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Abstract

Rank one transformations are transformations which can be obtained by cutting
and stacking, using a single column in each step. Such a transformation is defined
by a sequence of cutting parameters (pk)k≥1 and a sequence of parameters of spacers

((a
(k)
m )pk

m=1)k≥1. Rank one transformations are ergodic and have simple spectrum. By a
result of Klemes and Reinhold, a rank one transformation is of singular maximal spectral
type if

∑∞
k=1 p

−2
k = ∞. El Abdalaoui showed that for arbitrary (pk)k≥1 the transfor-

mation has singular maximal spectral type if for each k all the numbers (a
(k)
m )pk

m=1 are
of different order of magnitude. In the present paper we prove a counterpart of El Ab-

dalaoui’s result: if for infinitely many indices k a small number of coefficients (a
(k)
m )pk

m=1

are all equal, then the transformation is of singular maximal spectral type.

1 Introduction and statement of results

A rank one transformation can be defined inductively by the cutting and stacking method,

using a sequence (pk)k≥1 of cutting parameters and a sequence ((a
(k)
m )pkm=1)k≥1 of parameters

of spacers. We call a sequence of disjoint intervals of equal length a tower. Starting with the
initial tower H0 = [0, 1], assume that the k-th tower Hk is already defined. Hk is a partition
of the interval [0, rk], for some rk ≥ 1, into disjoint subintervals of equal length, stacked one
on top of each other in some order. We write hk for the height of Hk (that is, the number of
subintervals in Hk). To define Hk+1, we cut the tower Hk into pk subcolumns. On the top of

m-th subcolumn we add a number a
(k)
m of intervals having the same length as the subcolumns,

taken from the right of [0, rk]. Then, stacking each subcolumn on the next one (from left to
right), we obtain the tower Hk+1, which forms a partition of the interval

[0, rk+1] :=

[
0, rk +

pk∑
m=1

a(k)m l

]
,
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where l denotes the length of the subcolumns of Hk. Then Hk+1 has height

hk+1 = pkhk +

pk∑
m=1

a(k)m .

For notational convenience we assume pk ≥ 2 for k ≥ 1. We also assume that the total measure
is finite, i.e. that by rescaling by an appropriate constant we can achieve that

⋃∞
k=1Hk = [0, 1].

Then the transformation T , which is obtained in this way, is a measure preserving invertible
point transformation on the unit interval. This construction is presented in more detail in [11].

Rank one systems we firstly defined in full generality by Ornstein [18], generalizing earlier
constructions of Katok and Stepin [14] and Chacon [6]. Each rank one system is ergodic, of
entropy zero, and has spectral multiplicity one. Using a probabilistic method Ornstein [18]
constructed a family of mixing rank one transformations (which are consequently mixing of
all orders, see [13]), in order to answer Banach’s question whether there exists a dynami-
cal system with simple Lebesgue spectrum. However, Bourgain [5] proved that Ornstein’s
transformations almost surely have singular maximal spectral type. Using the same methods,
Klemes [15] showed that the staircase transformation has singular maximal spectral type.
Klemes and Reinhold [16] proved that a rank one transformation has singular maximal spec-
tral type if

∑∞
k=1 p

−2
k = ∞, and recently El Abdalaoui [8] showed that the maximal spectral

type is also singular provided the sequences (am)pkm=1 are lacunary for all k (these results will
be discussed in more detail in the next section). Klemes and Reinhold conjectured that the
maximal spectral type of any rank one transformation is singular.

The main result of the present paper is our following Theorem 1.

Theorem 1 Assume there exists a constant c > 0 such that for a subsequence (kn)n≥1 of N
the following two conditions are satisfied:

(i)
log pkn
hkn

→ 0 as n → ∞.

(ii) There exist sets A(kn) containing at least cpkn consecutive elements of {1, . . . , pkn} such

that a
(kn)
m = a(kn), m ∈ A(kn), for some a(kn).

Then the transformation has singular maximal spectral type.

As a direct consequence we obtain the following corollary.

Corollary 1 Assume that there exists a constant c such that for a subsequence (kn)n≥1 of
N condition (i) is satisfied, and there exist sets A(kn) of at least cpkn consecutive coefficients

a
(k)
m which are all zero (i.e., for these indices no spacers are added above the corresponding

towers). Then the transformation is of singular maximal spectral type.

