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Abstract

We consider a generalized version of Kakutani’s splitting procedure where an arbitrary starting
partition π is given and in each step all intervals of maximal length are split into m parts, according
to a splitting rule ρ. We give conditions on π and ρ under which the resulting sequence of partitions is
uniformly distributed.

1 Introduction
In this paper we study a generalization of the Kakutani splitting procedure, which was originally intro-
duced in [5].

Definition 1.1 (Kakutani splitting procedure) If α ∈ (0, 1) and π = {[ti−1, ti] : 1 ≤ i ≤ k} is any
partition of [0, 1], then απ denotes its α -refinement which is obtained by subdividing all intervals of π
having maximal length in two parts, proportional to α and 1− α, respectively.
The so-called Kakutani’s sequence of partitions (αnω)n∈N is obtained as the successive α -refinement of
the trivial partition ω = {[0, 1]}.

Definition 1.2 (Uniform distribution of sequences of partitions) Let (πn)n∈N be a sequence of parti-
tions of [0, 1], with

πn = {[tni−1, t
n
i ] : 1 ≤ i ≤ k(n)}.

Then πn is uniformly distributed (u.d. ), if for any continuous function f on [0, 1]

lim
n→∞

1

k(n)

k(n)∑
i=1

f(tni ) =

∫ 1

0

f(t)dt. (1)

Remark 1.1 For a sequence of partitions (πn)n∈N we define the associated sequence of measures (µn)n∈N
by

µn =
1

k(n)

k(n)∑
i=1

δtni ,
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where δt denotes the Dirac measure concentrated at t. Weak convergence of (µn)n∈N to the Lebesgue
measure on [0, 1] is equivalent to condition (1). In other words, a sequence of partitions is u.d. if and only
if for every interval [a, b] ⊂ [0, 1]

lim
n→∞

∑k(n)
i=1 1[a,b](t

n
i )

k(n)
= b− a.

Kakutani [5] proved that for any α ∈ (0, 1) the sequence of partitions (αnω)n∈N is uniformly distributed.
The properties of the sequence (αnω)n∈N and related problems have been investigated by many authors.
For example, see [1] and [7] for a modification of (αnω)n∈N where the intervals of maximal length
are split at a random position. Carbone and Volčič [3] generalized the splitting procedure for sequences
of partitions of [0, 1]d, d ≥ 2, and derived a generalization of Kakutani’s result in higher dimensions.
Recently, the following further modification of Kakutani’s splitting procedure was presented by Volčič
[8].

Definition 1.3 (ρ - refinement) Let ρ denote a non-trivial finite partition of [0, 1]. Then the ρ -refinement
of a partition π of [0, 1], denoted by ρπ, is given by subdividing all intervals of maximal length positively
homothetically to ρ.

Volčič [8] proved, by using arguments from ergodic theory, that the sequence (ρnω)n∈N is u.d. for every
finite partition ρ. Furthermore, he investigated the behavior of associated uniformly distributed sequences
of points. The discrepancy of sequences of partitions constructed as ρ -refinements of ω is discussed in
Carbone [2] and Drmota and Infusino [4]. The results of Drmota and Infusino are based on the analysis
of a special tree evolution process, namely the Khodak algorithm [6], where the generation of nodes has
a similar behavior as the splitting of intervals in the Kakutani splitting sequence.
So far results on the uniform distribution of sequences of partitions were only available in the case when
the starting partition π is the trivial partition ω. A simple example shows that there exist starting partitions
π for which the sequence (ρnπ)n∈N is not uniformly distributed. Consider π =

{[
0, 2

5

]
,
[

2
5 , 1
]}

and ρ ={[
0, 1

2

]
,
[

1
2 , 1
]}

. In this case the splitting procedure operates alternating on
[
0, 2

5

]
and

[
2
5 , 1
]

and hence
the sequences of associated measures corresponding to the subsequences (ρ2nπ)n∈N and (ρ2n+1π)n∈N
converge to different measures. Volčič [8] formulated the problem in the following form:

It is worth noticing that it is necessary to put some restriction on the partition π (even in
the simplest case of the Kakutani splitting procedure) if we hope for uniform distribution of
(ρnπ)n∈N. It would be interesting to find significant sufficient conditions on π in order to
obtain the uniform distribution of (ρnπ)n∈N even for the case of Kakutani’s splitting proce-
dure.

