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Abstract. For d ≥ 2, let Hd(n, p) denote a random d-uniform hypergraph with n vertices in which
each of the

(
n
d

)
possible edges is present with probability p = p(n) independently, and let Hd(n,m)

denote a uniformly distributed d-uniform hypergraph with n vertices and m edges. Let either H =
Hd(n,m) or H = Hd(n, p), where m/n and

(
n−1
d−1

)
p need to be bounded away from (d− 1)−1 and 0

respectively. We determine the asymptotic probability that H is connected. This yields the asymptotic
number of connected d-uniform hypergraphs with given numbers of vertices and edges. We also derive
a local limit theorem for the number of edges in Hd(n, p), conditioned on Hd(n, p) being connected.

2010 Mathematics subject classification: Primary 05C80. Secondary 05C65.

1 Introduction and Main Results

1.1 Phase transition and connectivity

A d-uniform hypergraph H = (V,E) is a pair of a set V = V (H) of vertices and a set E = E(H) of
edges e ⊂ V (H) with |e| = d. The order of H is the number of vertices of H , and the size of H is the
number of edges. A 2-uniform hypergraph is just a graph. We say that a vertex v ∈ V (H) is reachable
from w ∈ V (H) if there exist edges e1, . . . , ek ∈ E(H) such that v ∈ e1, w ∈ ek and ei ∩ ei+1 6= ∅ for all
1 ≤ i < k. Reachability is an equivalence relation, and the equivalence classes are called the components of
H . If H has only a single component, then H is connected. We letN (H) signify the maximum order (i.e.,
number of vertices) of a component of H . For all hypergraphs H that we deal with the vertex set V (H)
will consist of integers. Therefore, the subsets of V (H) can be ordered lexicographically, and we call the
lexicographically first component of H that has order N (H) the largest component of H . In addition, we
denote byM(H) the size (i.e., number of edges) of the largest component.

In this paper we consider two models of random d-uniform hypergraphs for d ≥ 2. The random hy-
pergraph Hd(n, p) has the vertex set V = {1, . . . , n}, and each of the

(
n
d

)
possible edges is present with

probability p independently. Moreover, Hd(n,m) is a uniformly distributed d-uniform hypergraph with
vertex set V = {1, . . . , n} and with exactly m edges. Finally, we say that the random hypergraph Hd(n, p)
satisfies a certain property P with high probability (“w.h.p.”) if the probability that P holds in Hd(n, p)
tends to 1 as n→∞; a similar terminology is used for Hd(n,m).

Since the pioneering work of Erdős and Rényi [9, 10] (see also [7, 12]), the component structure of
random discrete objects (e.g., graphs, hypergraphs, digraphs, . . . ) has been among the main subjects of
probabilistic combinatorics. Erdős and Rényi [10] studied (among other things) the component structure
of sparse random graphs with O(n) edges. The main result is that the order N (H2(n,m)) of the largest
component undergoes a phase transition as 2m/n ∼ 1. Let us state a more general version from Schmidt-
Pruzan and Shamir [17] for d ≥ 2. Let either H = Hd(n,m) and c = dm/n, or H = Hd(n, p) and
c =

(
n−1
d−1
)
p; we refer to c as the average degree of H . Then the result is the following.
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(i) If c < (d− 1)−1 − ε for an arbitrarily small but fixed ε > 0, then N (H) = O(lnn) w.h.p.
(ii) By contrast, if c > (d − 1)−1 + ε, then H contains a unique component of order Ω(n) w.h.p., which

is called the giant component. More precisely,N (H) = (1− ρ)n+ o(n) w.h.p. where ρ is the unique
solution to the transcendental equation

ρ = exp(c(ρd−1 − 1)) (1)

that lies strictly between 0 and 1. Furthermore, the second largest component has order O(lnn) w.h.p.

