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Abstract

In this paper we study the connectivity threshold of Achlioptas processes. It is well
known that the classical Erdős-Rényi random graph with n vertices becomes connected
whp (with high probability, i.e., with probability tending to one as n → ∞) when the
number of edges is asymptotically 1

2n log n. Our first result asserts that the connectivity
threshold of the well-studied Bohman-Frieze process, which is known to delay the phase
transition, coincides asymptotically with that of the Erdős-Rényi random graph. More-
over, we describe an Achlioptas process that pushes backward the threshold for being
connected (only 1

4n log n edges, i.e., asymptotically half of what is required in the Erdős-
Rényi process, are sufficient), but which simultaneously retains the property of delaying
the phase transition.

1 Introduction

In the classical and well-studied Erdős-Rényi random graph process we begin with a graph
that contains n isolated vertices and add edges randomly one at a time. We denote this
process with ER = (ERn(t))t≥0 for short, where ERn(t) is the graph that is obtained after
having added t random edges. Suppose that t is parametrized as τn, where τ ≥ 0. A
major discovery of Erdős and Rényi in their seminal paper [5] was the identification of a
phase transition with respect to the component structure: with probability tending to one
as n → ∞ (with high probability, whp for short), if τ > 1/2, there is a unique component
that contains linearly in n many vertices, called the giant component, while if τ < 1/2, every
component contains O(log n) vertices. The value τER = 1/2 is called the critical point of the
phase transition in the ER process.

Since the seminal work of Erdős and Rényi, many different modifications of the ER process
have been proposed. Aiming at studying processes that exhibit different characteristics,
Dimitris Achlioptas suggested exploiting the principle of many choices. A (generic) Achlioptas
process starts with a graph on n vertices and no edges. In each subsequent step two potential
edges are drawn uniformly at random, and one of them is selected according to a given
rule and added to the graph. An important question that initiated a series of studies was
whether there is a rule that shifts the position of the phase transition or, more generally, that
substantially changes the distribution of the component sizes. For example, Bohman and
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Frieze [1] considered the following rule, which is now known as the Bohman-Frieze process
or the BF process for short: add the first edge if it joins two vertices that are isolated in the
current graph, and otherwise add the second edge. They showed that their rule indeed delays
the appearance of the giant component, that is, the critical point τBF of the phase transition
in the BF process is strictly larger than 1/2. Spencer and Wormald [10] and Bohman and
Kravitz [2] proved that the critical point τBF can be expressed as the blow-up point of a
function that describes the susceptibility, i.e., the average size of the component containing
a randomly chosen vertex. The finer behaviour of the phase transition of the BF process
was investigated by Janson and Spencer [7]. The phase transition of many other Achlioptas
processes was studied in [10] and in more generality by Riordan and Warnke [9].

In this paper we study several Achlioptas processes after the phase transition, in particular,
we consider the property of being connected. For the ER process the threshold for being
connected is when the number of edges is around 1

2n log n (see e.g. [3, 6]), which is the
same as the threshold of the (non-)existence of isolated vertices. Our main interest is in
studying the effect of specific rules to the connectivity transition of the underlying random
graph process. We show that for the BF process, see Theorem 4.2, the threshold for being
connected coincides asymptotically with that of the ER process, the reason being surprisingly
that whp the number of isolated vertices in the BF process is asymptotically the same as that
in the ER process.

In Section 3 we introduce a second process that is a simple modification of the BF process:
it starts with a graph with n vertices and no edge, in each step two potential edges are chosen
uniformly at random, and the first edge is added to the graph only if at least one of its
endvertices is isolated. We call this the KP process. We show that the KP process exhibits
two at first sight contradictory characteristics: while, similarly to the BF process, it delays
the phase transition (see Theorem 3.1), it simultaneously needs whp asymptotically only half
as many edges to create a connected graph (see Theorem 3.2). In other words, the KP process
pushes backward the threshold for being connected, while it pushes forward the critical point
of the phase transition.

