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Abstract

A class A of graphs is called weakly addable (or bridge-addable) if for any G ∈ A and
any two distinct components C1 and C2 in G, any graph that can be obtained by adding
an edge between C1 and C2 is also in A. McDiarmid, Steger and Welsh conjectured in [6]
that a graph chosen uniformly at random among all graphs with n vertices in a weakly
addable A is connected with probability at least e−1/2+o(1), as n→∞. In this paper we
show that the conjecture is true under a stronger assumption. A class G of graphs is called
bridge-alterable, if for any G ∈ G and any bridge e in G, G ∈ G if and only if G− e ∈ G.
We prove that a graph chosen uniformly at random among all graphs with n vertices in
a bridge-alterable G is connected with probability at least e−1/2+o(1), as n→∞.

The main tool in our analysis is a tight enumeration result that addresses the number
of ways in which a given forest can be complemented to a forest with fewer components.
Keywords: Random Graphs, Addable Graph Classes, Connectivity, Tree Enumeration

1 Introduction

A class A of graphs is called weakly addable or bridge-addable if for any G ∈ A and any
two vertices u and v in distinct components of G, the graph that is obtained by adding
the edge {u, v} to G is also in A. The notion of weakly addable classes was introduced by
McDiarmid, Steger and Welsh [6] as a general model for studying properties of classes of
graphs. Indeed, many “natural” classes, like all H-free and all H-minor-free graphs, where H
is 2-edge-connected, are easily seen to be weakly addable. The main objects of study in this
work is a random graph that is sampled uniformly at random from the set An of all graphs
with n vertices contained in a given weakly addable class A, and we consider their asymptotic
probability of being connected. Asymptotics are always as n→∞.
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One particular example of a weakly addable class is the class of forests. A result of
Rényi [8] shows that the number of forests with n vertices is e1/2+o(1)nn−2. Together with
Cayley’s [3] famous formula nn−2 for the number of trees with n vertices, this implies that the
asymptotic probability that a random forest is connected is e−1/2+o(1). McDiarmid, Steger
and Welsh [6] conjectured that the class of forests is the “least connected” weakly addable
class, in the sense that the asymptotic probability that a random graph from any weakly
addable class is connected is at least e−1/2+o(1). Moreover, they derived a lower bound of e−1

for this probability. Balister, Bollobás and Gerke improved this bound to e−0.7983+o(1) in [2].
Addario-Berry, McDiarmid and Reed observed in [1] that all “natural” weakly addable

classes, like H-free or H-minor-free graphs, also satisfy the property of being monotone:
a class A is called monotone, if for any G ∈ A, each graph that is obtained by deleting
edges from G is also in A. In an earlier version of [1], it was shown that the asymptotic
probability that a random graph from a monotone weakly addable class is connected is at
least e−0.54076+o(1).

Following the notation from [1], we say that a class of graphs G is bridge-alterable if for
any G ∈ G and any bridge e in G, G ∈ G if and only if G− e ∈ G. Note that any monotone
weakly addable class is bridge-alterable, and that any bridge-alterable class is weakly addable.
Our main result provides a lower bound for the asymptotic probability that a random graph
from a bridge-alterable class is connected.

Theorem 1.1. Let G be a non-empty bridge-alterable class and Gn the set of all graphs with
n vertices in G. Let Gn denote a graph chosen uniformly at random among all graphs in Gn.
Then

Pr[Gn is connected] ≥ e−1/2+o(1).

The same result was obtained independently by Addario-Berry, McDiarmid and Reed
in [1].

Note that the bound in the above theorem is tight, since the class of forests is weakly
addable and monotone. We shall prove the theorem in the next section. Here we give a main
idea of our proof, and highlight differences from the earlier approaches [1, 2, 6]. First of all,
let us discuss why the probability that a random forest is connected approaches e−1/2. Recall
Cayley’s formula, which says that the number of trees with n vertices is nn−2. Moreover, it
is well-known that the number of forests with k ≥ 2 components and n vertices is

(1 + o(1))
1

2k−1(k − 1)!
nn−2, as n→∞. (1.1)

This formula remains valid even if k is allowed to go very slowly with n to infinity (say
1 ≤ k ≤

√
log n). Probably the first reference to this enumeration result is the paper [8]

by Rényi, and it has been rediscovered many times with many different approaches in the
literature. In addition to that, it can be shown that the number of forests with more than
k(n) components, where k(n) is any function going to infinity, is o(nn−2). By putting these
facts together we see that the asymptotic number of forests with n vertices is

(1 + o(1))

√
logn∑
k=1

1

2k−1(k − 1)!
nn−2 + o(nn−2) = e1/2+o(1) nn−2.

