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Abstract

Recently, Fialová and Strauch, Uniform Distribution Theory, 6(1):101-125, 2011, calculated the
asymptotic distribution function (adf) of the two-dimensional sequence(φb(n), φb(n+1))n≥0, where
(φb(n))n≥0 denotes the van der Corput sequence in baseb. In the present paper we solve the general
problem asking for the limit distribution of(φb(n), φb(n + 1), . . . , φb(n + s − 1))n≥0. We use the
fact that the van der Corput sequence can be seen as the orbit of the origin under the ergodic von
Neumann-Kakutani transformation.

1 Introduction

In the open problem collection on the web site ofUniform distribution theorythe following problem is
stated:

Let (φb(n))n≥0 denote the van der Corput sequence in baseb. Find the distribution of the
sequence(φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0 in [0, 1)s.1

The cases = 2 has recently been solved by Fialová and Strauch [3]. They showed that every point
(φb(n), φb(n+ 1))n≥0 lies on the line segment

y = x− 1 +
1

bk
+

1

bk+1
, x ∈

[
1−

1

bk
, 1−

1

bk+1

]

for k ≥ 0. Furthermore they could give an explicit formula for the asymptotic distribution function of
(φb(n), φb(n+ 1))n≥0 to calculate the limit

lim
N→∞

1

N

N−1∑

n=0

|φb(n)− φb(n+ 1)| =
2(b− 1)

b2

previously demonstrated by Pillichshammer and Steinerberger [12]. They also noted that the adf of
(φb(n), φb(n+ 1))n≥0 is a copula.
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In this article we solve the problem for the sequence(φb(n), φb(n+1), . . . , φb(n+s−1))n≥0 for s > 2. A
multi-dimensional extension of the van der Corput sequence(φb(n))n≥0, is given by the so-called Halton
sequence,(φb1(n), φb2 (n), . . . , φbs(n))n≥0 which is uniformly distributed if and if the basesbi1 ≤ i ≤ s

are co-prime (see [7]). These sequences are well-studied objects in discrepancy theory, since they belong
to the class of so-called low discrepancy sequences. For classical results in discrepancy theory, on low
discrepancy sequences and the van der Corput sequence see e.g. [1], [2] or [8].

Recently, several authors investigated the ergodic properties of low discrepancy sequences, see e.g. [6]
and [14]. In the case of van der Corput sequences this can be done using the so-called von Neumann-
Kakutani transformation, which will be discussed in the second section.
The outline of this article is as follows: in the second section we define the van der Corput sequence and
the von Neumann-Kakutani transformation and recall their basic properties. In the third section we state
our main results on the distribution of(φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0.

2 van der Corput sequence and von Neumann-Kakutani transfor-
mation

Let b ∈ N andN0 = N ∪ {0}. Then for everyn ∈ N0, we can write

n =
∑

i≥0

nib
i

whereni ∈ {0, 1, . . . , b − 1}, i ≥ 0. The above sum is calledb-adic representation ofn. Theni are
uniquely determined and at most a finite number ofni are non-zero. Furthermore, every realx ∈ [0, 1)
has ab-adic representation of the following form

x =
∑

i≥0

xib
−i−1 (1)

wherexi ∈ {0, 1, . . . , b − 1}, i ≥ 0. We callx a b-adic rational ifx = ab−c, wherea andc are positive
integers and0 ≤ a < bc. For all b-adic integers there are exactly two representations of theform (1),
one wherexi = 0, i ≥ i0 and one wherexi = b − 1, i ≥ i0 for sufficiently largei0 ∈ N. If we restrict
ourselves to representations withxi 6= b − 1 for infinitely many i, then the coefficientsxi in (1) are
uniquely determined for allx ∈ [0, 1).
Forn ∈ N0 we define the so-called radical-inverse function or Monna map φb(n) : N0 → [0, 1) by

φb(n) = φb



∑

i≥0

nib
i


 :=

∑

i≥0

nib
−i−1.

Note thatφb(n) mapsN0 to the set ofb-adic rationals in[0, 1), and therefore the image ofN0 underφb(n)
is dense in[0, 1).

Definition 2.1 The van der Corput sequence in baseb is defined as(φb(n))n≥0.

It is a classical result that the van der Corput sequence is uniformly distributed in[0, 1), see e.g. [8].
Furthermore, itss-dimensional extension, the Halton sequence given by(φb1 (n), . . . , φbs(n))n≥0 for co-
prime basesbi, 1 ≤ i ≤ s, is uniformly distributed on[0, 1)s. Properties of the van der Corput and the
Halton sequence are very well-understood, since they are so-called low discrepancy sequences, which are
central objects in Quasi-Monte Carlo integration.
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A second approach to define the van der Corput sequence is by using the von Neumann-Kakutani trans-
formationTb : [0, 1) → [0, 1). For any integerb ≥ 2 the inductive construction ofTb is as follows:
at first [0, 1) is split into b intervalsI1i =

[
i
b
, i+1

b

)
for i = 0, 1, . . . b − 1. Then the transformation

T1,b :
[
0, b−1

b

)
7→

[
1

b
, 1
)

is defined as translation ofI1i into I1i+1 for i = 0, 1, . . . , b − 1. The next
step is to divide all intervalsI1i into b subintervals of the formI2i =

[
i
b2
, i+1

b2

)
for i = 0, 1, . . . b2 − 1.