The purpose of the present paper is to present a full solution of this problem.

2 The uniform distribution of generalized Kakutani’s sequences of
partitions

In the sequel we consider a partition ρ of [0, 1] consisting of m ≥ 2 intervals of lengths p1, . . . , pm, and a
starting partition π of [0, 1] consisting of l ≥ 2 intervals of lengths α1, . . . , αl. In the sequel let H denote
the entropy of the probability distribution p1, . . . , pm, which is defined as

H = p1 log

(
1

p1

)
+ . . .+ pm log

(
1

pm

)
.
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Definition 2.1 (Rationally related) The numbers log
(

1
p1

)
, . . . , log

(
1
pm

)
are called rationally related

if there exists a positive real number Λ such that

log

(
1

pj

)
= νjΛ, νj ∈ Z, j = 1, . . . ,m.

Without loss of generality we choose Λ as large as possible, which is equivalent to assuming gcd(ν1,

. . . , νm) = 1. If the numbers log
(

1
p1

)
, . . . , log

(
1
pm

)
are not rationally related, they are called irra-

tionally related.

Remark 2.1 Note that the numbers log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related if and only if all

fractions
log pi
log pj

, i, j = 1, . . . ,m,

are rational.

For a fixed real number ε ∈ (0, pmin), where pmin = min{p1, . . . , pm}, let Iε denote the set of all
intervals that appear in the sequence (ρnω)n∈N and have length greater than or equal to ε. Let Eε be
the set of intervals which are generated by splitting an interval in Iε and which have length l satisfying
pminε ≤ l < ε. Denote by Mε = |Eε| the cardinality of Eε. Note that the set Eε changes only for certain
values of ε, more precisely when ε equals the length of at least one interval appearing in (ρnω)n∈N.

We will use the following result from [4].

Lemma 2.1 Let Mε be defined as above. Then

1. if log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related, let Λ be the largest real number for which

log
(

1
pj

)
is an integer multiple of Λ, for j = 1, . . . ,m. Then there exist a real number η > 0

and an integer d ≥ 0 such that

Mε =
m− 1

εH
Q1

(
log

(
1

ε

))
+O

(
(log(ε))dε−(1−η)

)
, (2)

where
Q1(x) =

Λ

1− e−Λ
e−Λ{ xΛ}

and {y} denotes the fractional part of y.

2. If log
(

1
p1

)
, . . . , log

(
1
pm

)
are irrationally related, then

Mε =
m− 1

εH
+ o

(
1

ε

)
. (3)

The following theorem gives sufficient and necessary conditions on π and ρ under which (ρnπ)n∈N is
uniformly distributed.

Theorem 2.1 Let αj , j = 1, . . . , l denote the lengths of the intervals of the starting partition π. Then the
sequence (ρnπ)n∈N is uniformly distributed if and only if one of the following conditions is satisfied:
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(I) the real numbers log
(

1
p1

)
, . . . , log

(
1
pm

)
are irrationally related or

(II) the real numbers log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related with parameter Λ and the lengths

of the intervals of π can be written in the form

αi = ceviΛ, c ∈ R+, vi ∈ Z, (4)

for i = 1, . . . , l.

Remark 2.2 Condition (II) includes the special case that the starting partition π is a partition consisting
of intervals having the same length, and in particular the case when the starting partition is the trivial
partition ω.

For illustration, the next corollary characterizes the starting partitions π for which the original Kakutani’s
sequence of partitions is u.d. .

Corollary 2.1 Let the sequence of partitions (ρnπ)n∈N be defined as a ρ -refinement with
ρ = [[0, p], [p, 1]] and π = [[0, α], [α, 1]]. Then (ρnπ)n∈N is u.d. if and only if one of the following
conditions is satisfied:

(i) log(p)/ log(1− p) is irrational, or

(ii) log
(

1
p

)
and log

(
1

1−p

)
are rationally related with parameter Λ and α = 1

ekΛ+1
for k ∈ Z.