2 Preliminaries

2.1 The Erdős-Rényi Process

For technical convenience we alter slightly the definition of the classical Erdős-Rényi random
graph process (ERn(t))t≥0. The graph ERn(0) contains n vertices and no edges. We obtain
ERn(t) by adding an edge that contains two uniformly random vertices to ERn(t − 1). Note
that ERn(t) may contain loops and multiple edges; we allow this here and in the rest of the
paper, and the asymptotic results are not affected by this modification.

It is well known that the Erdős-Rényi process exhibits a phase transition at time t ≈ n/2,
see e.g. [3, 6].

Theorem 2.1. The following statements are true whp.

• If t < (1− ε)n/2, then all components of ERn(t) contain O(log n) vertices.

• If t > (1 + ε)n/2, then ERn(t) contains a component with Ω(n) vertices.

The property of being connected is also well studied. The following result states that at
t = (1/2 + o(1))n log n the graph becomes whp connected [3, 6].
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Theorem 2.2. Let ε > 0 and set t0(n) = 1
2n log n. Then

Pr[ERn(t) is connected] =

{
1− o(1), if t > (1 + ε)t0(n),

o(1), if t < (1− ε)t0(n).

We say that a property of graphs Q is convex, if A ⊆ B ⊆ C and A,C ∈ Q imply B ∈ Q.
In our proofs it will be convenient to switch between ERn(t) and the classical random graph
Gn,p, where each edge is included independently with probability p. The following statement
allows us to do so for convex properties.

Proposition 2.3 ([6]). Let Q be a convex property of graphs with n vertices. Let p = t/
(
n
2

)
.

If Pr[Gn,p ∈ Q] = 1− o(1), then also Pr[ERn(t) ∈ Q] = 1− o(1).

3 The KP Process

We consider the following random graph process KPn = (KPn(t))t≥0. The graph KPn(0)
contains n vertices and no edges. In each time step t, two random edges e1(t) and e2(t)
(where, as in the ER process, the endpoints of those edges are selected uniformly at random)
are presented. If e1(t) contains an isolated vertex, then KPn(t) = KPn(t − 1) ∪ {e1(t)}.
Otherwise KPn(t) = KPn(t−1)∪{e2(t)}. In Section 3.1 we show the following result regarding
the phase transition of the KP process.

Theorem 3.1. There exists a constant τc > 1/2 such that for any ε > 0 the following
statements are true whp.

• If t < (1− ε)τcn, then all components of KPn(t) contain O(log n) ver- tices.

• If t > (1 + ε)τcn, then KPn(t) contains a component with Ω(n) vertices.

If we compare this statement to the behaviour of the classical random graph process,
c.f. Theorem 2.1, we see that the emergence of the giant connected component is delayed.
However, our next result shows that the property of being connected is accelerated in KPn(t).
The proof can be found in Section 3.2.

Theorem 3.2. Let ε > 0 and set t0(n) = 1
4n log n. Then whp

Pr[KPn(t) is connected] =

{
1− o(1), if t > (1 + ε)t0(n),

o(1), if t < (1− ε)t0(n).

3.1 Proof of Theorem 3.1

Spencer and Wormald [10] studied a wide class of Achlioptas processes defined by so-called
bounded-size rules. Let K be a fixed constant. A bounded-size Achlioptas process An =
(An(t))t≥0 starts with a graph with vertex set [n] := {1, . . . , n} and no edges. In each subse-
quent time step t the endpoints v1, w1, v2, w2 of two edges e1(t) = {v1, w1} and e2(t) = {v2, w2}
are chosen uniformly and independently at random from [n]. Then, exactly one of these two
edges is included in the resulting graph, where the choice depends only on the sizes of the
components containing v1, w1, v2, w2, and all components of size larger than K are treated
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the same. The Erdős-Rényi process is when K = 0, while the KP process and the BF process
are examples of bounded-size Achlioptas processes with K = 1.