It is an immediate consequence of this formula that the probability that a random forest is
connected is asymptotically e−1/2+o(1). An alternative way of proving this (and much more)
is to use generating functions, see e.g. [4].
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All the previous proofs, and also our proof, follow a similar line of reasoning in order to
prove lower bounds for the asymptotic probability that a random graph from a weakly addable
class is connected. In particular, it is shown that there exists a constant β > 0 such the number

of graphs with 2 ≤ k ≤ o(log n) components and n vertices is at most (1 + o(1)) βk−1

(k−1)! · X,
where X is the number of connected graphs with n vertices from the considered class, and
that the number of graphs with “too many” components is o(X). More specifically, β ≈ 0.79
in [2] and β ≈ 0.54 in an early version of [1]. In this work and in [1], the best possible value of
β (up to (1+o(1)) factor), namely β = 1/2, is obtained. We show this by explicitly computing
bounds for the number of graphs with k components, instead of relating this number to X.

2 The Proof of Theorem 1.1

From this section on, we assume that a non-empty bridge-alterable class G is given. For any
positive integer n, we denote by Gn the set of all graphs with n vertices contained in G and
by [n] the set {1, . . . , n}.

Let us begin with reviewing some basic facts from [1]. Given a graph G ∈ Gn, we let b(G)
be the graph that is obtained from G by removing all bridges, and let [G] be the set of all
graphs G′ ∈ Gn such that b(G′) = b(G). As already argued in [1], we observe that Gn is the
disjoint union of equivalence classes [G1], . . . , [Gm], for some positive integer m (depending
on Gn) and some graphs Gi ∈ Gn, for 1 ≤ i ≤ m. To see this, note simply that if G ∈ Gn,
then [G] ⊆ Gn, as G is closed under deleting and adding bridges.

A new key observation leading to Theorem 1.1 is the following.

Lemma 2.1. Let G ∈ Gn and let G be a graph chosen uniformly at random from [G]. Then

Pr[G is connected] ≥ e−1/2+o(1).

The key lemma says that the desired bound in Theorem 1.1 holds for a graph chosen
uniformly at random from each equivalence class. Since Gn is the disjoint union of (finite)
equivalence classes, Theorem 1.1 follows immediately. In the next section we prove Lemma 2.1.

3 Proof of Lemma 2.1

Let G ∈ Gn. Since [G] = [b(G)], throughout this section we will assume, without loss of
generality, that G is bridgeless, i.e., G = b(G). Our first step towards the proof of Lemma 2.1
is the following result about the number of connected graphs in [G]. We include a proof of it,
although similar statements are probably known.

Lemma 3.1. Let G ∈ Gn be a bridgeless graph with t components of sizes n1, . . . , nt. Then
the number of connected graphs in [G] equals

(∏t
i=1 ni

)
· nt−2.

Proof. We denote the t components of G by C1, . . . , Ct and assume that Ci has ni vertices, for
each 1 ≤ i ≤ t. We first identify each component Ci in G with integer (“vertex” ) i from [t].
Every connected graph H in [G] can then be mapped to a tree T on [t] as follows: for each
pair i, j ∈ [t] with i 6= j, we insert an edge in T between vertices i and j if and only if there
is an edge (indeed a bridge) in H connecting Ci and Cj . This mapping guarantees that each

tree T on [t] gives rise to
∏t
i=1 n

di
i connected graphs that are in [G], where di is the degree of

vertex i in T .
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From the Prüfer code representation of trees (see the original paper [7] or the book [5]
for a modern treatment), it follows that the number of trees with degree sequence d1, . . . , dt
is
(

t−2
d1−1,...,dt−1

)
. Thus, the number of connected graphs in [G] is equal to

∑
d1+···+dt=2(t−1)
∀1≤i≤t : di≥1

(
t− 2

d1 − 1, . . . , dt − 1

) t∏
i=1

ndii =
∑

d1+···+dt=t−2
∀1≤i≤t : di≥0

(
t− 2

d1, . . . , dt

) t∏
i=1

ndi+1
i .