The next theorem describes the asymptotic behavior of the distribution of (ρnπ)n∈N for those cases which
are not covered by Theorem 2.1.

Theorem 2.2 Assume that neither condition (I) nor condition (II) of Theorem 2.1 is satisfied. Then for
any interval A = [a, b] ⊂ [0, 1] which is completely contained in the i-th interval of the starting partition
π for some i, 1 ≤ i ≤ l, we have

lim sup
n→∞

∑k(n)
j=1 1[a,b](t

n
j )

k(n)
= c1(b− a),

lim inf
n→∞

∑k(n)
j=1 1[a,b](t

n
j )

k(n)
= c2(b− a),

where

c1 =

 l∑
j=1

αj exp

(
−Λ

{
log(αj)− log(αi)

Λ

})−1

> 1,

c2 =

 l∑
j=1

αj exp

(
Λ

{
log(αi)− log(αj)

Λ

})−1

< 1

are constants depending on i.

Remark 2.3 Observe that only if the conditions (I) and (II) fail to hold, c1 is strictly larger and c2 is
strictly smaller than 1 and the sequence is not u.d. (cf. Remark 1.1).

At the end of the introduction we mentioned the example π =
{[

0, 2
5

]
,
[

2
5 , 1
]}

and ρ =
{[

0, 1
2

]
,
[

1
2 , 1
]}

.
In this case the theorem indicates that the maximal and minimal asymptotic measure of [0, 2

5 ] is 1
2 and 1

3 ,
respectively, and accordingly the maximal and minimal measure of [ 2

5 , 1] is 2
3 and 1

2 , respectively.
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3 Proofs
Proof of Theorem 2.1:
Denote the l intervals of π by Ii, i = 1, . . . , l. Then Ii has length αi, i = 1, . . . , l. To show that (ρnπ)n∈N
is uniformly distributed it is sufficient to prove that the relative number of intervals of (ρnπ)n∈N in
Ii converges to αi, for i = 1, . . . , l, since by [8, Theorem 2.7] the sequences of partitions within the
intervals Ii are u.d.
Assume that (I) holds and let 0 < ε ≤ (min1≤j≤l αj)(min1≤i≤m pi). Let hε ∈ N be the smallest number
for which ρhεπ contains only intervals of length < ε. Then the set {hε : 0 < ε ≤ (min1≤j≤l αj)
(min1≤i≤m pi)} is of the form {n ∈ N, n ≥ n0} for some n0. Using the notation of Lemma 2.1, the
number of intervals of ρhεπ which are contained in Ii equals Mε/αi for i = 1, . . . , l, where

Mε/αi =
(m− 1)αi

εH
+ o

(
1

ε

)
.

For i = 1, . . . , l,

lim
ε→0

Mε/αi∑l
j=1Mε/αj

= lim
ε→0

(m−1)αi
εH + o

(
1
ε

)∑l
j=1

(m−1)αj
εH + o

(
1
ε

)
=

αi∑l
j=1 αj

= αi,

and thus the sequence (ρnπ)n∈N is u.d. .
Now assume that condition (I) does not hold. Then the numbers log

(
1
p1

)
, . . . , log

(
1
pm

)
are rationally

related with some parameter Λ, and the number of intervals of ρhεπ which are contained in Ii is Mε/αi ,
where by Lemma 2.1

Mε/αi =
(m− 1)αiQ1

(
log
(
αi
ε

))
εH

+O
(

(log(ε))dε−(1−η)
)
. (5)

Consider

Mε/αi∑l
j=1Mε/αj

=

(m−1)αiQ1(log(αiε ))
εH +O

(
(log(ε))dε−(1−η)

)
∑l
j=1

(m−1)αjQ1(log(
αj
ε ))

εH +O
(
(log(ε))dε−(1−η)

)
=

αiQ1

(
log
(
αi
ε

))
+O

(
(log(ε))dε−(1−η)

)∑l
j=1 αjQ1

(
log
(αj
ε

))
+O

(
(log(ε))dε−(1−η)