TransformationT2,b :
[
0, b2−1

b2

)
7→

[
1

b2
, 1
)

is given as the extension ofT1,b which translatesI2
b2−b+i

into I2
b2−b+i+1

for i = 0, 1, . . . , b − 1. Such a construction is called splitting-and-stacking-construction
and is illustrated in Figure 1 forb = 2. Finally we define the von Neumann-Kakutani transformationas
Tb = limn→∞ Tn,b. A plot of the transformationT2 is given in Figure 2. By an observation of Lam-
bert [9], [10] (see also Hellekalek [7]) the van der Corput sequence in baseb is exactly the orbit of the
origin underTb, which means that

(T n
b 0)n≥0 = (φb(n))n≥0, b ≥ 2, (2)

whereT n
b x denotes the value ofx under aftern iterations ofTb.
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Figure 1: The first two steps of a splitting-and-stacking-construction in baseb = 2.
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Figure 2: The von Neumann-Kakutani transformation in baseb = 2.

For a proof of the ergodicity and measure-preserving properties of the von Neumann-Kakutani transfor-
mation, see e.g. [4] or [5]. It follows from the ergodicity ofthe von Neumann-Kakutani transformation
that(T n

b x)n≥0 is uniformly distributed for almost everyx ∈ [0, 1). Furthermore, it can be shown that the
von Neumann-Kakutani transformation is uniquely ergodic,which implies that(T n

b x)n≥0 is uniformly
distributed for everyx ∈ [0, 1), see e.g. [6]. Moreover, Pagés [11] showed that the orbit of the von
Neumann-Kakutani transformation starting at an arbitrarypointx ∈ [0, 1) is a low discrepancy sequence.
Another possible generalization of the van der Corput sequence is the so-called randomized van der Cor-
put sequence(T n

b X)n≥0 whereX is uniformly distributed on[0, 1), see [13].

Recently, Fialová and Strauch solved the problem of calculating the limit distribution of the sequence
(φb(n), φb(n+1))n≥0. They also concluded that the limit distribution is a copula. We consider the multi-
dimensional extension of this problem. By (2)

(φb(n), φb(n+ 1))n≥0 = (T n
b 0, T

n+1

b 0)n≥0 = (T n
b 0, Tb(T

n
b 0))n≥0.

By the fact that(T n
b 0)n≥0 is uniformly distributed on[0, 1) one can show that(φb(n), φb(n+ 1))n≥0 is

uniformly distributed on
Γ = {(x, y) : y = Tbx}.

Note thatΓ coincides with the graph of the von Neumann-Kakutani transformation in Figure 2. In the
next section we use this approach to find the limit distribution of(φb(n), φb(n+1), . . . , φb(n+s−1))n≥0

for arbitrarys ≥ 2.
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3 The limit distribution of consecutive elements of the van der Cor-
put sequence

In the sequel we assume thatb, s are fixed. LetT denote the von Neumann-Kakutani transformation in
baseb as described in Section 2. We define a mapγ(t) : [0, 1) → [0, 1)s by setting

γ(t) :=




t

T t

T 2t
...

T s−1t




and
Γ := {(x1, x2, . . . , xs) ∈ [0, 1]s : xi = T i−1x1, i = 2, . . . , s} = {γ(t) : t ∈ [0, 1)} .
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Figure 3: Function graphs ofT t, T 2t andT 5t. These curves appear as the two-dimensional projections
of Γ for larges.

The Lebesgue measureλ1 on [0, 1) induces a measureν onΓ by setting

ν(A) = λ1({t : γ(t) ∈ A}), A ⊂ Γ.

Furthermore,ν induces a measureµ on [0, 1)s by embeddingΓ into [0, 1)s. More precisely for every
measurable subsetB ⊆ [0, 1)s we set

µ(B) = ν(B ∩ Γ).

Theorem 3.1 The limit measure of(φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0 is µ.

Proof:
As mentioned in Section 2, we can rewrite

(φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0 = (T n0, T n+10, . . . , T n+s−10)n≥0

= (T n0, T (T n0), . . . , T s−1(T n0))n≥0.

Since(T n0)n≥0 is uniformly distributed on[0, 1) andT is a measure-preserving transformation with
respect toλ1, it follows immediately that(T i(T n0))n≥0 is uniformly distributed on[0, 1) for i =
1, . . . , s− 1. Moreover, by construction(T n0, T (T n0), . . . , T s−1(T n0))n≥0 ∈ Γ for all n ≥ 0.
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Now consider a measurable setB ∈ [0, 1)s. We define the empirical measure of the firstN points of
(T n0, . . . , T s−1(T n0))n≥0 as

µN (B) =
1

N
#{0 ≤ n ≤ N : (T n0, T (T n0), . . . , T s−1(T n0)) ∈ B}.