The main topic of study in [10] is the phase transition in bounded-size Achlioptas pro-
cesses. The analysis reveals that the crucial parameter is the so-called susceptibility, which
is defined as the expected number of vertices in the component containing a randomly cho-
sen vertex. In particular, if we denote by C(v) the size of the component containing the
vertex v, and if C1, C2, . . . , C` denote the sizes of the components of a graph G, then it is
straightforward to establish that the susceptibility S(G) is given by

S(G) =
1

n

∑
v∈[n]

C(v) =
1

n

∑̀
i=1

C2
i .

Spencer and Wormald proved the following results (this is a simplified version of Theorem
1.1. in [10]).

Theorem 3.3. Let An be a bounded-size Achlioptas process. Then there exist a constant
τc > 0 and functions x(τ) and s(τ) such that for any ε > 0 the following is true whp.

(1) The function x(τ) ∈ (0, 1) for all τ > 0. For any τ > 0, let X(τn) denote the proportion
of isolated vertices in An(τn). Then X(τn) = x(τ) + o(1).

(2) The function s(τ) is defined for all τ ∈ [0, τc) and limτ→τ−c s(τ) =∞. For any 0 ≤ τ <
τc, let S(τn) denote the susceptibility of An(τn). Then S(τn) = s(τ) + o(1).

(3) For all t < (1 − ε)τcn, all components of An(t) contain O(log n) vertices, while for all
t > (1 + ε)τcn, An(t) contains a component with Ω(n) vertices.

To deduce Theorem 3.1 from Theorem 3.3, it suffices to show that τc > 1/2 for the KP
process. Theorem 3.3 (2) implies that there exists a deterministic function s(τ) such that whp
the susceptibility S(t) of KPn(t) is concentrated around s(τ). Following the general principles
of the differential equations method, see [10], one can show that s(τ) for the KP process is
the solution of the differential equation

s′(τ) = 2(1− (1− x(τ))2)s(τ) + 2(1− x(τ))2s(τ)2 (3.1)

with the initial condition s(0) = 1. Since all the work was done in [10] here we sketch only the
rough ideas of how to derive (3.1) by studying the average evolution of S(t) for the KP process
by adding a single edge. First of all, let us suppose that the first edge e1(t + 1) = {v1, w1}
contains an isolated vertex in KPn(t), i.e., at least one of v1, w1 is isolated. This happens with
probability 1− (1−X(t))2. In this case, two components of sizes C(v1), C(w1) of KPn(t) are
merged to form a new component of size C(v1) + C(w1) in KPn(t+ 1). Therefore, unless v1
and w1 are contained in the same component, we have

S(t+ 1)− S(t) =
1

n

(
(C(v1) + C(w1))

2 − C(v1)
2 − C(w1)

2
)

=
2

n
C(v1)C(w1).

Since at least one of C(v1) and C(w1), say C(v1), is, by assumption, equal to one and C(w1)
is equal to Ci (including the possibility of Ci being equal to one) with probability Ci

n for any

1 ≤ i ≤ `, we have in this case S(t+ 1)− S(t) = 2
n

∑
iCi

Ci
n = 2S(t)/n.
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On the other hand, given KPn(t), if both v1, w1 are not isolated, which happens with
probability (1 − X(t))2, then two components of sizes C(v2), C(w2) of KPn(t) are merged
to form a new component of size C(v2) + C(w2) in KPn(t + 1). Thus, unless again v2 and
w2 belong to the same component, S(t + 1) − S(t) = 2C(v2)C(w2)/n. We note further that
C(v2) = Ci with probability Ci/n and C(w2) = Cj with probability Cj/n for any 1 ≤ i, j ≤ `.
Thus S(t+ 1)− S(t) = 2

n

∑
i,j CiCj

Ci
n
Cj
n = 2S(t)2/n.