The case when in each step all the numbers (a
(k)
m )1≤m≤pk are equal is a (deterministic) special

case of the random construction in [9].
Note that condition (i) only rules out transformations for which the sequence (pk)k≥1 grows
extremely fast (as a function of k), since by construction (hk)k≥1 grows at least exponentially.
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2 Preliminaries

For any invertible, measure preserving transformation T on the unit interval and any function
f ∈ L2(0, 1), the corresponding spectral measure σf is defined by

σ̂f (n) = 〈f, Tnf〉 =
∫ 1

0
e−2πinθσf (dθ), n ∈ Z.

The maximal spectral type of T is the equivalence class (with respect to absolute continuity)
of all Borel measures σ on [0,1] for which σ � σf for all f ∈ L2, and for which for all measures
ν which also satisfy ν � σf for all f ∈ L2 necessarily σ � ν (here the symbol “�” denotes
absolute continuity of measures). There always exists a function f ∈ L2 such that σf is in
the equivalence class defining the maximal spectral type (for details, see [17]).

The maximal spectral type σ of a rank one transformation is given (possibly up to some
discrete measure) by the weak-*-limit (in the space of bounded Borel measures on the unit
circle) of the generalized Riesz products

dσ = lim
N∏
k=1

|Pk|2 dλ,

where

Pk(θ) =
1

√
pk

(
pk∑

m=1

e
−θ

(
mhk+

∑m
l=1 a

(k)
l

))
,

and where λ denotes the normalized Lebesgue measure on the unit circle (see [7, 16]). If we
want to prove σ ⊥ λ, it is by [5] sufficient to prove that

inf
N≥1, k1<···<kN

∫ N∏
m=1

|Pkm(θ)| dλ = 0. (1)

Using this criterion, Klemes [15] proved that the staircase transformation has singular maxi-
mal spectral type (see also [7]). Klemes and Reinhold [16] showed that a rank one transfor-
mation has singular maximal spectral type, provided

∞∑
k=1

p−2
k = ∞.

Recently, El Abdalaoui [8] obtained the following result: suppose that for any k ≥ 1 and

any m ∈ {1, . . . , pk − 1} we have a
(k)
m+1 ≥

∑m
l=1 a

(k)
l and

∑pk
m=1 a

(k)
m < hk/2. Then the

transformation has singular maximal spectral type. El Abdalaoui’s proof utilizes a new variant
of the well-known central limit theorem for lacunary trigonometric series (see [19, 20]). In [5]
and [15] the criterion (1) was used together with an asymptotic lower bound for

∫ ∣∣|Pkm |2 − 1
∣∣,

in [8] with an lower bound for
∫
||Pkm | − 1|. In our proof of Theorem 1 we will apply (1)

directly, together with an approximation by martingales.
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3 Proof of Theorem 1

For the proof of Theorem 1 we will use a martingale approximation technique, which has
some similarities to a method commonly used in the theory of lacunary function systems (cf.
for example [1, 2]).
Let (kn)n≥1 be a sequence for which conditions (i) and (ii) in the formulation of Theorem 1
hold. By condition (i) we can assume that (kn)n≥1 grows sufficiently fast such that

2n
√
pkn

(
pknhkn +

∑pkn
l=1 a

(kn)
l

)
log pkn+1

hkn+1

→ 0 as n → ∞. (2)

To simplify formulas, we set

qn = pkn , n ≥ 1,

jn = hkn , n ≥ 1,

b(n)m = a(kn)m , n ≥ 1, 1 ≤ m ≤ qn.

We write A(n) ⊂ {1, . . . , qn} for the set from condition (ii) of Theorem 1, i.e. for a set of at

least cqn consecutive indices, such that b
(n)
m = b(n) for all m ∈ A(n) for some number b(n).

Thus A(n) is of the form

{m : s(n) ≤ m ≤ t(n)} for some 1 ≤ s(n) ≤ t(n) ≤ qn, t(n)− s(n) ≥ cqn.

Furthermore, we set B(n) = {1, . . . , qn}\A(n) and define

Rn(θ) =
1

√
qn

 ∑
m∈A(n)

e
−2πiθ

(
mjn+

∑m
l=1 b

(n)
l

) , θ ∈ [0, 1],

Sn(θ) =
1

√
qn

 ∑
m∈B(n)

e
−2πiθ

(
mjn+

∑m
l=1 b

(n)
l

) , θ ∈ [0, 1].

