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Abstract
We investigate the set of all distribution functions of two special sequences on the unit interval,

which involve logarithmic and trigonometric terms. We completely characterize the set of all dis-
tribution functions G(xn) for (xn)n≥1 = ({cos(αn)n})n≥1 and arbitrary α, where {x} denotes
the fractional part of x. Furthermore we give a sufficient number-theoretic condition on α for which
(xn)n≥1 = ({log(n) cos(αn)})n≥1 is uniformly distributed. Finally we calculate G(xn) in the case
when α

2π
∈ Q.

1 Introduction
In the present paper we consider the set of all distribution functions G(xn) of sequences (xn)n≥1, xn ∈
[0, 1). For an interval I ⊆ [0, 1) we set A(I,N, xn) to be the number of hits of I among the first N
elements of (xn)n≥1, i.e.,

A(I,N, xn) = #{n ≤ N : xn ∈ I} =

N∑
n=1

1I(xn).

A non-decreasing function g(x) satisfying g(0) = 0, g(1) = 1, is called a distribution function of a
sequence (xn)n≥1 if there exists an increasing sequence (Nk)k≥1 such that

g(x) = lim
k→∞

A([0, x), Nk, xn)

Nk
, x ∈ [0, 1], (1)

holds in every point of continuity of g. In the sequel G(xn) denotes the set of all functions for which (1)
holds.
Furthermore a sequence (xn)n≥1 is said to have the asymptotic distribution function g(x) if (1) holds for
Nk = k. Then the set G(xn) reduces to a singleton. Moreover if G(xn) = {x} the sequence (xn)n≥1 is
called uniformly distributed (u.d.).
Closely connected to distribution functions of sequences is the concept of the discrepancy of sequences.
For a sequence (xn)n≥1 the discrepancy of the first N elements of (xn)n≥1 is given as

DN ((xn)n≥1) = sup
0≤α<β≤1

∣∣∣∣A([α, β), N, xn)

N
− (β − α)

∣∣∣∣ .
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Note that by a theorem of Weyl, see e.g. [11], it follows that limN→∞DN ((xn)n≥1) = 0 holds if and
only if that the sequence (xn)n≥1 is u.d. in [0, 1). For general results on uniform distribution of sequences
and discrepancy theory see [4], [8] or [11].
The following problem concerning the set of all distribution functions of a sequence is stated in the open
problem section on the web site of Uniform distribution theory1:

Find the set G(xn) for the following sequences:

(xn)n≥1 = ({cos(n)n})n≥1, (2)
(xn)n≥1 = ({log(n) cos(αn)})n≥1, (3)
(xn)n≥1 = ({cos(n+ log(n))})n≥1, (4)

where {x} denotes the fractional part of x ∈ R.

For the sequence in (4) this problem has already been solved by S. Steinerberger. One can find a short
version of the proof in the open problem section of Uniform distribution theory1. The fact that the se-
quence in (4) is not u.d. has previously been proved by Kuipers, see [7].
The outline of the rest of the paper is as follows: in the second section we characterize the set of all dis-
tribution functions of a general version of the sequence given in (2). We use the Koksma inequality, see
e.g. [11], in the third section to find a sufficient condition on the parameter α for which (xn)n≥1 given in
(3) is u.d. Furthermore we give a complete solution of the problem in the case α

2π ∈ Q.

2 The set of all distribution functions of ({cos(αn)n})n≥1

Former results on the sequence (2) are due to Bukor [3] and in more generality Luca [9]. Bukor showed
that (cos(n)n)n≥1 is everywhere dense in the interval [−1, 1]. The following theorem characterizes the
set of distribution functions G(xn) for

(xn)n≥1 = ({cos(αn)n})n≥1 ,

which is a generalized version of (2).