We have

lim
N→∞

µN (B) = lim
N→∞

1

N
#{0 ≤ n ≤ N : (T n0, T (T n0), . . . , T s−1(T n0)) ∈ B}

= lim
N→∞

1

N
#{0 ≤ n ≤ N : (T n0, T (T n0), . . . , T s−1(T n0)) ∈ B ∩ Γ}

= lim
N→∞

1

N
#{0 ≤ n ≤ N : T n0 ∈ Projectionx1

(B ∩ Γ)}

= λ1( Projectionx1
(B ∩ Γ))

= ν(B ∩ Γ) = µ(B)

where the fourth equation holds since(T n0)n≥0 is uniformly distributed on[0, 1) and since the map
t → T t is a bijection, and where Projectionx1

(A) denotes the projection ofA onto its first coordinate.�

Remark 3.1 Note that the measureµ is a copula on[0, 1]s for everys since every distribution function
of a multi-dimensional sequence(x1

n, . . . , x
s
n)n≥0 is a copula if the sequences(x1

n)n≥0, . . . , (x
s
n)n≥0 are

uniformly distributed on[0, 1].

Remark 3.2 The setΓ is a collection of countably many line segments in[0, 1)s. Informally speaking
Theorem 3.1 means that(φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0 is uniformly distributed onΓ.

Remark 3.3 By the unique ergodicity ofT , the conclusion of Theorem 3.1 holds also for the sequence
(T nx, T (T nx), . . . , T s−1(T nx))n≥0 for arbitrary x ∈ [0, 1).

Remark 3.4 Another class of uniformly distributed sequences which canbe seen as the orbits of certain
points under an ergodic transformation are sequences of theform ({nα})n≥0, where{x} denotes the
fractional part ofx andα is irrational. In this case the corresponding transformation T̂ is simply the
rotation T̂ : x 7→ x+α mod 1. It can easily be shown that the limit distribution of consecutive elements
({nα}, {(n+1)α}, . . . , {(n+ s− 1)α})n≥0 is the uniform distribution on the curvêΓ which is given by

Γ̂ :={(t, T̂ t, . . . , T̂ s−1t), t ∈ [0, 1)}.

However, since in this case the transformationT̂ has a particularly simple structure, the same result can
also be easily obtained using analytic arguments.

ACKNOWLEDGEMENTS

The authors are greatly indebted to Peter Grabner for introducing them into the topic of ergodic transfor-
mations in number theory, particularly concerning properties of the von Neumann-Kakutani transforma-
tion and the relation to theb-adic integersZb. They also want to thank David Ralston from Ben Gurion
University for interesting discussions on this topic during his visit in Graz in November 2011.

6



References
[1] J. Dick and F. Pillichshammer.Digital nets and sequences. Discrepancy and quasi-Monte Carlo integration.

Cambridge University Press, 2010.

[2] M. Drmota and R.F. Tichy.Sequences, Discrepancies and Applications. Springer Verlag, New York, 1997.

[3] J. Fialová and O. Strauch. On two-dimensional sequencescomposed by one-dimensional uniformly distributed
sequences.Uniform Distribution Theory, 6(1):101–125, 2011.

[4] N.A. Friedman.Introduction to Ergodic Theory. Van Nostrand Reinhold, New York, 1970.

[5] N.A. Friedman. Replication and Stacking in Ergodic Theory. The American Mathematical Monthly, 99(1):31–
41, 1992.

[6] P. Grabner, P. Hellekalek, and P. Liardet. The dynamicalpoint of view of low-discrepancy sequences.Uniform
Distribution Theory, 7(1):11–70, 2012.

[7] P. Hellekalek and H. Niederreiter. Constructions of uniformly distributed sequences unsing theb-adic method.
Uniform Distribution Theory, 6(1):185–200, 2011.

[8] L. Kuipers and H. Niederreiter.Uniform Distribution of Sequences. John Wiley & Sons, New York, 1974.

[9] J.P. Lambert.Some developments in Optimal and Quasi-Monte Carlo Quadrature, and a New Outlook on a
Classical Chebyshev Problem. Ph.D. Dissertation, The Claremont Graduate School, 1982.

[10] J.P. Lambert. Quasi-Monte Carlo, low discrepancy sequences, and ergodic transformations.Journal of Compu-
tational and Applied Mathematics, 12:419 – 423, 1985.

[11] G. Pagés. Van der Corput sequences, Kakutani transforms and one-dimensional numerical integration.Journal
of Computational and Applied Mathematics, 44:21 – 39, 1992.

[12] F. Pillichshammer and S. Steinerberger. Average distance between consecutive points of uniformly distributed
sequences.Uniform Distribution Theory, 4(1):51 – 67, 2009.

[13] X. Wang and F.J. Hickernell. Randomized Halton sequences.Mathematical and Computer Modelling, 32:887–
889, 2000.

[14] G. Ökten. Generalized von Neumann-Kakutani transformation and random-start scrambled Halton sequences.
Journal of Complexity, 25:318–331, 2009.

7


