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1 Introduction

The Hungarian-American mathematician Endre Szemerédi received the 2012
Abel Prize from His Majesty King Harald at the award ceremony in Oslo on 22
May 2012, “for his fundamental contributions to discrete mathematics and theo-
retical computer science, and in recognition of the profound and lasting impact of
these contributions on additive number theory and ergodic theory” (a citation by
the Abel Committee [1]).
On this occasion, Johannes Wallner, the editor of the International Mathematical
News (Internationale Mathematische Nachrichten), asked me to write an article
on Endre Szemerédi and his work. While I was preparing this article, I met En-
dre Szemerédi at a conference, during which Michael Drmota, the president of
the Austrian Mathematical Society (Österreichische Mathematische Gesellschaft),
suggested to me to interview Endre Szemerédi. As a result, this article contains an
interview with Endre Szemerédi (Section 2) and a brief overview of his celebrated
work (Section 3).

2 Interview with Endre Szemerédi

On behalf of the Austrian Mathematical Society, I interviewed the 2012 Abel
laureate Endre Szemerédi. The interview took place on the 26th of June 2012
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during the Conference on “Perspectives in Discrete Mathematics” in Bellaterra
near Barcelona, Spain.

Kang: Professor Szemerédi, I would like to congratulate you on winning the Abel
Prize. When and where did you receive the message that you won the Abel Prize?

Szemerédi: That I know exactly. I was at home in Budapest. It was on the 21st
of March 2012. One of my friends, Imre Bárány, was there too. It was a kind of a
plot. It turned out later that the Norwegian ambassador in Hungary contacted
Imre, asking him to make sure I would be at home that day at 10 o’clock in
the morning. On Saturday, the 17th of March, Imre called me and said that he
wanted to work with me on Wednesday, the 21st of March, on some mathematical
problem and that the problem was hard, therefore it would be better to meet early.
He insisted on 10 o’clock, even though this time is very early for me. Nevertheless
he showed up and because I was not completely awaken yet he was chatting with
my wife, Anna. Usually, I do not pick up the phone. Once, for example, when one
of my granddaughters took the phone, she told the caller ‘My grandpa says that
he is not at home’. At this time, Anna picked up the phone when the phone rang
and tried to give it to me. As usual, I told her to say that I was not at home. But
she told me that this time I could not play the game, as the call was from Oslo.

Kang: When you heard that the call was from Oslo, did you realize what was
going on? Could you describe how you felt at that moment?

Szemerédi: Mathematicians know the day of the Abel Prize announcement. Also
they know that the announcement is made in Oslo. I was almost certain that the
call was about the Abel Prize.
When I heard the congratulation, first, I could not quite believe it. But I was very
happy. Also I was slightly ashamed because I was not sure whether I deserved it
while hundreds of others did not get the prize. It was a mixed feeling.

Kang: Among many beautiful theorems that you proved, there are ‘Szemerédi’s
theorem’ and the ‘Szemerédi Regularity Lemma’. Let me first ask questions about
Szemerédi’s theorem. Could you explain what Szemerédi’s theorem says?

Szemerédi: It says that if you have a positive proportion of the integers from 1 up
to N it contains a long arithmetic progression.

Kang: Could you tell us a short mathematical history of Szemerédi’s theorem?

Szemerédi: The history is that van der Waerden proved his famous theorem, stat-
ing that if you divide the integers into finitely many classes, then one class con-

2



tains arbitrarily long arithmetic progressions. Then Erdős-Turán conjectured in
1936 that the important thing is that the set is dense enough: if you have a positive
proportion of the integers, then you have already long arithmetic progressions.
More precisely speaking, for every positive integer k ≥ 3 and every δ > 0 there
exists a number S(k,δ) such that for any N ≥ S(k,δ), every subset of the integers
{1, . . . ,N} of cardinality at least δN contains an arithmetic progression of length
k. In 1953 Roth provided a beautiful proof, using harmonic analytic methods,
that the conjecture is true for k = 3. He proved that among at least N/ log logN
integers there was always an arithmetic progression of length 3. Actually, one of
my favourite mathematicians is Roth. When I first went abroad in 1967, he was
the mathematician whom I met. I read his proof. But that’s not the reason why I
started to work on this problem.

Kang: How did you start working on the problem?

