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Abstract

By a profound result of Heinrich, Novak, Wasilkowski, and WoZniakowski the inverse of the star-
discrepancy n* (s, €) satisfies the upper bound n*(s,e) < cansse 2. This is equivalent to the fact
that for any NV and s there exists a set of N points in [0, 1]° whose star-discrepancy is bounded by
Cabss /2N 712 The proof is based on the observation that a random point set satisfies the desired
discrepancy bound with positive probability. In the present paper we prove an applied version of this
result, making it applicable for computational purposes: for any given number g € (0, 1) there exists
an (explicitly stated) number c(q) such that the star-discrepancy of a random set of N points in [0, 1]°
is bounded by ¢(q)s*/? N /2 with probability at least ¢, uniformly in N and s.

1 Introduction and statement of results

The number n*(s, €), which is defined as the smallest possible cardinality of a point set in [0, 1]® having
discrepancy bounded by ¢, is called the inverse of the discrepancy. Heinrich, Novak, Wasilkowski, and
Wozniakowski [10] proved the upper bound

n*(s,€) < cabsse %, )
which is complemented by the lower bound
n*(s,€) > Capsse

due to Hinrichs [11] (throughout the paper, c,1,s denotes absolute constants, not always the same). Hence
the inverse of the star-discrepancy depends linearly on the dimension, while the precise dependence on
is still unknown. It is easy to see that (1) is equivalent to the fact that for any NV and s there exists a set
Pn of N points in [0, 1]° such that the star-discrepancy D3, of this point set is bounded by

" s
Dy(Pn) < cabs\/\% 2)
(recently we showed that it is possible to choose c,s = 10 in (2), see [1]). The existence of such a
point set directly follows from the surprising observation that a randomly generated point set (that is, a
Monte Carlo point set) satisfies the desired discrepancy estimate with positive probability. Of course, for
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applications such a mere existence result is not of much use, as was remarked by several colleagues at the
MCQMC 2012 conference in Sydney. For this reason, in the present paper we prove an applied version
of (2), which provides estimates for the probability of a random point set satisfying (2) (depending on
the value of the constant). As our Theorem 1 below shows, this probability is extremely large already
for moderate values of c, for example for ¢ = 20. Additionally, the quality of our estimates for these
probabilities improves as the dimension s increases (which is somewhat counter-intuitive, and originates
from the exponential inequalities used in the proof, which cause a “concentration of mass” phenomenon).

The fact that the probability of a random point set satisfying (2) is very large is in contrast to the fact
that no general constructions of point sets satisfying such discrepancy bounds are known. So far, the best
results are a component-by-component construction of Doerr, Gnewuch, Kritzer and Pillichshammer [2],
a semi-deterministic algorithm based on dependent randomized rounding due to Doerr, Gnewuch, and
Wahlstrom [3], and a construction of Hinrichs [12] of a “structured” set of N = 256 points in dimension
s = 15 having discrepancy less than 1/4 (by this means solving one instance of an open problem in [14]).

For more information concerning the inverse of the discrepancy and tractability of multidimensional
integration we refer to a recent survey article of Gnewuch [7], and to the monograph of Novak and Woz-
niakowski [13, 14]. A collection of open problems on this topic can be found in [9].

In the present paper, we will prove the following theorem.

Theorem 1 For any s > 1, N > 1 and q € (0,1) a randomly generated s-dimensional point set
(21, ..., 2N) satisfies

Dy (z1,...,2N) §5.7\/4.9+bg((1;q>‘1)\/\/% 5

with probability at least q.

It is interesting that the quality of the discrepancy estimate in Theorem 1 improves as the dimension s in-
creases; for example the necessary number ¢(q, s) to have star-discrepancy bounded by ¢(q, s)s*/2N~1/2
with probability at least 90% is 15.30 in dimension s = 1, while it is only 12.65 in dimension s = 100.
However, neglecting this advantage of large dimensions in order to obtain a result which holds uniformly
in s, one immediately obtains the following corollary.

