3(0)− ζ′′Φ,−5(0)

4 log 5
− log 3

ζ∆(1) =
7

30

ζ∆(2) =
1

150

The second derivatives ζ′′Φ,w(0) can be computed numerically by the following

observations. Around s = 0 we can write Mw(s) = − log(−w)
s

+ Hw(s) with a
function Hw holomorphic around 0, and by (5.13) we have 2Hw(0) = ζ′′Φ,−w(0). We



THE ZETA FUNCTION. . . 15

have

(1− 2 · 5s)Hw(s) + d
log(−w)

s
(5s − 1) =

1
∫

0

log

(

1− 1
w
Φ(x)

(1− 1
w
Φ(x5 ))

2

)

xs−1 dx+

∞
∫

1

log

(

1− 1
w
Φ(x)

−w(1 − 1
w
Φ(x5 ))

2

)

xs−1 dx,

and setting s = 0

Hw(0) = 2 log(−w) log 5−
1
∫

0

log

(

1− 1
w
Φ(x)

(1 − 1
w
Φ(x5 ))

2

)

dx

x

−
∞
∫

1

log

(

1− 1
w
Φ(x)

−w(1 − 1
w
Φ(x5 ))

2

)

dx

x
.

The first integral can be computed as the rapidly convergent series
∫ 1

0

log

(

1− 1
w
Φ(x)

(1− 1
w
Φ(x5 ))

2

)

dx

x
=

∞
∑

n=1

bn(w)

n
(1− 2 · 5−n).

The power series for log(1 − 1
w
Φ(z)) has radius of convergence the modulus of the

smallest solution of Φ(z) = w, which is much larger than 1 in the cases of interest.
This gives exponential convergence.

For computing the second interval we observe that Φ(x) ≥ exp(0.9xρ) for x ≥
5, which can be shown by discussing Φ on the finite interval 5 ≤ x ≤ 25 and
the extending by the obvious inequality Φ(5x) ≥ Φ(x)2. This together with an
inequality for the logarithm yields (for T ≥ 25)

0 ≥
∫ ∞

T

log

(

1− 1
w
Φ(x)

−w(1− 1
w
Φ(x5 ))

2

)

dx

x
≥ (2w − 1)

∫ ∞

T

exp(−0.9xρ)
dx

x
.

Thus the improper integral can be computed by truncation at a finite value and
estimating the remainder integral as above.

Using these ideas we computed (using Mathematica)

H−3(0) = 5.23995 51500 . . .

H−5(0) = 9.06601 63789 . . .

ζ′∆(0) = 0.96852 21499 . . . .

If there were no poles of ζ∆ on the line ℜs = 0, exp(−ζ′∆(0)) were the value of the
regularised product of the eigenvalues (cf.[12]), or the Fredholm determinant of ∆.

Acknowledgment. The second author is indebted to Michel Lapidus and Alexan-
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