Szemerédi: It is a slightly embarrassing story. What happened is that I tried to
prove that given a long arithmetic progression it cannot be that a positive percent-
age of the elements of the arithmetic progression is squares. In order to prove it,
I took it for granted that if you have a positive percentage of the integers, then it
contains an arithmetic progression of length 4. I proved that if you have an arith-
metic progression of length 4, then it cannot be that all of them are squares. If you
put these together, you prove what you wanted. I was very proud of ‘my result’.
I showed the proof to Paul Erdős. Then he told me that there are slight problems
with the whole thing. The first one was that I assumed something, which had not
been proved yet at that time, namely that any set of a positive percentage of the
integers contains an arithmetic progression of length 4. But this was still okay.
The second one was really shameful. Erdős told me that the other thing, stating
that there are no four squares that form an arithmetic progression, was proved by
Euler already 250 years ago. I felt that I must correct this mistake, because Erdős
was the God.

Kang: So, Erdős was your God, your supervisor, your mentor, etc.?

Szemerédi: Yes, he was everything, although, without Paul Turán, I would have
never been a mathematician. Because, when I went to university, the course was
for teachers of mathematics and physics for the first two years. After that, you
could continue to study mathematics and physics for three more years and get a
diploma to teach in a high school or you could apply to be among the 20 out of
250 who would be chosen to continue as mathematicians. Turán, in the second
year, gave a beautiful lecture on number theory for two semesters. He covered a
lot of things. I liked it very much and decided then to become a mathematician. I
tried to be among these 20.
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Kang: Let us return to the story of Szemerédi’s theorem. You said that after Erdős
pointing out your mistakes, you were embarrassed. So, you tried to prove your
master that you can do something correctly. Was this the proof of the Erdős-Turán
conjecture for the case k = 4?

Szemerédi: Yes, I wanted to show him that I could prove it correctly and to see
whether he can find an error. First I gave an elementary proof for the case k = 3.
It was a very simple high-school proof. Then I proved it for k = 4. In 1967
Paul Erdős arranged for me an invitation to the university of Nottingham. There I
was supposed to give a lecture about my proof. My English was practically non-
existing. So I just drew some pictures, and Peter Elliot and Edward Wirsing, both
number theorists, based on these pictures and my very bad English, wrote down
the proof. I am very grateful for their great help. Similarly, when I proved in 1973
the conjecture for the general k, a good friend of mine, András Hajnal, helped me
to write up the paper. It would be better to say that he listened to my explanations
and then wrote it up. I am very grateful to him, too.

Kang: There are several other proofs of Szemerédi’s theorem, for example by
Furstenberg, Gowers and Tao amongst others. Could you explain what they
proved, with what methods, and how their results are related to your theorem?

Szemerédi: Hillel Furstenberg is a great mathematician and works mainly on
ergodic theory. His famous correspondence principle transfers the dense set into
a measure space. Then he could use his multiple recurrence theorem. His method
is much deeper and much more powerful than my elementary method, and could
be generalised into a multi-dimensional setting. He and Yitzhak Katznelson could
prove in 1978 a multi-dimensional analogue, and they could finally prove in 1991
the density version of the Hales-Jewett theorem. Their ergodic method is much
more complex and powerful.
Timothy Gowers gave a much much better bound than what I had. Even more
importantly, he invented many fundamental methods which completely changed
the landscape. We cannot overestimate the influence of his paper. Gowers used
a higher-order Fourier analysis and introduced his famous Gowers norm which
controls the randomness of the set in question. Terence Tao mixes everything. He
takes things from Furstenberg and Gowers. These mathematicians are those who
really move this field. Without them, my theorem would be just a theorem, nothing
more. They strengthened it, invented many directions, found connections between
these things and much more. They do simply unbelievable things. Also, for me,
the most striking result was the theorem of Ben Green and Terence Tao which
states that among the primes there are arbitrarily long arithmetic progressions.

Kang: In literature, one can often read ‘An important application of Szemerédi’s
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theorem is the Green-Tao theorem on arithmetic progressions of primes’. Exactly
how is your theorem used in the proof of the Green-Tao theorem?

Szemerédi: It would be hard to tell exactly.

Kang: Many influential mathematicians have their own lemma named after them.
You also have one, the Szemerédi regularity lemma, which is unarguably the most
powerful and commonly used tool in modern extremal graph theory. Could you
explain what the Szemerédi regularity lemma says?

Szemerédi: If you don’t want to have all these parameters, then it says that the
vertex set of a dense graph can be partitioned into relatively small number of
disjoint vertex sets, so that if you form bipartite graphs among these vertex sets,
then almost every bipartite graph behaves like a random bipartite graph.

Kang: What does a typical extremal graph problem look like?