Theorem 2.1 For α
2π /∈ Q we set a = 3/4, in the case α

2π = p
q ∈ Q for p, q co-prime let

a = lim
N→∞

#{n ≤ N : (cos(αn))n ≥ 0}
N

=

{
q+1
2q + q−1

4q , if 4 | (q − 1),
q−1
2q + q+1

4q , if 4 - (q − 1)
(5)

for q odd and let

a = lim
N→∞

#{n ≤ N : (cos(αn))n ≥ 0}
N

=
#{1 ≤ n ≤ q : (cos(αn))n ≥ 0}

q
=


1
2 + q−2

4q , if 4 - q and 8 | (q − 2),
1
2 + q+2

4q , if 4 - q and 8 - (q − 2),
q+2
2q + 1

4 , if 4 | q and 8 - q,
q+2
2q + q−4

4q , if 8 | q

(6)

1Problem 1.10 in the open problem collection as of 11. December 2011 (http://www.boku.ac.at/MATH/udt/unsolvedproblems.pdf)
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for q even.
Then the set of all distribution functions of (xn)n≥1 is given by G(xn) = {ga(x)}, with

ga(x) =

 0, if x = 0,
a, if 0 < x < 1,
1, if x = 1.

Proof:
First we consider the case α

2π /∈ Q. Let ε, δ > 0 be small and fixed. Then for sufficiently large N0 ∈ N
we have

λ({x ∈ [0, 1] :
∣∣cos(2πx)N0

∣∣ > δ}) < ε,

where λ denotes the Lebesgue measure. By the fact that ({ α2πn})n≥1 is u.d. in [0, 1) if α
2π /∈ Q (see

e.g. [11]) it follows that

lim
N→∞

#{1 ≤ n ≤ N : |cos(αn)n| > δ}
N

< ε.

Furthermore since
λ({x ∈ [0, 1] : cos(2πx) < 0}) =

1

2

and by the fact that also ({(2 α
2πn})n≥1 is u.d. in [0, 1) it follows that

lim
N→∞

#{1 ≤ n ≤ N : cos(αn)n < 0}
N

=
1

4
.

Noting that | cos(αn)n| ≤ δ and cos(αn)n < 0 imply {cos(αn)n} ≥ 1− δ. Thus we have

lim
N→∞

#{1 ≤ n ≤ N : cos(αn)n > δ}
N

≥ 3

4
− ε

and

lim
N→∞

#{1 ≤ n ≤ N : cos(αn)n < 1− δ}
N

≤ 3

4
+ ε

Since ε and δ are arbitrary, this proves the first part of the theorem.
In the case α

2π = p
q ∈ Q we easily see that ({cos(αn)})n≥1 takes only finitely many different values of

the form cos
(

2π jq

)
, j = 1, . . . , q, which appear periodically with period q.

Consider the case that q is odd. We want to calculate k given as

k = #

{
j ∈ {1, . . . , q} : cos

(
2π
j

q

)
≥ 0

}
.

By cos
(

2π qq

)
= 1 and

cos

(
2π
j

q

)
= cos

(
2π
q − j
q

)
, for j = 1, . . . , q,

it follows that k = 2l − 1, where l is the maximal value in {1, . . . , q} for which

2π
l

q
<
π

2
⇔ l <

q

4
.

Thus if 4 | (q − 1) we have l = q−1
4 and it follows cos

(
2π jq

)
≥ 0 for q+1

2 values of j = 1, . . . , q.

Similarly if 4 - (q − 1) we have l = q−3
4 and cos

(
2π jq

)
≥ 0 for q−12 values of j = 1, . . . , q.
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Since q is odd it follows for every j = 1, . . . , q that the term cos
(

2π jq

)
appears in (cos(αn)n)n≥1

alternating with odd and even exponent, thus for i such that cos(αi) < 0 it follows that

lim
N→∞

#{n ≤ N : cos(αi)qn+i > 0}
N

=
1

2
.