By applying the binomial theorem we infer that this equals
(∏t

i=1 ni
)
· nt−2, as claimed.

Note that Lemma 3.1 provides an enumeration result that addresses the number of ways
in which any given forest can be completed to a tree. In particular, if we take n1 = n2 =
· · · = nn = 1, then we recover Cayley’s formula. On the other hand, by fixing any forest F ,
then Lemma 3.1 enumerates all trees that contain F . Our main contribution is the proof
of the following claim, which concerns only partial completions, i.e., the considered graphs
have k ≥ 2 components.

Lemma 3.2. Let G ∈ Gn be a bridgeless graph with t components of sizes n1, . . . , nt. Then,
the number of graphs with k ≥ 2 components in [G] is at most

cn,k ·
1

2k−1(k − 1)!

(
t∏
i=1

ni

)
· nt−2, where cn,k = e5(2

k−1−1)/n.

Note that the bound in the lemma above is asymptotically tight for the class of forests with
k ≥ 2 components, even for k that grows sufficiently slowly with n. Indeed, for such k we have
that cn,k = 1+o(1) and therefore the provided upper bound coincides with (1.1). However, it
is doubtful that this bound is best possible. Moreover, the bound is very weak if k = Ω(log n).
For large k we will use the following statement, which was observed in a similar (though not
so explicit) form in [2, 1]. We include a proof for completeness.

Lemma 3.3. Let G ∈ Gn be a bridgeless graph with t components of sizes n1, . . . , nt. Then,
the number of graphs with k ≥ 2 components in [G] is at most

1

(k − 1)!

(
t∏
i=1

ni

)
· nt−2.

Proof. Let Fk be the set of graphs with k components in [G]. For any k ≥ 1 we construct
an auxiliary bipartite graph Bk = (L ∪R,E) with vertex set L ∪R and edge set E, where L
contains one vertex for each graph in Fk, R contains one vertex for each graph in Fk+1 and E
contains an edge {`, r} with ` ∈ L and r ∈ R if and only if the graph corresponding to r can
be obtained from the graph corresponding to ` by deleting a bridge. Let us count the number
of edges in Bk in two ways. First, the number of ways to remove a bridge from any graph
in Fk is t− k. Thus

|E| = (t− k)|L| = (t− k)|Fk| ≤ (n− k)|Fk|.

On the other hand, let G′ be a graph in Fk+1, whose components have sizes m1, . . . ,mk+1.
Then, the number of ways to add a bridge to G′ equals∑

1≤i<j≤k+1

mimj ≥
(
k

2

)
+ k(n− k) ≥ k(n− k).
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Thus k(n− k)|Fk+1| ≤ |E| ≤ (n− k)|Fk|, from which we infer that |Fk+1| ≤ |Fk|
k . The claim

then follows by applying Lemma 3.1 and by induction over k.

Lemma 2.1 is an immediate consequence of Lemmas 3.2 and 3.3, because the number of
graphs in [G], divided by (

∏t
i=1 ni) · nt−2 (i.e. the number of connected graphs in [G]), is at

most

1 +

min{t,
√
logn}∑

k=2

cn,k
1

2k−1(k − 1)!
+

∑
k≥
√
logn

1

(k − 1)!

(cn,k=1+o(1))

≤ e1/2+o(1) + o(1).

The rest of the paper is devoted to the proof of Lemma 3.2.

4 Proof of Lemma 3.2

Let G ∈ Gn be a bridgeless graph with components C1, . . . , Ct with |Ci| = ni for 1 ≤ i ≤ t.
For each k ≥ 1 and each subset set I ⊆ [t] we will denote by Fk(I) the number of graphs
with k components in [∪i∈ICi], where ∪i∈ICi is a subgraph of G consisting of components Ci
for i ∈ I, and we will abbreviate s(I) =

∑
i∈I ni.