) . (6)

If (II) holds, then {
log
(αj
ε

)
Λ

}
=

 log
(
cevjΛ

ε

)
Λ


=

{
log(c) + vjΛ− log(ε)

Λ

}
=

{
log(c)− log(ε)

Λ

}
and

Q1

(
log
(αj
ε

))
=

Λe−Λ{ log(n)−log(ε)
Λ }

1− e−Λ
,
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for all j = 1, . . . , l. Thus for i = 1, . . . , l,

lim
ε→0

Mε/αi∑l
j=1Mε/αj

=
αi∑l
j=1 αj

= αi,

and (ρnπ)n∈N is u.d. .
Now assume that neither (I) nor (II) holds. Then the numbers log

(
1
p1

)
, . . . , log

(
1
pm

)
are rationally

related with some parameter Λ, and the starting partition π has to consist of at least two elements. Fur-
thermore, note that condition (II) is equivalent to assuming

log (αj)− log (αi) = nijΛ, nij ∈ Z, (7)

for i, j = 1, . . . , l, so if (II) does not hold there necessarily exist indices i, j for which (7) is not satisfied.
Fix such i, j. Then {

log(αj)− log(αi)

Λ

}
> 0. (8)

Let the sequence (εk)k∈N be defined by

εk = αie
−kΛ, k ≥ 1.

Then for k ≥ 1 and n ∈ {1, . . . , l}, log
(
αn
εk

)
Λ

 =

 log
(
αne

kΛ

αi

)
Λ


=

{
log(αn) + kΛ− log(αi)

Λ

}
=

{
log(αn)− log(αi)

Λ

}
. (9)

Hence,

Q1

(
log

(
αi
εk

))
=

Λ

1− e−Λ
, (10)

and

Q1

(
log

(
αj
εk

))
=

Λe
−Λ

{
log(αj)−log(αi)

Λ

}
1− e−Λ

. (11)

By using (6), we obtain

lim
k→∞

αiQ1

(
log
(
αi
εk

))
+O

(
(log(εk))dε

−(1−η)
k

)
∑l
n=1 αnQ1

(
log
(
αn
εk

))
+O

(
(log(εk))dε

−(1−η)
k

) =
αi∑l

n=1 αne
−Λ

{
log(αn)−log(αi)

Λ

} .

By (8) and Λ > 0 it follows that

e
−Λ

{
log(αn)−log(αi)

Λ

}
≤ 1, n = 1, . . . , l,

and

e
−Λ

{
log(αj)−log(αi)

Λ

}
< 1.
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Thus
l∑

n=1

αne
−Λ

{
log(αn)−log(αi)

Λ

}
< 1

and

lim
k→∞

Mεk/αi∑l
j=1Mεk/αj

6= αi.

Thus there exists a subsequence along which the relative number of intervals in Ii does not converge to
αi, and hence the sequence (ρnπ)n∈N cannot be u.d. This proves the theorem. �

Proof of Corollary 2.1:
The corollary is a special case of Theorem 2.1. By Remark 2.1, condition (i) is equivalent to condition
(I).
Furthermore, condition (ii) is equivalent to (II). Assume that (II) holds, then α = cerΛ, 1−α = ceqΛ, for
q, r ∈ Z, c ∈ R+, and thus

1 = cerΛ + ceqΛ

⇔ c =
1

erΛ + eqΛ

and

α =
erΛ

erΛ + eqΛ
=

1

e(q−r)Λ + 1
.

�

Proof of Theorem 2.2:
Let the i-th interval of π be denoted by Ii and let hε ∈ N be the smallest number for which ρhεπ contains
only intervals of length < ε. Then, following the proof of Theorem 2.1, the number of intervals of ρhεπ
which are contained in Ii is Mε/αi , which is given in (5). We denote by MA(ε) the number of intervals
of ρhεπ which are contained in A = [a, b] ⊆ Ii. By [8, Theorem 2.7], the sequences of partitions within
Ii are u.d. Hence

MA(ε) =
(b− a)(m− 1)Q1

(
log
(
αi
ε

))
εH

+O
(

(log(ε))dε−(1−η)
)
.