Szemerédi: That I really don’t know. Just to tell you the truth, my mathematical
interest has switched into number theory.

Kang: Is it a return to the origin, to Turán’s lecture?

Szemerédi: Exactly, that’s the idea.

Kang: One of the most important unresolved problems in mathematics, in partic-
ular in number theory, is the Riemann conjecture. Are you attacking it?

Szemerédi: No, I am trying some other problems in number theory, which I
cannot say.

Kang: What is your favourite result or theorem of your own? Is it Szemerédi’s
theorem or the Szemerédi regularity lemma?

Szemerédi: My favourite work is the creation of the pseudo-random method to-
gether with Miklós Ajtai and János Komlós (it may be that the pseudo-random
method existed in some other areas of mathematics). We used this method, when
we tried to give a better estimate on the density of an infinite Sidon sequence. Us-
ing this method, we also disproved Heilbronn conjecture, which was at that time
already 40 years old.

Kang: I would like to learn mathematical wisdom, from the one who has done
excellent mathematics during the last at least fifty years. How do you recognise
good mathematical problems? What defines a good problem?
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Szemerédi: I am afraid I cannot give a really good answer to it. But, in my
opinion, a good problem is one that is interesting, is difficult; you have to study a
bit to solve the problem. And for the solution we need to invent a method which
will be applied to many other problems and areas.

Kang: Like the Szemerédi regularity lemma!

Szemerédi: Actually we have a program to demolish it. Gyárfás, Sárközy, Rödl,
Rucińsky and myself have already written five papers without the Szemerédi reg-
ularity lemma. The Szemerédi regularity lemma is just a philosophy.

Kang: How do you develop a good taste for mathematics?

Szemerédi: It’s hard. I am sure everybody has a different taste. You need experi-
ence, experiment and also luck.

Kang: Once you have selected a problem to solve, how do you start, proceed and
finish the proof?

Szemerédi: Well, first you try to find connections, try to apply different meth-
ods, and then try to invent slightly different methods. Most of the time I am not
successful. My ratio is very bad. I worked on a lot of problems, but I could not
solve many of them. This is not so bad. It comes with the territory. There are
mathematicians who have by far better ratio, but I do not mind. The only problem
is that if I work on a problem, then I have a hard time to give it up, even when I
am having a feeling that I cannot prove it, I do not have new ideas.

Kang: Could you give me a hint what your ratio would be?

Szemerédi: The ratio? It is about 1 to 10.

Kang: It is a good message to young mathematicians: we should try a lot!

Szemerédi: Yes, we should try a lot.

Kang: How or why did you discover or invent the Szemerédi regularity lemma?
As far as I know, you have developed a weaker version of the Szemerédi regularity
lemma, while proving Szemerédi’s theorem.

Szemerédi: Yes, you are right. The paper about arithmetic progressions contains
a weaker version of the regularity lemma.
The regularity lemma was needed for a graph-theoretical problem. I listened to a
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lecture by Béla Bollobás, which was 1974 in Calgary. He talked about the Erdős-
Stone theorem. Bollobás and Erdős wanted to determine the right magnitude and
they had a very good bound, the order was logn and only the constant was missing
a little bit. And I decided to work on it, as I liked the problem and Béla presents
things very nicely and extremely cleverly. Then I realised that maybe a lemma like
the regularity lemma would help considerably. Actually, that was the real reason
why the regularity lemma was invented. At least, this is my recollection. I would
like to thank Vašek Chvátal for helping me to write up the regularity lemma. Later
we together found the exact constant for the Erdős-Stone theorem.

Kang: The title of your talk at the Abel lecture was ‘In every chaos there is an
order’. Was it your way of thinking when you developed the regularity lemma, or
did you hear about this principle from someone else?

Szemerédi: This has already been used by many mathematicians, like in Ramsey
theory. If you take a graph and colour the edges, then there is a monochromatic
copy of some fixed graph. A graph is chaotic, and if you break it into pieces,
then the pieces will have some nice properties. That’s just a nice way of saying
something. But ‘In every chaos there is an order’ is not my invention. That’s
ancient.

Kang: When do ‘good’ mathematical ideas come to you? While walking in
woods, relaxing on a sofa or in bed, working at your office desk, or while dis-
cussing with colleagues?

Szemerédi: Working at a desk is out of question, because I never do this. I
usually lie down on bed. But when I really concentrate on something, then I
walk. It almost always happens that I work on a problem while walking, leave the
problem, and next day I go for a walk and continue thinking and so on.