This, together with the above considerations, proves (5).
Assume now that q is even and 4 - q. Then cos(αi) 6= 0 for i = 1, . . . , q and by similar considerations as
above we have cos(αi) > 0 for q2 values of i and q

2 is an odd number. Furthermore for every j = 1, . . . , q,

the exponent of the term cos
(

2π jq

)
in (cos(αn)n)n≥1 is either always odd or always even. Moreover it

is easy to see that the exponents of cos
(

2π jq

)
and cos

(
2π j+1

q

)
in (cos(αn)n)n≥1 cannot be both even

or both odd. Thus the number of j’s such that cos
(

2π jq

)
< 0 and which appear with even exponent is

q−2
4 when 8 | (q − 2) and q+2

4 when 8 - (q − 2).
In the case 4 | q, it follows that cos(αi) = 0 for two values of i. Thus cos(αi) ≥ 0 for q+2

2 values of
i = 1, . . . , q. Formula (6) follows now by the similar arguments as above. This completes the proof. �

3 The set of all distribution functions of ({log(n) cos(αn)})n≥1

Properties of the sequence (3) have been studied by Berend, Boshernitzan and Kolesnik [1]. They proved
the denseness of (3) in [0, 1) for arbitrary α. Furthermore they also concluded in [2] that sequences of the
form

({na logb(n) cos(2πnα)})n≥1 (7)

are dense in [0, 1), provided α is irrational and either a > 0 or a = 0, b > 0. Moreover they showed that
the sequence in (7) is u.d. for α irrational and either a > 0 or a = 0, b > 1. Additionally they remarked
without proof that the sequence (3) is not u.d. for uncountably many α, see [1].
The next theorem gives a condition on the parameter α which implies the u.d. property for the sequence
in (3).

Theorem 3.1 Let α be such that the discrepancy of the sequence (zn)n≥1 =
(
{ α2πn}

)
n≥1 is of asymp-

totic order o
(

1
log(N)

)
. Then the sequence

(xn)n≥1 = ({log(n) cos(αn)})n≥1

is u.d.

Remark 3.1 It is well-known that there is a close connection between the coefficients of the continued
fraction expansion of α and the asymptotic order of the discrepancy of ({αn})n≥1. By a classical result
of Khintchine [6] from the metric theory of continued fractions, the discrepancy of ({αn})n≥1 satisfies

DN ({α}, . . . , {αN}) = O(N−1(logN)(log logN)1+ε)

as N →∞ for almost all α. Thus the conclusion of Theorem 3.1 holds for almost all α.

Furthermore, if α is badly approximable, and in particular if α is an quadratic irrational such as α =
√

2,
then

DN ({α}, . . . , {αN}) = O(N−1 logN)
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as N → ∞, and thus the conclusion of Theorem 3.1 also holds for α
2π =

√
2. For details see [8, p. 125,

Th. 3.4].

For the proof of Theorem 3.1 we will use the following Lemma 3.1, which is a special case of the van der
Corput lemma. It can be found e.g. in [8, Chapter 1, Section 1, Lemma 2.1].

Lemma 3.1 Suppose that φ(x) is real-valued, that |φ′(x)| ≥ γ for some positive γ, and that φ′ is mono-
tonic for all x ∈ (α, β). Then∣∣∣∣∣

∫ β

α

cos(2πφ(x)) dx

∣∣∣∣∣ ≤ γ−1 and

∣∣∣∣∣
∫ β

α

sin(2πφ(x)) dx

∣∣∣∣∣ ≤ γ−1.
Proof of Theorem 3.1:
To prove uniform distribution of (xn)n≥1, by the Weyl criterion (see [8]) it is sufficient to show that

lim
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

cos(2πhxn)

∣∣∣∣∣ = 0 and lim
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

sin(2πhxn)

∣∣∣∣∣ = 0 (8)

holds for all h > 0. We will only prove (8) for cosine-functions, the case of sine-functions being entirely
similar. Assume that h > 0 is fixed. Choose ε > 0 and δ > 0 “small”, and set

K =
− log(ε)

log(1 + δ)
.