Putting all together, we arrive at the bound

E[S(t+ 1)−S(t) | KPn(t)]

= (1− (1−X(t))2)
2

n
S(t) + (1−X(t))2

2

n
S(t)2 + o(n−1),

where the o(n−1) term accounts for the event that two of the vertices v1, w1, v2, w2 are in the
same component of KPn(t). This already looks quite similar to (3.1), and the analysis in [10]
makes this heuristic derivation rigorous, i.e., Theorem 3.3 (2) follows.

In order to prove τc > 1/2 for the KP process, we observe from Theorem 3.3 (2) that
limτ→τ−c s(τ) = ∞, and so it is enough to show that s(1/2) is finite. To this end, we shall
use some properties of s(τ) that are specific to the KP process. Observe that s(τ) ≥ 1 and
that s(τ) is increasing, so we can take τ0 such that s(τ0/2) = 3/2. Then for all τ ≥ τ0/2,
using (3.1)

s′(τ) ≤ 2(1− (1− x(τ))2)
2

3
s(τ)2 + 2(1− x(τ))2s(τ)2

≤ 2(1− x(τ)/3)s(τ)2 [since 0 ≤ x(τ) ≤ 1].

Let x(1/2)/3 = δ. Then 0 < δ < 1 and for all τ0/2 ≤ τ ≤ 1/2, since x(τ) is decreasing, we
have

s′(τ) ≤ 2(1− δ)s(τ)2.

From this, together with the boundary condition s(τ0/2) = 3/2, it follows that for all τ0/2 ≤
τ ≤ 1/2,

s(τ) ≤ 1

2/3 + (1− δ)τ0 − 2(1− δ)τ
,

and in particular,

s(1/2) ≤ 1

2/3− (1− δ)(1− τ0)
. (3.2)

Moreover, from (3.1) and the fact s(τ) ≥ 1 we have that s′(τ) ≤ 2s(τ)2. This, together with
the initial condition that s(0) = 1 implies that s(τ) ≤ 1

1−2τ . As a consequence, we have
3/2 = s(τ0/2) ≤ 1/(1− τ0) and so, from (3.2) s(1/2) ≤ 3/2δ <∞, as desired.

3.2 Proof of Theorem 3.2

We call a random graph process (An(t))t≥0 a k-edge process if An(t+1) is obtained by adding
at most one out of k random edges to An(t). With this notation, ERn(t) is a 1-edge process,
and BFn(t) and KPn(t) are 2-edge processes. We start with a simple lower bound for the
connectivity threshold of An(t).
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Lemma 3.4. Let ε > 0 and let (An(t))t≥0 be a k-edge process. If t < (1 − ε) 1
2kn log n,

then whp An(t) is disconnected.

Proof. Let Gt be the graph where all kt < (1 − ε)12n log n edges are added. Then, cer-
tainly An(t) ⊂ Gt, implying that An(t) is disconnected whenever Gt is. Since Gt is distributed
like ERn(kt), by applying Theorem 2.2 the conclusion of the lemma follows.

Note that this lemma (with k = 2) immediately implies the lower bound for t0 in Theo-
rem 3.2. The rest of this section is devoted to the proof of the upper bound for t0. Note that
it is enough to show that if t > (1 + ε)14n log n, whp KPn(t) contains no components of size
1, . . . , bn/2c. We shall first show that for ε > 0, if t > (1/4 + ε)n log n, then whp KPn(t) has
no isolated vertices. To this end, we compute an upper bound for the expected number of
isolated vertices in KPn(t).

Lemma 3.5. Let 0 < δ < 1/2. Let Xn(t) = X(t) denote the proportion of isolated vertices
in KPn(t). Then, there exists a constant C = C(δ) > 0 such that for sufficiently large n

E [X(t)] ≤ C e−(4−5δ)t/n.

Proof. Let us begin with computing some elementary probabilities. From the definition of
the process it follows that

Pr[e1(t+ 1) contains two isolated vertices | KPn(t)] = X(t)(X(t)− 1/n).