Kang: As both of us are participating in the conference on ‘Perspectives in Dis-
crete Mathematics’, I would like to ask you what you think about future directions
of mathematics, in particular of Discrete Mathematics?

Szemerédi: Well, as others have already explained, there is no such a thing as
predicting the future. But during the last 20 years, Discrete Mathematics has
developed enormously, because of computers and the interaction between com-
puter scientists and Discrete Mathematicians. Discrete Mathematics is nowadays
recognised as a part of mathematics. It was not the case, when I started. Discrete
Mathematics was something like just doing it for playing around. But, not any
more.
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Kang: There are also parts of Discrete Mathematics, where one needs some meth-
ods from continuous mathematics.

Szemerédi: That’s true. There is an interplay between continuous and discrete
mathematics. Well, mathematicians who worked on continuous mathematics be-
lieved that this was a one way street and did not care about discrete mathematics.
But when you really examine the proof of some of their results, then there are a lot
of techniques and theory, which are very hard to understand, but there are some
crucial arguments, which they claim to be the bottleneck and the punch line of the
proof. Sometimes these crucial arguments are classical combinatorial arguments.

Kang: What kind of a change are you experiencing as a mathematician after
having received the Abel Prize?

Szemerédi: That’s easy. If it wasn’t for the Abel Prize, I would not sit here for
the interview.

Kang: Let me ask you one last question. What are you going to do with your
prize money, 6,000,000 NOK, around 800,000 EUR?

Szemerédi: I don’t know. We have many children and we are also waiting for the
tax people to determine how much tax we are supposed to pay.

Kang: I would like to thank you for a pleasant conversation.

3 Szemerédi’s Work

Endre Szemerédi has made immense contributions to discrete mathematics, theo-
retical computer science, ergodic theory, additive and combinatorial number the-
ory and discrete geometry, through the understanding of deep connections be-
tween seemingly unrelated fields of mathematics.
Without a doubt, the most celebrated work by Szemerédi is his proof of the Erdős-
Turán conjecture (1936), now known as Szemerédi’s theorem (1975), which states
that every set of integers of positive upper density contains arbitrarily long arith-
metic progressions. In order to prove his theorem, Szemerédi introduced the Sze-
merédi regularity lemma (indeed a weaker version of it), which roughly says that
every large dense graph can be partitioned into a bounded number of roughly
equally-sized parts so that the graph is random-like between pairs of parts.
Szemerédi’s theorem, Szemerédi regularity lemma and subsequent studies related
to them have led to much progress in various areas of mathematics, including
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extremal graph theory, ergodic theory, harmonic analysis, additive number theory,
discrete geometry and theoretical computer science.
An important application of Szemerédi’s theorem is the Green-Tao theorem, stat-
ing that there are arbitrarily long arithmetic progressions of primes [20]. There are
several other proofs of Szemerédi’s theorem including an ergodic theoretic proof
by Furstenberg [11] in 1977, a Fourier analytic proof by Gowers [16] in 2001,
and proofs based on hypergraph removal lemma independently by Gowers [17],
Tao [32, 34], and Nagle, Rödl, Schacht and Skokan [26, 27]. Some of these results
will be discussed in Sections 3.1 and 3.2.

3.1 Szemerédi’s Theorem

Szemerédi’s Theorem goes back to the following famous theorem in Ramsey the-
ory.

Theorem 1 (van der Waerden’s Theorem). For every positive integers k and r,
there exists an integer W (k,r) such that for any integer N ≥W (k,r), if the positive
integers {1,2, . . . ,N} are partitioned into r classes, then at least one of the classes
contains at least one arithmetic progression a,a + n,a + 2n, . . . ,a + (k− 1)n of
length k, where a,n are positive integers.

In other words, van der Waerden’s Theorem says that for any integer N ≥W (k,r),
if we colour the positive integers {1,2, . . . ,N} with r colours, then we can find a
sequence of k numbers a,a+n,a+2n, . . . ,a+(k−1)n, all of which are coloured
with a single colour.
Erdős and Turán conjectured in 1936 that the existence of an arithmetic progres-
sion would still be guaranteed in a set of integers if the set were dense. Szemerédi
gave an affirmative answer to the conjecture by showing that any positive fraction
of the positive integers must contain arbitrarily long arithmetic progressions.