We shall treat the cases k = 2 and k ≥ 3 separately. We prove the case k ≥ 3 by
induction, provided that the case k = 2 is true. As an induction hypothesis, we assume
that the statement is true for any k′ ≤ k and any bridgeless graph with n′ vertices for
n′ ≤ n. We first observe that Hk([t]) = (k − 1)Fk([t]) counts the number of graphs with k
components in [G], such that one of the components that do not contain Ct is distinguished.
We will provide an alternative way of enumerating those graphs counted by Hk([t]). To this
end, we let Hs

k([t]) denote the number of graphs where the distinguished component has at
most n/2 vertices and H`

k([t]) the number of graphs where the distinguished component has
more than n/2 vertices. Thus, Hk([t]) = Hs

k([t]) +H`
k([t]).

We now construct all graphs counted by Hs
k([t]) by first fixing any I ⊆ [t − 1] such

that s(I) ≤ n/2, then by picking any connected graph in [∪i∈ICi] (as the distinguished
component), and finally by constructing any graph in [∪i∈[t]\ICi] with k−1 components. From
the induction hypothesis and from the fact that cs([t]\I),k−1 ≤ cn/2,k−1 (because s([t] \ I) >

n/2), we obtain that Fk−1([t] \ I) ≤ cn/2,k−1

2k−2(k−2)!

(∏
i∈[t]\I ni

)
s([t] \ I)t−|I|−2. From Lemma 3.1

we have F1(I) ≤
(∏

i∈I ni
)
s(I)|I|−2. Putting these together, we obtain that

Hs
k([t]) =

∑
I⊆[t−1],s(I)≤n/2

F1(I)Fk−1([t] \ I)

≤
cn/2,k−1

2k−2(k − 2)!

∑
I⊆[t−1],s(I)≤n/2

(∏
i∈I

ni

)
s(I)|I|−2 ·

 ∏
i∈[t]\I

ni

 s([t] \ I)t−|I|−2.

Now we will find an appropriate bound for H`
k([t]). The graphs counted by H`

k([t]) can
be constructed by first fixing any I ⊆ [t− 1] such that s(I) > n/2, then by constructing any
graph with k − 1 components from [∪i∈ICi] with one (and necessarily) unique component
that contains more than n/2 vertices, and by finally constructing any connected graph in
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[∪i∈[t]\ICi]. Thus, again by applying the induction hypothesis and Lemma 3.1 we infer that

H`
k([t]) ≤

∑
I⊆[t−1],s(I)>n/2

Fk−1(I)F1([t] \ I)

≤
cn/2,k−1

2k−2(k − 2)!

∑
I⊆[t−1],s(I)>n/2

(∏
i∈I

ni

)
s(I)|I|−2 ·

 ∏
i∈[t]\I

ni

 s([t] \ I)t−|I|−2.

Since (k − 1)Fk([t]) = Hs
k([t]) +H`

k([t]), we get the bound

(k − 1)Fk([t]) ≤
cn/2,k−1

2k−2(k − 2)!

∑
I⊆[t−1]

(∏
i∈I

ni

)
s(I)|I|−2 ·

 ∏
i∈[t]\I

ni

 s([t] \ I)t−|I|−2.

However, due to Lemma 3.1, the last sum is equal to
∑

I⊆[t−1] F1(I)F1([t]\I). But this counts
the number of graphs with two components in [G], i.e. F2([t]), because the first term F1(I)
counts the number of connected graphs in [G] that do not contain Ct (as I ⊆ [t− 1]) and the
second term F1([t] \ I) counts the number of connected graphs in [G] that contain Ct. By our
assumption for k = 2, we have F2([t]) ≤ 1

2 e
5/n (

∏t
i=1 ni) · nt−2. The proof is completed by

observing that cn/2,k−1 · e5/n = cn,k.
It remains to treat the case k = 2. The crucial idea is to prove the stronger claim (which

comes from magic!):