Moreover, conditional on the event that e1(t + 1) contains two isolated vertices we have
that n(X(t+ 1)−X(t)) = −2. Another circumstance that decreases the number of isolated
vertices in KPn(t + 1) is the event that e1(t + 1) connects an isolated vertex to a larger
component in KPn(t). The probability for this event is

Pr[e1(t+ 1) contains one isolated vertex | KPn(t)] = 2X(t)(1−X(t)).

Note that in this case we have that n(X(t+ 1)−X(t)) = −1. Finally, the probability of the
remaining events is

Pr[e1(t+ 1) contains no isolated vertex | KPn(t)] = (1−X(t))2.

If e1(t + 1) contains no isolated vertex, then a random edge is added to KPn(t). So, in this
case n(X(t + 1) −X(t)) equals the number of distinct endpoints of a random edge that are
isolated vertices. By putting everything together we infer that

nE [X(t+ 1)−X(t) | KPn(t)]

=− 2X(t)(X(t)− 1/n)− 2X(t)(1−X(t))− 2X(t)(1−X(t))2

=− (4− 2/n)X(t) + 4X(t)2 − 2X(t)3.

With this relation in mind it can be shown that whp

X(bτnc) = x(τ) + o(1),

for any τ ∈ [0,∞), where x is the unique solution of the differential equation

x′ = −4x+ 4x2 − 2x3, x(0) = 1.
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This task was performed in [10], and this is the function x in Theorem 3.3 (1). Since X(t) ≤ 1,
note that we also have

E [X(bτnc)] = x(τ) + o(1).

Let τδ be the solution to x(τ) = δ. Since X is non-increasing, we infer that for any t > τδn
and sufficiently large n

nE [X(t+ 1)−X(t) | KPn(t)] =− (4− 2/n)X(t) + 4X(t)2 − 2X(t)3

≤− (4− 5δ)X(t).
(3.3)

So, for all such t we get the bound

E [X(t+ 1) | KPn(t)] ≤
(

1− 4− 5δ

n

)
X(t) ≤ e−(4−5δ)/nX(t),

which implies that

E [X(t+ τδn)] ≤ e−(4−5δ)t/n E [X(bτδnc)] = e−(4−5δ)t/n (δ + o(1)).

The claim of the lemma then follows by replacing t with t− τδn in the previous calculation,
and choosing, say, C = 2δe4τδ .

By applying the previous lemma with t = (1 + ε)14n log n and δ = 2ε/5 we infer that
E [X(t)] = o(n−1), and Markov’s inequality implies that KPn(t) contains whp no isolated
vertices. In order to complete the proof of Theorem 3.2, we show next that whp KPn(t)
contains no component of size s = 2, . . . , bn/2c.

Lemma 3.6. Let ε > 0 and set t+ = (1 + ε)14n log n. Then, KPn(t+) contains whp no
components with a number of vertices in [2, bn/2c].

Proof. Let us construct an auxiliary graph sequence Gn(t) as follows. The graph Gn(0) con-
tains n vertices and no edges. Moreover, set

Gn(t+ 1) =


Gn(t) ∪ {e2(t+ 1)}, if e1(t+1) contains no isolated vertex

of KPn(t),

Gn(t), otherwise

.

In words, Gn(t) contains all edges in KPn(t) that were included in a time step where the first
edge contained no isolated vertex, i.e., it contains random edges. Since Gn(t) ⊂ KPn(t), it is
sufficient to show that whp there are no components of size s ∈ [2, bn/2c] in Gn(t).

Note that Gn(t) is distributed like ERn(t′), where t′ = t−Z, and Z is the number of edges
in KPn(t) that were not included in Gn(t). But 0 ≤ Z ≤ n, since every such edge eliminates
at least one isolated vertex. So, there is a coupling guaranteeing that

ERn(t− n) ⊆ Gn(t) ⊆ ERn(t).