Theorem 2 (Szemerédi’s Theorem – ‘Finite’ Version). For every positive integer k
and real number 0 < δ≤ 1, there exists an integer S(k,δ) such that for any integer
N ≥ S(k,δ), any subset A ⊂ {1,2, . . . ,N} of cardinality at least δN contains at
least one arithmetic progression a,a+n,a+2n, . . . ,a+(k−1)n of length k, where
a,n are positive integers.

Szemerédi’s Theorem is usually stated using the concept of the positive upper
density as follows.

Theorem 3 (Szemerédi’s Theorem). Let A⊂N be a subset of the positive integers
with positive upper density, i.e.

δ̄(A) := limsup
N→∞

#{A∩ [1,N]}
N

> 0.
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Then for any positive integer k, there exist positive integers a,n such that {a,a +
n,a+2n, . . . ,a+(k−1)n} ⊂ A.

Szemerédi’s theorem for the cases k = 1,2 is trivial. Roth [28] proved the theorem
for the case k = 3 in 1953, using Fourier analysis. Szemerédi proved the theorem
first for the case k = 4 in 1969 [30], and established the theorem in full generality
in 1975 [31], using combinatorial arguments, in particular a weaker version of the
Szemerédi regularity lemma.
There are several extensions of Szemerédi’s theorem, such as the following
strengthened ‘infinite’ version:

Theorem 4 (Szemerédi’s Theorem – ‘Infinite’ Version). Let A⊂N be a subset of
the positive integers with positive upper density, i.e. δ̄(A) > 0. Then for any posi-
tive integer k, there exist a positive integer n and infinitely many positive integers
a such that {a,a+n,a+2n, . . . ,a+(k−1)n} ⊂ A.

Furstenberg [11] provided in 1977 the ergodic theoretic proof of Szemerédi’s the-
orem by showing that Szemerédi’s theorem is equivalent to the following.

Theorem 5 (Furstenberg Recurrence Theorem). Let (X ,B,µ) be a probability
space and let T : X → X be a measure-preserving bijection on X, i.e. (X ,B,µ,T )
is a measure-preserving system. Then for any E ∈ B with positive measure and
any positive integer k there exists a positive integer n such that µ(E ∩T nE ∩ . . .∩
T (k−1)nE) > 0.

This is equivalent to a stronger theorem, saying that for any set E ∈B with µ(E) >
0 and every positive integer k there exist infinitely many positive integers n for
which µ(E ∩T nE ∩ . . .∩T (k−1)nE) > 0. It corresponds to the ‘infinite’ version of
Szemerédi’s theorem. Indeed, even a stronger statement is true:
for any E ∈ B with µ(E) > 0,

liminf
N→∞

N

∑
n=1

µ(E ∩T nE ∩ . . .∩T (k−1)nE) > 0.

The case k = 1 is trivial, and the case k = 2 is the classical Poincaré recurrence
theorem.

The ergodic theoretic approach by Furstenberg led to various generalisations of
Szemerédi’s theorem, including the multidimensional generalisation by Fursten-
berg and Katznelson [12] and the polynomial generalisation by Bergelson and
Leibman [7].
The multidimensional Szemerédi’s theorem by Furstenberg and Katznelson was
established in 1978 [12], as a consequence of the following extension of the
Furstenberg recurrence theorem:
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Theorem 6 (Furstenberg-Katznelson Recurrence Theorem). Let (X ,B,µ) be a
probability space and let T1,T2, . . . ,Tk : X→ X be commuting measure-preserving
bijections on X. For any E ∈ B with µ(E) > 0,

liminf
N→∞

N

∑
n=1

µ(T n
1 E ∩T n

2 E . . .∩T n
k E) > 0.

Theorem 7 (Multidimensional Szemerédi’s Theorem). Let d ≥ 1 and A⊂Zd with
positive upper Banach density, i.e.

δ
∗(A) := limsup

N→∞

#{A∩ [−N,N]d}
(2N +1)d > 0.

Then for any b1,b2, . . . ,bk ∈Zd , there exist a positive integer n and infinitely many
a ∈ Zd such that {a+nb1,a+nb2, . . . ,a+nbk} ⊂ A.

In 1996, Bergelson and Leibman [7] generalised the multidimensional Szemeré-
di’s theorem to polynomials.

Theorem 8 (Polynomial Multidimensional Szemerédi Theorem). Let d ≥ 1 and
A⊂Zd with positive upper Banach density, i.e. δ∗(A) > 0. Then for any polynomi-
als P1,P2, . . . ,Pk : Z→Zd with P1(0) = P2(0) = . . . = Pk(0) = 0, there exist a pos-
itive integer n and infinitely many a ∈ Zd such that {a+P1(n),a+P2(n), . . . ,a+
Pk(n)} ⊂ A.