Clearly

Rn(θ) =
1

√
qn

 t(n)∑
m=s(n)

e−2πiθ(mjn+
∑m

l=1 b
(n))


=

e−2πiθs(n)(jn+b(n))

√
qn

· 1− e−2πiθ(t(n)−s(n)+1)(jn+b(n))

1− e−2πiθ(jn+b(n))
,

and, by standard trigonometric identities,

|Rn(θ)| =
| sinπ (t(n)− s(n) + 1) (jn + b(n))θ|

√
qn| sinπ(jn + b(n))θ|

. (3)

Let

QN (θ) =

N−1∏
n=1

(|Rn(θ)|+ |SN (θ)|) dθ, N ≥ 1.
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To prove that the transformation has singular maximal spectral type, by the criterion (1) it
is sufficient to show that

lim
N→∞

∫ 1

0
QN (θ) dθ = 0. (4)

Simply speaking, we will show in the sequel that for large N∫ 1

0
|QN (θ)RN (θ)| dθ ≈

∫ 1

0
|QN (θ)| dθ

∫ 1

0
|RN (θ)| dθ, (5)∫ 1

0
|QN (θ)SN (θ)| dθ ≈

∫ 1

0
|QN (θ)| dθ

∫ 1

0
|SN (θ)| dθ, (6)

and ∫ 1

0
|RN (θ)| dθ = o(1) as N → ∞, (7)∫ 1

0
|SN (θ)| dθ /

√
1− c. (8)

Combing (5), (6), (7) and (8) will prove the theorem. The estimate (7) follows from the
standard inequality ∫ 1

0

| sinπnθ|
| sinπθ|

dθ ≤ (1 + log n), n ≥ 1, (9)

while (8) is a consequence of the Cauchy-Schwartz inequality.

Let

d(n) =

⌈
log2

(
2π

√
qn

(
qnjn +

qn∑
l=1

b
(n)
l

))⌉
+ n+ 1, n ≥ 1,

and let Fn, n ≥ 1 denote the σ-field generated by the sets

[l2−d(n), (l + 1)2−d(n)), 0 ≤ l < 2d(n).

By (2),

2d(n) log qn+1

jn+1
→ 0 as n → ∞. (10)

We define discrete functions Rn, Sn as the conditional expectations (with respect to the
Lebesgue measure)

Rn = E(Rn|Fn), Sn = E(Sn|Fn), n ≥ 1.

Since the fluctuation of Rn and Sn on any atom of Fn is at most 2−n−1, we have

|Rn(θ)−Rn(θ)| ≤ 2−n−1, |SN (θ)− Sn(θ)| ≤ 2−n−1, θ ∈ [0, 1]. (11)

We define

QN (θ) =

N−1∏
n=1

(∣∣Rn(θ)
∣∣+ ∣∣Sn(θ)

∣∣+ 2−N
)
dθ.
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Then ∫ 1

0
QN (θ) dθ ≤

∫ 1

0
QN (θ) dθ,

and to show (4) it remains to prove∫ 1

0
QN (θ) dθ → 0 as N → ∞, (12)

which can be deduced immediately from the following lemma.

Lemma 1 There exists a number η > 0 such that∫ 1

0
QN+1(θ) dθ ≤ (1− η)

∫ 1

0
QN (θ) dθ

for sufficiently large N .

We will use the following simple observation:

Lemma 2 For any interval [α, β] ⊂ [0, 1], any function f which is periodic with period 1,
and any positive integer m,∣∣∣∣∫ β

α
f(mx) dx

∣∣∣∣ ≤ 1

m

∫ 1

0
|f(x)| dx+ (β − α)

∣∣∣∣∫ 1

0
f(x) dx

∣∣∣∣ .
Proof of Lemma 1: By (11),∫ 1

0
QN (θ)|RN (θ)| dθ ≤

∫ 1

0
QN (θ)|RN (θ)| dθ + 2−N−1

∫ 1

0
QN (θ) dθ. (13)

On any atom I of FN−1 the function QN is constant and, by (3), (9), Lemma 2 and since the
function RN is periodic with period (jN + b(N)),∫

I
QN (θ)|RN (θ)| dθ ≤ QN

∫
I

| sinπ(t(n)− s(n) + 1)(jN + b(N))θ|
√
qN | sinπ(jN + b(N))θ|

≤ QN√
qN

(∫ 1

0

| sinπ(t(n)− s(n) + 1)θ|
√
qN | sinπθ|

dθ

)(
2−d(N−1) +

1

jN + b(N)

)
≤ QN (1 + log qN )

√
qN

(
2−d(N−1) +

1

jN

)
.