For simplicity of writing, we assume that K is an integer. For N ≥ 1, we define

mi =
⌈
εN(1 + δ)i

⌉
, 0 ≤ i ≤ K,

and
yn = log(εN(1 + δ)i) cos(αn) for mi−1 < n ≤ mi, 1 ≤ i ≤ K.

Note that m0 = dεNe and mK = εN(1 + δ)K = N . We have∣∣∣∣∣ 1

N

N∑
n=1

cos(2πhxn)

∣∣∣∣∣ (9)

=

∣∣∣∣∣ 1

N

(
m0∑
n=1

cos(2πhxn)

)
+

1

N

(
N∑

n=m0+1

(cos(2πhxn)− cos(2πhyn) + cos(2πhyn))

)∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

m0∑
n=1

cos(2πhxn)

∣∣∣∣∣+

∣∣∣∣∣ 1

N

N∑
n=m0+1

(cos(2πhxn)− cos(2πhyn))

∣∣∣∣∣ (10)

+

∣∣∣∣∣ 1

N

N∑
n=m0+1

cos(2πhyn)

∣∣∣∣∣ . (11)

The first term in line (10) is trivially bounded by m0/N = dεNe/N . Now we turn to the second term in
(10). For any i ∈ {1, . . . ,K} and mi−1 < n ≤ mi we have

|cos(2πhxn)− cos(2πhyn)| = |cos(2πhun)− cos(2πhyn)|
≤ 2πh |un − yn|
= 2πh

∣∣log(n) cos(αn)− log(εN(1 + δ)i) cos(αn)
∣∣
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≤ 2πh
(⌈

log(εN(1 + δ)i
⌉
− log(n)

)
|cos(αn)|

≤ 2πh
(⌈

log(εN(1 + δ)i
⌉
−
⌈
log(εN(1 + δ)i−1

⌉
− 1
)

≤ 2πh log(1 + δ).

where un = log(n) cos(αn). Thus we get∣∣∣∣∣ 1

N

(
N∑

n=εN+1

(cos(2πhxn)− cos(2πhyn))

)∣∣∣∣∣ ≤ (2πh)2 log(1 + δ). (12)

Finally we estimate the term in line (11). For 1 ≤ i ≤ K we set

fi(x) = cos
(

2πh
(

log(εN(1 + δ)i) cos(2πx)
))
.

The total variation Var(fi) of this function on the interval [0, 1] is at most

8hdlog(εN(1 + δ)i)e. (13)

For any number R > 1, in the interval [R−1/2, 1/4 − R−1/2] the derivative of the function R cos(2πx)
is monotonous, and of absolute value at least R1/2/2. Thus, using Lemma 3.1 for the function fi(x) =
cos(2πΦ(x)), where Φ(x) = R cos(2πx) and the previous remark for R = h

(
log(εN(1 + δ)i), we have∣∣∣∣∣

∫ 1/4

0

fi(x) dx

∣∣∣∣∣ ≤
∫ R−1/2

0

|fi(x)| dx+

∫ 1/2

1/4−R−1/2

|fi(x)| dx︸ ︷︷ ︸
≤2R−1/2

+

∣∣∣∣∣
∫ 1/4−R−1/2

R−1/2

fi(x) dx

∣∣∣∣∣︸ ︷︷ ︸
≤2R−1/2

≤ 4h−1/2(log(εN(1 + δ)i))−1/2.

A similar estimate holds for the absolute value of
∫ (i+1)/4

i/4
fi(x) dx, i = 1, 2, 3, and in total we obtain∣∣∣∣∫ 1

0

fi(x) dx

∣∣∣∣ ≤ 16h−1/2(log(εN(1 + δ)i))−1/2 ≤ 16(log(εN))−1/2, 1 ≤ i ≤ K. (14)

For the term in line (11) we have∣∣∣∣∣∣ 1

N

 N∑
n=dεNe+1

cos(2πhyn)

∣∣∣∣∣∣ ≤
K∑
i=1

mi −mi−1

N

∣∣∣∣∣∣ 1

mi −mi−1

 mi∑
n=mi−1+1

cos(2πhyn)

∣∣∣∣∣∣ . (15)

Note that we can write

cos(αn) = cos
(

2π
(⌊αn

2π

⌋
+
{αn

2π

}))
= cos

(
2π
{αn

2π

})
= cos(2πzn).