Szemerédi’s Theorem is one of the fundamental results in Ramsey theory, and is
the density version of van der Waerden’s theorem. Another fundamental result in
Ramsey theory is the Hales-Jewett theorem, which is a generalisation of van der
Waerden’s theorem. In order to state the Hales-Jewett theorem, we need a notion
of combinatorial lines, instead of arithmetic progressions. Let Wn be the set of all
words of length n over the alphabet {1, . . . ,k}. Given a word w(x) ∈Wn where x
occurs at least once. The set L = {w(1), . . . ,w(k)}, in which w(i) is obtained from
w(x) by substituting each x with i, is called a combinatorial line.

Theorem 9 (Hales-Jewett Theorem). For every positive integers k,r, there exists
a positive number H(k,r) such that for any integer n≥H(k,r), every r-colouring
of Wn contains a monochromatic combinatorial line.

In 1991, Furstenberg and Katznelson [13] proved the density version of the Hales-
Jewett theorem, using ergodic theoretic techniques:

Theorem 10 (Density Hales-Jewett Theorem). For every positive integer k and
real number 0 < δ ≤ 1, there exists a positive number D(k,δ) such that for any
integer n ≥ D(k,r), every subset A ⊂Wn of cardinality at least δkn contains a
combinatorial line.
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Another approach to proving Szemerédi’s theorem is based on hypergraph re-
moval lemmas, for which corresponding hypergraph regularity lemmas have been
developed. These will be discussed in the next section.

One of the most important applications of Szemerédi’s theorem is:

Theorem 11 (Green-Tao Theorem). For every integer k ≥ 2 there exist infinitely
many arithmetic progressions of primes of length k.

We shall conclude this section with what Terence Tao wrote in an article titled
“The dichotomy between structure and randomness, arithmetic progressions, and
the primes” [35]:

“A famous theorem of Szemerédi asserts that all subsets of the in-
tegers with positive upper density will contain arbitrarily long arith-
metic progressions. There are many different proofs of this deep the-
orem, but they are all based on a fundamental dichotomy between
structure and randomness, which in turn leads (roughly speaking) to a
decomposition of any object into a structured (low-complexity) com-
ponent and a random (discorrelated) component. Important examples
of these types of decompositions include the Furstenberg structure
theorem and the Szemerédi regularity lemma. One recent applica-
tion of this dichotomy is the result of Green and Tao establishing that
the prime numbers contain arbitrarily long arithmetic progressions
(despite having density zero in the integers). The power of this di-
chotomy is evidenced by the fact that the Green-Tao theorem requires
surprisingly little technology from analytic number theory, relying
instead almost exclusively on manifestations of this dichotomy such
as Szemerédi’s theorem. In this paper we survey various manifesta-
tions of this dichotomy in combinatorics, harmonic analysis, ergodic
theory, and number theory. As we hope to emphasise here, the under-
lying themes in these arguments are remarkably similar even though
the contexts are radically different.”

3.2 Szemerédi Regularity Lemma

The Szemerédi regularity lemma and its variants belong to the essential tools of
extremal graph theory, additive number theory, discrete geometry and theoretical
computer science. More remarkably, it was the main tool for proving Szemerédi’s
theorem.
The Szemerédi regularity lemma roughly says that the vertex set of any large dense
graph can be partitioned into a constant number of classes such that almost all of
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the induced bipartite graphs are “pseudorandom” in the sense that they mimic the
behaviour of random bipartite graphs of the same density.
The pseudorandomness plays a fundamental role in structural and algorithmic as-
pects of many problems. It provides a way to use ‘probabilistic intuition’ for
solving deterministic problems or to extract ‘predictable’ average structure from
a ‘mysterious’ huge structure. Avi Wigderson said [36]:

“Pseudorandomness is the study, by mathematicians and computer
scientists, of deterministic structures which share some properties of
random ones.”

In order to state more precisely the Szemerédi regularity lemma we need some
definitions. Let G = (V,E) be a graph with vertex set V and edge set E ⊂

(V
2

)
,

i.e. each edge e ∈ E is a 2-element subset of V . Given real ε > 0 and disjoint
subsets A,B ⊂ V , the pair (A,B) is called ε-regular if for all A′ ⊂ A and B′ ⊂ B
with |A′| ≥ ε|A| and |B′| ≥ ε|B|,∣∣∣d(A,B)−d(A′,B′)

∣∣∣≤ ε,

where d(A,B) := E ∩ (A×B)
|A||B| is the density of edges between A and B.