Corollary 1 For any s > 1, N > 1 and q € (0,1) a randomly generated s-dimensional point set
(21,...,2N) satisfies

Dy (21,...,2x) < 5.7y/49 +log (1 — q)1>\/\/]iV 4)

with probability at least q.

Theorem 1 shows that the probability that a random point set satisfies the discrepancy bound ¢(q, s)s*/2N~1/2
is extremely large already for moderate values of ¢(q, s). The following table illustrates this fact, for
s =10and s = 100.

q 0.01 0.5 09 | 0.99 | 0.999
c(q,10) 12.62 | 12.71 | 12.92 | 13.20 | 13.48
c(q,100) || 12.62 | 12.63 | 12.65 | 12.68 | 12.71




As the table shows, the probability that a random point set has “small” discrepancy in the sense that its
discrepancy is bounded by ¢s'/2N~1/2 for some moderate ¢ (for example, ¢ = 20) is extremely large.
This observation is an exciting counterpart of the fact that we do not have the slightest idea of how
to construct point sets satisfying such discrepancy bounds, even for moderate IV and s. It should also be
noted that calculating the star-discrepancy of a given (high-dimensional) point set is computationally very
difficult, see [4, 8]. Hence, although our results show that the probability of a random point set having
small discrepancy is very large, checking that a concrete point set satisfies such discrepancy bounds is in
general (in high dimensions) a computationally intractable problem.

2 Preliminaries

Throughout the paper, s > 1 denotes the dimension and A denotes the s-dimensional Lebesgue measure.
For z,y € [0,1]°, where x = (21,...,2s) and y = (y1,...,ys), wewrite x < yif z; <y;,1 <1 <,
and for any z € [0, 1]® we write [0, z] for the set {y € [0,1]* : 0 <y < z}. Furthermore, we write | A
for the number of elements of a set A.

The following Lemma 1 of Gnewuch [5, Theorem 1.15] is a central ingredient in the proof of our main
result. For convenience we use the notation from [5] and [6]: For any ¢ € (0, 1] a set I" of points in [0, 1]*
is called a d-cover of [0, 1]° if for every y € [0, 1]° there exist z,z € I' U {0} such that z < y < z and
A([0,2)) = A([0,2)) < 4. The number N (s, d) denotes the smallest possible cardinality of a §-cover of
[0,1]°.

Similarly, for any § € (0, 1] a set A of pairs of points from [0, 1]° is called a §-bracketing cover of [0, 1]*,
if for every pair (z, z) € A the estimate A([0, z)) — A([0, )) < d holds, and if for every y € [0, 1]° there
exists a pair (z, z) from A such that z < y < z. The number N (s, d) denotes the smallest possible
cardinality of a §-bracketing cover of [0, 1]°.

Lemma 1 Forany s > 1and§ € (0,1]
N(s,8) < (261 (5 +1)°

and

MNi(s,8) <257 tes (67" +1)°.
By Lemma 1 for any 1 < k < K there exists a 2~ *-cover of [0, 1]%, denoted by I'j,, such that
Tkl < (2e)%(2F +1)°.
Furthermore we denote by A g a 27X - bracketing cover for which
|Ag| < 257 tes (2K +1)8,
which also exists due to Lemma 1. Moreover we define 'k as
'k ={vel0,1)°: (v,w) € Ak for some w}.

By definition for every = € [0, 1]° there exists a pair (vi, wg ) = (Vi (2), wk (z)) for which (vi, wk) €
Ak suchthat vy < 2 < wg and

A([0, wk]) = A([0,vk]) < o7



Furthermore forevery k, 2 < k < K and~y € T, there exist vi,—1 = vi—1(7), Wp—1 = Wg—1(7Y), Vg—1, Wk—1 €
T'x—1 U{0}, such that vy <y < w1 and

A0, 1) = M0, 1) < 5y
We define
rr(z) = vk(z)
pr-1(r) = vk-1(pK (7)) = vk-1(vK (7))
pK—z(f) = UK—2(pK—1($) =vg—2(vk—-1(vK(2)))
pi(z) = wvi(p2()),

and pr41(z) = wi (x), po(z) = 0. For z,y € [0, 1]° we set

[0,y\[0,2] ifz # 0,
[z,y] := ¢ [0,9] ifz=0,y+#0,
0 ifr=y=0.