Therefore, for arbitrary ε > 0, by (10)∫ 1

0
QN (θ)|RN (θ)| dθ =

∫ 1

0
E
(
QN (θ)|RN (θ)|

∣∣∣FN−1

)
dθ

≤ (1 + log qN )
√
qN

(
1 +

2d(N−1)

jN

)∫ 1

0
QN (θ) dθ

≤ ε

∫ 1

0
QN (θ) dθ for sufficiently large N . (14)

6



By (11), ∫ 1

0
QN (θ)|SN (θ)| dθ ≤

∫ 1

0
QN (θ)|SN (θ)| dθ + 2−N−1

∫ 1

0
QN (θ) dθ. (15)

On any atom I of FN−1, by the Cauchy-Schwartz inequality,∫
I
QN (θ)|SN (θ)| dθ =

∫
I
QN (θ)|SN (θ)| dθ

≤ 2−d(N−1)/2 QN (θ)

(∫
I
|SN (θ)|2 dθ

)1/2

. (16)

It is easily seen that the function |SN (θ)|2 is of the form

1

qN

∑
m1,m2∈B(N)

(
cos

((
m1jN +

m1∑
l=1

b
(N)
l

)
−

(
m2jN +

m2∑
l=1

b
(N)
l

))
.

Thus by Lemma 2 and the orthogonality of the trigonometric system,

qN

∫
I
|SN (θ)|2 dθ ≤

∑
m1,m2∈B(N),

m1 6=m2

1∣∣∣(m1jN +
∑m1

l=1 b
(N)
l

)
−
(
m2jN +

∑m2
l=1 b

(N)
l

)∣∣∣
+

∑
m1,m2∈B(N),

m1=m2

∫
I
1 dθ

≤

 ∑
m1,m2∈B(N),

m1 6=m2

1

|m1 −m2|jN

+ (1− c)qN2−d(N−1)

≤ 2qN (1 + log qN )

jN
+ (1− c)qN2−d(N−1).

Hence, by (10) and (16),∫ 1

0
QN (θ)|SN (θ)| dθ =

∫ 1

0
E
(
QN (θ)|SN (θ)|

∣∣∣FN−1

)
dθ

≤
(
(1− c) + 2d(N−1)/2 · 2 + 2 log qN

jN

)1/2 ∫ 1

0
QN dθ

≤
(√

1− c+ ε
) ∫ 1

0
QN dθ. (17)

It is obvious that for sufficiently large N

2−N

∫ 1

0
QN dθ ≤ ε

∫ 1

0
QN dθ. (18)

Combining (13), (14), (15), (17) and (18), we have proved that∫ 1

0
QN (θ)

(
|RN |+ |SN |+ 2−N

)
dθ ≤

(√
1− c+ 3ε

) ∫ 1

0
QN (θ) dθ

for sufficiently large N . Since ε was arbitrary, this proves Lemma 1. Consequently, the proof
of Theorem 1 is also complete.
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4 Remarks

In [8], El Abdalaoui uses the central limit theorem (CLT) for normalized trigonometric sums,
together with Bourgain’s criterion (1), to prove that a certain class of rank one transforma-
tions has singular maximal spectral type. In this case the CLT holds due to the fact that
by assumption the coefficients (al)

pk
l=1 form a lacunary sequence (for each k ≥ 1). How-

ever, without assuming any further conditions on the sequence of coefficients of spacers, the
trigonometric sums in (1), which are of the form

1
√
pk

∣∣∣∣∣
pk∑

m=1

e
−2πiθ

(
mhk+

∑m
l=1 a

(k)
l

)∣∣∣∣∣ , θ ∈ [0, 1], (19)

will in general not satisfy the CLT. In fact, the sequence of frequencies (mhk+
∑m

l=1 a
(k)
l )pkm=1

in (19) may grow only linearly, while by a criterion of Erdős [10] the sequence of frequen-
cies would have to grow at least like e

√
m to guarantee the CLT. However, recently several

new randomized constructions of slowly growing sequences (nk)k≥1, for which the CLT for

N−1/2
∑N

k=1 cos 2πnkx almost surely holds, have been presented, see [3, 4, 12]. It is likely that
these results, together with El Abdalaoui’s method, could yield new randomized constructions
of rank one transformations which have almost surely singular maximal spectral type.

As mentioned in the introduction, several authors believe that all rank one transformations
could have singular maximal spectral type. In [5], Bourgain notes that this question is related
to the problem whether

sup
n>1

sup
k1<···<kn

1√
n

∥∥∥∥∥
n∑

m=1

e2πikmθ

∥∥∥∥∥ < 1,

where ‖ · ‖ denotes the L1 norm on the unit interval. He proved that

sup
k1<···<kn

1√
n

∥∥∥∥∥
n∑

m=1

e2πikmθ

∥∥∥∥∥ ≤ 1− c log n

n

for some constant c. Apparently, no further progress has been made since then.
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