Theorem 12 (Szemerédi Regularity Lemma). For every positive real ε and every
positive integer t0, there exist positive integers T (ε, t0) and N(ε, t0) such that for
every graph G = (V,E) on |V | ≥ N(ε, t0) vertices there exists a partition P =
{V1,V2, . . . ,Vt} of V with t0 ≤ t ≤ T (ε, t0) satisfying the following properties:

• |V1| ≤ |V2| ≤ . . .≤ |Vt | ≤ |V1|+1

• all but at most ε t2 pairs (Vi,Vj) with 1≤ i < j ≤ t are ε-regular.

Applying the Szemerédi regularity lemma, Ruzsa and Szemerédi [29] established
in 1976 the triangle removal lemma, which roughly says that every graph which
does not contain many triangles can be made triangle-free by removing few edges.

Theorem 13 (Triangle Removal Lemma). For every δ > 0 there exist a positive
real γ and a positive integer N such that every graph G on n ≥ N vertices con-
taining at most γn3 triangles can be made triangle-free by removing at most δ

(n
2

)
edges.

Using this lemma, Ruzsa and Szemerédi [29] gave a short alternative proof of
Roth’s theorem (i.e. Szemerédi’s theorem for k = 3). Frankl and Rödl [14] showed
that Szemerédi’s theorem for k + 1 follows from a removal lemma for k-uniform
hypergraphs (where a k-uniform hypergraph H = (V,E) is a pair of vertex set V
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and edge set E ⊂
(V

k

)
, i.e. each edge e ∈ E is a k-element subset of V ). Recently

various generalisations of the regularity lemma and the removal lemma for hy-
pergraphs were obtained independently by Gowers [17], Tao [32], Nagle, Rödl,
Schacht and Skokan [26, 27]. The main applications of these generalisations in-
clude alternative combinatorial proofs of Szemerédi’s Theorem.

Theorem 14 (Hypergraph Removal Lemma). Let F be a fixed k-uniform hyper-
graph on f vertices and let δ > 0 be given. Then there exist a positive real γ

and a positive integer N such that every k-uniform hypergraph on n≥ N vertices
containing at most γn f copies of F can be made F-free by removing at most δ

(n
k

)
edges.

The Szemerédi regularity lemma works very well for dense graphs, where the
number of edges is quadratic in the number of vertices, since the error term in the
lemma is quadratic in the number of vertices with an arbitrary small multiplicative
constant. In order to deal with sparse cases, some variants of the regularity lem-
mas are developed independently by Kohayakawa [23] and Rödl (unpublished)
for sparse graphs and by Alon, Coja-Oghlan, Hàn, Kang, Rödl and Schacht [3]
for sparse graphs with general degree distribution. Another variant of Szemerédi
regularity lemma and removal lemma has been obtained by Green [19] for abelian
groups.
As discussed in the previous section, Szemerédi’s theorem has enjoyed its strong
connections to ergodic theory. Likewise, the Szemerédi regularity lemma has
strong links to probability theory and analysis. For example, Tao [33] gave a
probabilistic and information theoretic version of the regularity lemma. Lovász
and Szegedy [24] obtained ‘analytic versions’ of the regularity lemma and showed
that some versions of the regularity lemma can be interpreted as approximation of
elements in Hilbert spaces or as the compactness of an important metric space of
two-variable functions.
In order to state an analytic version of the regularity lemma by Lovász and
Szegedy [24], we need some notation. Let F denote the set of all bounded sym-
metric measurable functions F : [0,1]2→ R and let F0 denote the set of all sym-
metric measurable functions F : [0,1]2 → [0,1]2. Given F ∈ F and a partition
P = {P1,P2, . . . ,Pt} of [0,1], let FP : [0,1]2→R denote the step-function obtained
from F by substituting its value at (x,y) ∈ Pi×Pj by

R
Pi×Pj

F(x,y)dxdy.

Theorem 15 (Strong Analytic Regularity Lemma). For every positive real ε, there
exists a positive integer T (ε) such that for every function F ∈ F0, there is a parti-
tion P = {P1,P2, . . . ,Pt} of [0,1] into t ≤ T (ε) sets of equal measures so that for
every set S⊂ [0,1]2 which is the union of at most t2 rectangles,∣∣∣ Z

S
(F−FP )dxdy

∣∣∣ ≤ ε.
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Lovász and Szegedy [24] extended the regularity lemma to a general setting of
Hilbert spaces.