Thus for any i, 1 ≤ i ≤ K, using Koksma’s inequality for the function fi(x), together with (13) and
(14), we get ∣∣∣∣∣∣ 1

mi −mi−1

 mi∑
n=mi−1+1

cos(2πhyn)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

mi −mi−1

 mi∑
n=mi−1+1

cos(2πh log(εN(1 + δ)i) cos(2πzn))

∣∣∣∣∣∣
6



≤
∣∣∣∣∫ 1

0

fi(x) dx

∣∣∣∣+ Var(fi)Dmi−mi−1(zmi−1+1, . . . , zmi)

≤ 16(log(εN))−1/2 + 8hdlog(εN(1 + δ)i)eDmi−mi−1
(zmi−1+1, . . . , zmi). (16)

By the triangle inequality for discrepancies and the assumption on the discrepancy of (zn)n≥1,

Dmi−mi−1(zmi−1+1, . . . , zmi)

≤ mi−1

mi −mi−1
Dmi−1(z1, . . . , zmi−1) +

mi

mi −mi−1
Dmi(z1, . . . , zmi)

≤ ε

logN
(17)

for all i ∈ {1, . . . ,K}, provided N is sufficiently large. Using (16) and (17), we thus see that (15) is at
most

16(log(εN))−1/2 + 8hε
dlogNe
logN

(18)

for sufficiently large N .

Combining all our estimates for (9), we finally obtain∣∣∣∣∣ 1

N

N∑
n=1

cos(2πhxn)

∣∣∣∣∣ ≤ dεNeN
+ (2πh)2 log(1 + δ) + 16(log(εN))−1/2 + 8hε

dlogNe
logN

for suffiently large N . Since ε and δ can be chosen arbitrarily small, this proves the theorem. �

The following lemma by Pólya and Szegö [10] characterizes the set of distribution functionsG({c log(n)})
and is the main tool for the proof of Theorem 3.2.

Lemma 3.2 (Pólya and Szegö) The sequence (xn)n≥1 = ({c log n})n≥1, c > 0, has distribution func-
tions of the form

gβ,c(x) =
e

min(x,β)
c − 1

e
β
c

+
1

e
β
c

e
x
c − 1

e
1
c − 1

, (19)

where limk→∞{c logNk} = β implies FNk(x)→ gβ(x) and FN (x) = #{n≤N ;xn∈[0,x)}
N .

Moreover G({c log(n)}) is the set of all distribution functions of the form (19).

Remark 3.2 Note that it follows as a corollary of Lemma 3.2 that the sequence (xn)n≥1 = ({c log(n)})n≥1,
c < 0, has distribution functions of the form 1 − gβ,|c|(1 − x), where limk→∞{|c| logNk} = β and
gβ,|c|(x) is given in (19). Thus we define the function fβ,c(x) as

fβ,c(x) =

 gβ,c(x), if c > 0,
1− gβ,|c|(1− x) if c < 0,

1{(0,1]}(x) if c = 0,
(20)

where limk→∞{|c| logNk} = β.