Thus the relative number of intervals in A is given by

MA(ε)∑l
j=1Mε/αj

=

(b−a)(m−1)Q1(log(αiε ))
εH +O

(
(log(ε))dε−(1−η)

)
∑l
j=1

(m−1)αjQ1(log(
αj
ε ))

εH +O
(
(log(ε))dε−(1−η)

)
=

(b− a)Q1

(
log
(
αi
ε

))
+O

(
(log(ε))dε−(1−η)

)∑l
j=1 αjQ1

(
log
(αj
ε

))
+O

(
(log(ε))dε−(1−η)

) .
Consider

(b− a)Q1

(
log
(
αi
ε

))∑l
j=1 αjQ1

(
log
(αj
ε

)) =
(b− a)Λe−Λ{ 1

Λ (log(αi)−log(ε))}∑l
j=1 αjΛe

−Λ{ 1
Λ (log(αj)−log(ε))}
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=
b− a∑l

j=1 αj exp
(
−Λ

(
{ 1

Λ (log(αj)− log(ε))} − { 1
Λ (log(αi)− log(ε))}

)) .
(12)

For j 6= i, one easily sees that the functions

fi,j(ε) := exp

(
−Λ

({
log(αj)− log(ε)

Λ

}
−
{

log(αi)− log(ε)

Λ

}))
are piecewise constant with discontinuities at

ε = αie
−kΛ and ε = αje

−kΛ,

for all k ∈ Z. By

fi,j(αie
−k1Λ) = fi,j(αie

−k2Λ),

fi,j(αje
−k1Λ) = fi,j(αje

−k2Λ),

for all k1, k2 ∈ Z, it follows that fi,j(ε), 0 < ε < 1, only takes two different values, which are

exp

(
−Λ

{
log(αj)− log(αi)

Λ

})
and exp

(
Λ

{
log(αi)− log(αj)

Λ

})
.

Furthermore, for all k ∈ Z

fi,j(αie
−kΛ) = exp

(
−Λ

{
log(αj)− log(αi)

Λ

})
and

fi,j(αje
−kΛ) = exp

(
Λ

{
log(αi)− log(αj)

Λ

})
.

By the above arguments it follows that the function

l∑
j=1

αjfi,j(ε),

where fi,i(ε) = 1, can only take at most l different values. Since all the functions fi,j(ε), 1 ≤ j ≤ l,
attain their minimal value at the positions αie−kΛ, k ∈ Z, it follows that the quotient in equation (12) is
maximal at these positions and

lim sup
n→∞

∑k(n)
j=1 1[a,b](t

n
j )

k(n)
= lim sup

ε→0

MA(ε)∑l
j=1Mε/αj

= lim
k→∞

MA(αi exp(−kΛ))∑l
j=1M(αi exp(−kΛ))/αj

=
b− a∑l

j=1 αj exp
(
−Λ

{
log(αj)−log(αi)

Λ

}) .
This proves the upper bound in Theorem 2.2.
To prove the lower bound in Theorem 2.2, we choose 0 < γ < 1 such that

γαi > max
1≤j≤l

max
k∈Z

{
αje
−kΛ | αje−kΛ < αi

}
.
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Then for all 1 ≤ j ≤ l and for all k ∈ Z the functions fi,j attain their maximal value at the positions
γαie

−kΛ, and

fi,j(γαie
−kΛ) = fi,j(αje

−kΛ) = exp

(
Λ

{
log(αi)− log(αj)

Λ

})
.

Therefore, the quotient in equation (12) attains its minimal possible value at the positions γαie−kΛ, k ∈
Z, and

lim inf
n→∞

∑k(n)
j=1 1[a,b](t

n
j )

k(n)
= lim inf

ε→0

MA(ε)∑l
j=1Mε/αj

= lim
k→∞

MA(γαi exp(−kΛ))∑l
j=1M(γαie−kΛ)/αj

=
b− a∑l

j=1 αj exp
(

Λ
{

log(αi)−log(αj)
Λ

}) .
This proves the theorem. �
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