Theorem 16 (Regularity Lemma in Hilbert Space). Let S1,S2, . . . be arbitrary
subsets of a Hilbert space H . Then for every positive real ε and f ∈ H , there
exist a positive integer t ≤ 1/ε2, fi ∈ Si for 1 ≤ i ≤ t and a1,a2, . . . ,at ∈ R such
that for every g ∈ St+1,∣∣∣ 〈g, f − (a1 f1 +a2 f2 + . . .+at ft)〉

∣∣∣ ≤ ε ||g|| · || f ||.

This work is along the lines of the study of connections between the regularity
lemma and graph limits by Lovász and Szegedy [25], by Borgs, Chayes, Lovász,
Sós, Szegedy and Vesztergombi [9], and by Bollobás, Janson and Riordan [8].

Last but not least, we shall discuss important applications of the Szemerédi reg-
ularity lemma in computer science. The regularity lemma guarantees the exis-
tence of a regular partition that approximates a graph by a constant number of
pseudorandom graphs. The question of whether we can compute in polynomial
time such a regular partition is algorithmically very important, from the view-
point of theoretical computer science. A number of NP-hard problems can be
solved in polynomial time on graphs that admit regular partitions in polynomial
time. Algorithmic regularity lemmas that compute a regular partition in polyno-
mial time were obtained by Alon, Duke, Lefmann, Rödl, and Yuster [4] and by
Frieze and Kannan [10] for dense graphs, by Alon, Coja-Oghlan, Hàn, Kang, Rödl
and Schacht [3] for sparse graphs, and by Haxell, Nagle and Rödl [21] for hyper-
graphs. An important application of algorithmic regularity lemmas on graphs is a
polynomial time approximation scheme for the MAX-CUT problem.
Another very important application of the regularity lemma in computer science is
the property testing [2, 5, 15]. Alon and Shapira [6] showed that every monotone
property is testable. Roughly speaking, a property is said to be testable if there
exists a randomised algorithm with constant running time which distinguishes
between instances with the property and those which are far from it. To be more
precise, let us call a graph property monotone if it is closed under removal of
edges and vertices. Given a positive integer n and real ε, a graph G on n vertices is
said to be ε-far from satisfying a graph property P if at least εn2 edges should be
added or deleted from G in order to make the resulting graph satisfy P. A tester
for P is a randomised algorithm that distinguishes with high probability (e.g. 2/3)
between the case of G satisfying P and the case of G being ε-far from satisfying
P. A tester is said to have one-sided error if whenever G satisfies P, the algorithm
declares that this is the case with probability one.

Theorem 17 (Testability of Monotone Properties). For every monotone graph
property P there is a tester with one-sided error.
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4 An Irregular Mind

“Szemerédi has an irregular mind, his
brain is wired differently than most
mathematicians. Many of us admire his
unique way of thinking, his extraordi-
nary vision.” [22]

Endre Szemerédi was born in 1940 in Budapest, Hungary. He studied at Eötvös
Loránd University and received his Ph.D. from Moscow State University. He
is Research Fellow at the Alfréd Rényi Institute of Mathematics, Hungarian
Academy of Sciences and Professor of Computer Science at Rutgers University.
Endre Szemerédi has received many awards and honours for his essential con-
tributions to mathematics and computer science including the Abel Prize (2012),
the Leroy P. Steele Prize (2008), the Rolf Schock Prize (2008), the Prize of the
Hungarian Academy of Sciences (1979), the Pólya Prize (1975), the Rényi Prize
(1973), the Grünwald Prize (1968, 1967).

Endre Szemerédi and his work are best described by Timothy Gowers [18]:

“Some mathematicians are famous for one or two major theorems.
Others are famous for a huge and important body of high-class results.
Very occasionally, there is a mathematician who is famous for both.
No account of Szemerédi’s work would be complete without a dis-
cussion of Szemerédi’s theorem and Szemerédi’s regularity lemma.
However, there is much more to Szemerédi than just these two the-
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orems. He has published over 200 papers, as I mentioned at the be-
ginning, and at the age of 71 he shows no signs of slowing down. It
is extremely fitting that he should receive an award of the magnitude
of the Abel Prize. I hope that the small sample of his work that I
have described gives at least some idea of why, even if I have barely
scratched the surface of what he has done.”
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[23] Y. Kohayakawa, Szemerédi’s regularity lemma for sparse graphs, Foundations of
computational mathematics (1997), 216-230.
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