Theorem 3.2 Let pq := α
2π ∈ Q where p, q are co-prime and

(xn)n≥1 = ({log(n) cos(αn)})n≥1 .
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Then for a fixed subsequence (Nk)k≥1 of N with

lim
k→∞

{cos(αi) logNk} = βi, for i = 1, . . . , q, (21)

the asymptotic distribution of (xn)n≥1 along the subsequence (Nk)k≥1 is given by

f(x) =
1

q

q∑
i=1

hq,βi,ci(x), (22)

where hq,βi,ci(x) is given in (20),

hq,βi,ci(x) =


fβi,ci(x+ 1− νi)− fβi,ci(1− νi), if 0 ≤ x ≤ νi and ci > 0,
fβi,ci(x− νi) + 1− fβi,ci(1− νi), if νi ≤ x ≤ 1 and ci > 0,

fβi,ci(x+ νi)− fβi,ci(νi), if 0 ≤ x ≤ 1− νi and ci < 0,
fβi,ci(x− (1− νi)) + 1− fβi,ci(νi), if 1− νi ≤ x ≤ 1 and ci < 0,

1{(0,1]}(x) if ci = 0,

(23)

where νi = {|ci| log(q)}, ci = cos(αi), limn→∞{cos(αi) logNk} = βi and fβ,c(x) is given in (20).
Moreover, the set G(xn) is the set of all distribution functions of the form (22) for those (β1, . . . , βq) for
which a subsequence (Nk)k≥1 satisfying (21) exists.

Remark 3.3 For arbitrary q, it is a difficult problem to determine all possible vectors (β1, . . . , βq) for
which there exists a subsequence (Nk)k≥1 for which (21) holds, because there can exist non-trivial linear
relations between the values cos(αi), i = 1, . . . , q (depending on number-theoretic properties of q). We
will not further investigate this issue, the interested reader is referred to a Galois theoretic approach to
this problem by Girstmair [5].

Proof:
As mentioned in the proof of Theorem 2.1 the function cos(αn), n ∈ N takes only finitely many different
values which appear in a period of length q. Let (Nk)k≥1 be a sequence of N for which (21) holds for
some numbers β1, . . . , βq . We are interested in the asymptotic behavior of (xn)n≥1 and by

lim
k→∞

A([a, b), Nk, xn)

Nk
= lim
k→∞

∑q
i=1A([a, b), bNk/qc, cos(αi) log(qn+ i))

Nk

= lim
k→∞

∑q
i=1A([a, b), bNk/qc, cos(αi) log(qn))

Nk
,

we get that the limit distribution of (xn)n≥1 is a mixture of limit distributions of q sequences of the form

(zin)n≥1 = ({log(qn) cos(αi)})n≥1, for i ∈ {1, . . . , q}.

Since log(qn) cos(αi) = log(q) cos(αi)+log(n) cos(αi) we get that the distribution function of (zin)n≥1
is given as the distribution function of log(n) cos(αi) shifted by a constant and thus it is easy to see that
the right hand-side of (23) is the distribution function of (zin)n≥1. This proves (22).
In order to prove that all functions in G(xn) can be characterized by (22) we use the Bolzano-Weierstrass
theorem. Assume that ({cos(αi) logNk})k≥1 does not converge for at least one i, then it follows that there
are at least two convergent subsequences of ({cos(αi) logNk})k≥1 which have different limits. If the
limit distributions along all these subsequences are equal then the limit distribution of ({cos(αi) logNk})k≥1
along the whole sequence (Nk)k≥1 is (if it exists) can be written as fβ,c(h(x)) as the limit along a se-
quence for which (21) holds. If at least two limit distributions along subsequences are not equal the limit
distribution along ({cos(αi) logNk})k≥1 does not exist. �
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Remark 3.4 We illustrate the set G(xn) in the simple case when α = π, which means that p = 1 and
q = 2 in the notation of Theorem 3.2. Note that cos(α) = −1 and cos(2α) = 1, thus as a sequence
(Nk)k≥1 which satisfies (21) one can choose for example Nk = bexp(k + β1)c. In this case we have

lim
k→∞

{cos(α) log(Nk)} = β1

and
lim
k→∞

{cos(2α) log(Nk)} = β2 = 1− β1.

We can calculate the corresponding distribution function by using the previous theorem. Figure 1 illus-
trates the range of distribution functions which one can achieve by varying β.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Distribution functions of (xn)n≥1 for α = π and β = 0, 1
10 , . . . ,
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