F2([t]) ≤

(
t∏
i=1

ni

)
nt−2 ·

(
1

n

(
t∑
i=1

1

ni

)
− f(t)

2n2

)
, (4.1)

where f(t) = t2 − 5t+ 6. To see that this is sufficient, let us write α = t
n . Then 1/n ≤ α ≤ 1

and
1

n

(
t∑
i=1

1

ni

)
≤ 1

n

(
t∑
i=1

1

)
= α,

so, the last multiplicative term in the right-hand side of (4.1) is at most

α− f(t)

2n2
= α− (αn)2 − 5αn+ 6

2n2
≤ α− α2

2
+

5

2n
≤ 1

2

(
1 +

5

n

)
≤ 1

2
e5/n.

This proves the claim for the case k = 2.
We will prove (4.1) by induction on t. Note that for t = 2 the statement is true, as

f(2) = 0 and

F2([2]) = 1 = n1n2n
2−2 ·

(
1

n

(
1

n1
+

1

n2

)
− f(2)

2n2

)
.

For t ≥ 3, we observe that in each graph counted by F2([t]), there are exactly t−2 edges (indeed
bridges) that are inserted between C1, . . . , Ct, because F2([t]) counts the number of graphs
with two components in [G]. Now let us denote by F ′2([t]) the number of graphs with two
components in [G], in which exactly one of those t−2 edges connecting some Ci and some Cj
for i 6= j is distinguished. So, F ′2([t]) = (t − 2)F2([t]). On the other hand, we can construct
graphs counted by F ′2([t]), by first selecting two components Ci and Cj with 1 ≤ i < j ≤ t,
and then fixing one of the possible ninj edges between Ci and Cj , and inserting that chosen
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edge between Ci and Cj . In this way we obtain a new set of components, by removing Ci
and Cj from the set {C1, . . . , Ct}, and by including a new component of size ni + nj . By
the induction hypothesis of (4.1), the number of graphs with two components that can be
obtained from this new component set by inserting additional bridges is at most

Ni,j =

(ni + nj)
∏

`=1...t,` 6=i,j
n`

nt−3

(
1

n

(
− 1

ni
− 1

nj
+

1

ni + nj
+

t∑
`=1

1

n`

)
− f(t− 1)

2n2

)
.

Thus,

F ′2([t]) ≤
∑

1≤i<j≤t
ninj ·Ni,j

≤

(
t∏

`=1

n`

)
nt−2

∑
1≤i<j≤t

(ni + nj)

(
1

n2

(
− 1

ni
− 1

nj
+

1

ni + nj
+

t∑
`=1

1

n`

)
− f(t− 1)

2n3

)
.

(4.2)

Note that

1

n2

∑
1≤i<j≤t

(ni + nj)

(
− 1

ni
− 1

nj
+

1

ni + nj

)
= − 1

n2

∑
1≤i<j≤t

(
1 +

nj
ni

+
ni
nj

)

= −
(
t
2

)
n2
− 1

n2

t∑
`=1

n− n`
n`

= −
(
t
2

)
− t
n2

− 1

n

(
t∑

`=1

1

n`

)
.

(4.3)

Since
∑

1≤i<j≤t(ni + nj) = (t− 1)n, we have

1

n2

∑
1≤i<j≤t

(ni + nj)

(
t∑

`=1

1

n`

)
=
t− 1

n

(
t∑

`=1

1

n`

)
, (4.4)

and the error term involving f equals

−
∑

1≤i<j≤t
(ni + nj)

f(t− 1)

2n3
= −(t− 1)

f(t− 1)

2n2
. (4.5)

By plugging (4.3)–(4.5) into (4.2) we obtain that

F ′2([t]) ≤

(
t∏

`=1

n`

)
nt−2

(
t− 2

n

(
t∑

`=1

1

n`

)
−
(
t
2

)
− t
n2

− (t− 1)
f(t− 1)

2n2

)
.

Recall that F ′2([t]) = (t− 2)F2([t]). The proof of (4.1) completes with the observation

1

t− 2

((
t

2

)
− t+ (t− 1)

f(t− 1)

2

)
=
f(t)

2
.
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