We will argue that ERn(t∗), where t∗ = (1 + ε/2)14n log n < t+ − n for sufficiently large n,
contains whp no components with a number of vertices in [2, bn/2c], thus completing the
proof. Actually, this property of ERn is well known – see e.g. page 104 in [6] – but we are
unaware of any explicit proof in the literature. We include one here for completeness.
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Note that the property of containing no component of size s ∈ [2, bn/2c] is convex. Thus,
by applying Proposition 2.3, we may perform all our calculations in the Gn,p model of random

graphs, where p = t∗/
(
n
2

)
= (1+ε/2) logn

2(n−1) . The expected number of components of size s in Gn,p
is at most (

n

s

)
ss−2 ps−1 (1− p)s(n−s). (3.4)

Indeed, the binomial coefficient accounts for the number of choices of the vertices in a com-
ponent of size s. The term ss−2, by Cayley’s formula [4], is the number of ways to choose
a (spanning) tree on the set of selected vertices. Finally, ps−1 is the probability that the
edges of the tree are included in Gn,p, and (1− p)s(n−s) is the probability that no edge exists
between the selected vertices and the rest of the graph.

Using the facts
(
n
s

)
≤ ns/s! and s! ≥ (s/e)s and the inequality 1− x ≤ e−x we infer that

there exists a constant c > 0 (independent of n) such that (3.4) is at most

ps = n (c log n)s n−s(1+ε/2)(1−s/n)/2.

Note that p2, p3, p4 are all o(1). Moreover, for 5 ≤ s ≤ bn/2c it can easily be verified that
ps = o(n−1). Thus, the expected number of components of size s ∈ [2, bn/2c] in Gn,p is o(1),
and the proof is completed.

4 The BF process

In this section we consider the following random graph process (BFn(t))t≥0, which was de-
scribed by Bohman and Frieze [1]. The initial graph BFn(0) contains n vertices and no edges.
In each time step t, two uniform random edges e1(t) and e2(t) (where, as in the ER pro-
cess, the endpoints of those edges are selected uniformly at random) are presented. If e1(t)
contains two isolated vertices in BFn(t − 1), then BFn(t) = BFn(t − 1) ∪ {e1(t)}. Otherwise
BFn(t) = BFn(t− 1) ∪ {e2(t)}.

The details of the phase transition in the Bohman-Frieze process were studied in several
papers, see e.g. [1, 2, 10]. In particular, it was shown that this rule delays the emergence of
the giant component.

Theorem 4.1. There exists a constant τc > 1/2 such that for any ε > 0 the following
statements are true whp.

• If t < (1− ε)τcn, then all components of BFn(t) contain O(log n) ver- tices.

• If t > (1 + ε)τcn, then BFn(t) contains a component with Ω(n) vertices.

The main result in this section demonstrates that whp the time of the connectivity tran-
sition in the Bohman-Frieze process coincides asymptotically with the time of that in the
Erdős-Rényi process.

Theorem 4.2. Let ε > 0 and set t0(n) = 1
2n log n. Then whp

Pr[BFn(t) is connected] =

{
1− o(1), if t > (1 + ε)t0(n),

o(1), if t < (1− ε)t0(n).

By Theorem 4.1, the following lemma implies the upper bound of t0 in Theorem 4.2.
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Lemma 4.3. Let ε > 0 and set t+ = (1 + ε)12n log n. Then, BFn(t+) con- tains whp no
components with a number of vertices in [1, bn/2c].

Proof. First we prove that BFn(t+) contains whp no isolated vertices, by following the lines
of the proof of Lemma 3.5. Here, (3.3) is replaced by

nE [X(t+ 1)−X(t) | BFn(t)] = −2X(t)(X(t)− 1/n)− 2(1−X(t)2)X(t)

≤ −(2− 5δ)X(t),

where the first term after the equality accounts for the case that the endpoints of e1(t+1) are
distinct isolated vertices, and the second term accounts for the event that e2(t+ 1) is added
to BFn(t). It follows that for any 0 < δ < 1/2 there exits a constant C ′ = C ′(δ) > 0 such
that E [X(t)] ≤ C ′ e−(2−5δ)t/n for sufficiently large n. Markov’s inequality then implies what
is desired.