Then the sets [px(z), pr+1(z)], 1 < k < K, are disjoint, and we obtain

K-1 K
U [pk(l'),karl(iC)] C [va} - U [pk(x),pk+1(x)], Va € [Oa ]-]S'
k=0 k=0

Hence for every z,y € [0,1]°

S

—1 K
I[Pk(fﬂ)’mﬂ(w)] (y) < 1[0’9”] (y) < kz l[Pk($)7Pk+1(I)](y)' ®)
=0

=
Il

0
Moreover, independent of x, we have for 0 < k < K

M@ @) < g

ok
For 0 < k < K we define Ay, to be the set of all sets of the form [py(z), pr+1(z)], where x € [0, 1]°.
Then for 0 < k < K, as a consequence of Lemma 1, we can bound the cardinality of Ay by

|Ar| < (2¢)° (2FH1 +1)°. (6)

Note that all elements of Ay, where 0 < k < K, have Lebesgue measure bounded by 2=k This dyadic
decomposition method was introduced in [1], where it is described in more detail.

Let X1,..., Xy be independent, identically distributed (i.i.d.) random variables defined on some prob-
ability space (€2,.4,P) having uniform distribution on [0, 1]°, and let I € Aj, for some & > 0. Then
the random variables 1;(X1),...,1;(Xy) are i.i.d. random variables, having expected value A(J) and

variance k( k)
9 2781 —27 fork > 1,
ORPYUEER ey o



Since the X,, are independent it follows that the random variable 27]:]:1 17(X,,) has expected value
NX(I) and variance N (A(I) — \(I)?).

In the proof of our main result we need two well-known results from probability theory, namely Bern-
stein’s and Hoeffding’s inequality. Bernstein’s inequality states that for Z;, ..., Z being i.i.d. random
variables, satisfying E Z,, = 0 and |Z,,| < C a.s. for some C' > 0,

N
(|2
n=1
By applying this inequality to the random variables 1;(X,,) — A(I), we obtain
]P (
for t > 0. Using (7) we conclude
t2

IF’( >t>§2exp(—2N2k(1_2k)+2t/3> for k> 2. ®)

For k € {0, 1} we use Hoeffding’s inequality, which yields

2
IP’( >t> < 2exp (i@) )

3 Proof of Theorem 1

Since the theorem is trivial for N < 32 (s +1log ((1 —¢)™!)) < 5.72 (s +log ((1 — ¢)™"')) we assume
that N > 32 (s + log ((1 — ¢)~')) and set

K= Fogrz N —log, (s +log ((1 — Q)l))w .

t2
2 (Ziv:l Ezg) +201/3

>t> <2exp | —

N
Z 1I(Xn) - NA(I)
n=1

t2
> t) < 2exp (-2 (NA(I) (1= A(I))) + 2t/3>

Z 1I(Xn) - N)‘(I)

N
S 14(X,) = NA(D)

2

Then K > 3, and

N N o (e R RV ()
9—K ¢ 7 ) (10)
2v/N VN
Furthermore we have Kl
9-
ViN = N2 < Vi an
VN = s+log(1—¢)7 1)
By choosing t = ¢v/sN for some ¢ > 0, we conclude from (8), (9) and (11) that for any ¢ > 0
N
P ( > 1(X,) = NA(T)| > C\/W)
n=1
2e—2¢"s fork =0,1
12
2exp | - o 70 for2<k< K. "

2.2-k(1-2-Fk)4

34/s+log((1—q)—1)



Let By, k =0,..., K be given as

Bk:U<

I€Ay

N
Z ll(Xn) - N/\(I)

n=1

> cpV sN) . (13)
The strategy of the proof is to find for any given ¢ € (0, 1) constants ¢;, = ¢x(q),k =0, ..., K for which

> P(By)<1-g¢

k=0

holds for any given gq.