To prove the rest, i.e., BFn(t+) contains whp no components with a number of vertices
in [2, bn/2c], we follow the lines of the proof of Lemma 3.6, where t∗ is replaced by (1 +
ε/2)12n log n.

The lower bound of t0 in Theorem 4.2 is an immediate consequence of the following lemma.

Lemma 4.4. Let 0 < ε < 1 and set t− = (1 − ε)12n log n. Then BFn(t−) contains whp at
least one isolated vertex.

Proof. Let 0 < δ < ε and let t∗ = t∗(δ) be the smallest t such that BFn(t) has less than n1−δ+2
isolated vertices. We will split up the rounds t > t∗ in chunks of length n. In particular, the
jth chunk contains all rounds tj < t ≤ tj+1 with tj = t∗ + jn and 0 ≤ j ≤ (1 − ε) log n/2.
Let Ej be the event that X(tj) ≥ (e−2− 1/ log2 n)jn−δ. Then by assumption Pr[E0] = 1 (and
X(t0) ≤ n−δ + 2/n). We will show that

Pr[Ej+1 | Ej ] ≥ 1− o(1/ log n)

uniformly for all 0 ≤ j ≤ (1−ε) log n/2; the assertion of the lemma follows immediately, since
we obtain that whp the number of isolated vertices in BFn(t−) is

nX(t−) ≥ (1− o(1)) · n · n−1+ε−δ = ω(1).

Let us call an isolated vertex v in BFn(tj) bad if

a) v is contained in e2(t), for some tj < t ≤ tj+1 or

b) v is contained in e1(t) together with some other isolated vertex in BFn(tj), for some
tj < t ≤ tj+1.

We call an isolated vertex v in BFn(tj) good otherwise. It follows that the number of good
vertices in BFn(tj) is a lower bound for the number of isolated vertices in BFn(tj+1).

We will first bound the number B of bad vertices. In the following calculations we always
condition on Ej , i.e., X(tj) ≥ (e−2 − 1/ log2 n)jn−δ. For an isolated vertex v in BFn(tj) the
probability for a) is 1− (1− 1/n)2n = 1− e−2 +O(1/n) and for b) it is at most

n · 2

n
·X(tj) ≤ 2X(t0) ≤ 2n−δ + 4/n.
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Thus E [B] = (1−e−2+fn)nX(tj), where |fn| ≤ 3n−δ for sufficiently large n (and independent
of j). Note that if for some tj < t ≤ tj+1 we change any of the vertices in e1(t) or e2(t),
the value of B changes by at most two. Moreover, if B ≥ r, this event can be certified by
exposing at most r different edges from the set {e1(t)}tj<t≤tj+1 ∪ {e2(t)}tj<t≤tj+1. Thus, the
combinatorial version of Talagrand’s inequality applies, see e.g. [6, Theorem 2.29 and (2.43)]
and we obtain that there is a constant γ > 0 such that for any h ≥ 0

Pr[|B − E [B] | ≥ h] ≤ exp(−γh2/(E [B] + h)).

Set h =
nX(tj)

2 log2 n
. The conditioning on Ej and j ≤ (1−ε) log n/2 guarantees that h2/(E [B]+h) =

ω(log log n). Thus, with probability at least 1 − o(1/ log n) we have for sufficiently large n
that B ≤ (1− e−2 + 1/ log2 n)nX(tj). Consequently, with probability at least 1− o(1/ log n)
the fraction of good vertices in BFn(tj+1) is at least

X(tj)− (1− e−2 + 1/ log2 n)X(tj) ≥ (e−2 − 1/ log2 n)X(tj).

We arrive at the claimed bound Pr[Ej+1 | Ej ] ≥ 1− o(1/ log n).
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