First we consider the case & = 0. By (6) we have that | 4g| < (6¢€)®. We choose

¢ — \/1+1;3g(6) N log(8(128— Q) < \%\/4.88+1°g((18—‘1)_1)7 (14)

thus together with (12) and (13) it follows that

B(Bo) < | Aof2e >4 < (6e)re=0+osn L @) 120

Furthermore we get by (6) that |A;| < (10e)® and with

~ [1+1og(10) log(8(1—¢q)~1) 1\/ log ((1 —¢)~Y)
= \/ 5 + % < Vi 530+~ (15)

we obtain that
B(By) < |27 < (10e)2e>(+testion L =0) _ 1=0

Next we consider the case 2 < k < K. By (12) and (13) we have

< 2. — .
]P’(Bk) < |Ak| 2 exp 5. 2719(1 B 27/’@) dcn2 KoJs (16)

3y/sHog((1-q) 1)

We set

log (2(k+1(1 — ¢)—1 2.08-4.27K
o = \/1 +log(2(2F1 4+ 1)) + 8 ( S( 9)7) \/2 L9k (1 — k) 4 08#

hence we get that

/s
Vs +log (1—q)~T)

\/1 +1og(2(28+1 + 1)) + log(2(k+1)) + M\/Q L2R(1 — 27k 4 %

1+ 10%((1;11)_1)

IN




2.08-4-2°K

< \/1 + log(2(2F+1 + 1)) + 10g(2(’”1))\/2 227k(1—27F) + 3

for 2 < k < K. Thus by (16) we obtain

czs
2.2-k(1—2-%) + 4er2-K /s

3y/o+log((1—0) )
(2)*(2%+D 4 1) . 2 exp (—5 (1 +log(2(2+D) 4 1))))

1—¢q
2k -

]P(Bk) S |Ak| -2 exp | —

1—q

IN

Summing up the estimated probabilities gives

K 3 K
Z]P’(Bk) < <4 +Z2’€> (1-¢)<1—q.
k=3

k=0
Therefore with at least probability ¢, a realization X1 (w), ..., X, (w) is such that
K
w ¢ U Bk.
k=0

We denote by z,, a point set which is defined by such a realization, i.e.

K
zn = Xnp(w), 1<n<N, for some w ¢ UBk.
k=0

Set Ay = 1/2-27F(1 —27%) +2.08 - 4 - 2=K /3. Then

< 2.08

2(k+1)

K K
log(2k+1) (1 — )1
ch:Zkk\/1+10g(2(2’“+1+1))+ 8 (1=9)~")
k=2 k=2 S
K
log(2(k+1) 1 1_g)-1
SZ)\k\/l—|—10g2—|—10g(2k+1)+0'12_~_ og( , )_|_ og (( - Q1)
k=2
3 log (1 —¢)~")
<3 Aey/112 4+ (26 +3) log 2 + ——————
S
k=2
v g (1L—0) ) 1 <~ -
<112+ Tlogo + 22\ =07 ) 1 S~ iy
1 1—¢q) 1
< 3.28\/5.98 + M'
Therefore we obtain by using (14), (15) and (17)
K
L log(l—g)7") 1 log (1 —¢)~"
ch <— 4.88+0g(<q>)+\/5.39+0g((q>)
k=0 V2 § V2 s

A7)



log (1—q) ) s

+ 3.28\/5.98 +

Applying (5), (10), (18) and Jensen’s inequality we obtain

N K N
Z 1[0@](2") S Z Z 1[Pk(m)7pk+1($)] (Zn)
n=1

k=0n=1

K
< NA([0, wg (2)]) + VSN Y ex
k=0

K
< NA([0,2]) + NA([z, wg (2)]) + VSN Y cx
k=0

s+log((1—g¢q)! K
SN)\([O,JU])—FN\/ + g\/(](v %) )+\/3szzock

< NA([0,2]) + 5.7\/4.9 + M@.

Similarly a lower bound is given by

N K—-1
Lo (20) = NM(0,pxe(@)]) — V5N 3
k=0

n=1

> NA([0,2]) — 5.7\/4.9 + M\/TN.

Combining the above bounds we finally arrive at

Dy (21,5 20) < 5.7\/4.9+ M V5

=
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