Using probabilistic techniques, we derived in [3] a local limit theorem for N (Hd(n, p)) and in [4] local
limit theorems for the joint distribution of N (H) andM(H) for H = Hd(n,m), or H = Hd(n, p) in the
regime (d− 1)

(
n−1
d−1
)
p > 1 + ε, resp. d(d− 1)m/n > 1 + ε, where ε > 0 is arbitrarily small but fixed as

n→∞. Using these results, we determine in this paper the asymptotic probability thatH is connected and
derive a local limit theorem for the number of edges inHd(n, p), conditioned onHd(n, p) being connected.

These problems have been studied by a few authors. For d = 2, the asymptotic probability thatH2(n, p)
is connected was first computed by Stepanov [18]. Bender, Canfield, and McKay [5] were the first to com-
pute the asymptotic probability that a random graph H2(n,m) is connected for any ratio m/n. Addition-
ally, using their formula for the probability ofH2(n,m) being connected, Bender, Canfield, and McKay [6]
inferred the probability thatH2(n, p) is connected as well as a central limit theorem for the number of edges
of H2(n, p) given that H2(n, p) is connected. Using enumerative arguments, Pittel and Wormald [16] de-
rived an improved version of the main result of [5] and obtained a local limit theorem that in addition to
N (H) andM(H) also includes the order and size of the 2-core. O’Connell [15] employed the theory of
large deviations in order to estimate the probability that H2(n, p) is connected up to a factor exp(o(n)).
While this result is significantly less precise than Stepanov’s, O’Connell’s proof is simpler. In addition, van
der Hofstad and Spencer [11] used a novel perspective on the branching process argument to rederive the
formula of Bender, Canfield, and McKay [5] for the number of connected graphs.

In contrast to the case of graphs (d = 2), little is known about the connectivity probability of ran-
dom d-uniform hypergraphs with d > 2. Karoński and Łuczak [13] derived an asymptotic formula for the
number of connected d-uniform hypergraphs of order n and size m = n

d−1 + o(lnn/ ln lnn) via combi-
natorial techniques. Since the minimum number of edges necessary for connectedness is n−1

d−1 , this formula
addresses sparsely connected hypergraphs. Furthermore, Andriamampianina and Ravelomanana [1] ex-
tended the result from [13] to the regime m = n

d−1 + o(n1/3) via enumerative techniques. By contrast, the
results of this paper concern connected hypergraphs with m = n

d−1 + Ω(n) edges. Thus, our results and
those from [1, 13] are complementary.

1.2 Main results

The probability of connectedness. The threshold for Hd(n,m) being connected is m ∼ n
d lnn. Hence,

for m = O(n) the probability that Hd(n,m) is connected is o(1). In fact, this probability is exponentially
small in n. The following theorem gives an asymptotic expression for this exponentially rare event.

Theorem 1. Let d ≥ 2 be a fixed integer. For any compact set J ⊂ (d(d − 1)−1,∞) and for any δ > 0
there exists n0 > 0 such that the following holds. Let m = m(n) be a sequence of integers such that
ζ = ζ(n) = dm/n ∈ J for all n. There exists a unique number 0 < r = r(n) < 1 such that

r = exp

(
−ζ · (1− r)(1− r

d−1)

1− rd

)
. (2)

Let Φd(r, ζ) = r
r

1−r (1− r)1−ζ(1− rd)
ζ
d for d ≥ 2. Furthermore, define, for d > 2,

Rd(n,m) =
1− rd − (1− r)(d− 1)ζrd−1√(

1− rd + ζ(d− 1)(r − rd−1)
)
(1− rd)− dζr(1− rd−1)2

· exp
(
(d− 1)ζ(r − r2 + rd−1 − 2rd + rd+2)

2(1− rd)

)
· Φd(r, ζ)n,
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and for d = 2,

R2(n,m) =
1 + r − ζr√
(1 + r)

2 − 2ζr
· exp

(
ζr(2− r − r2 + ζ)

2(1 + r)

)
· Φ2(r, ζ)

n.

Finally, let cd(n,m) denote the probability that Hd(n,m) is connected. Then for all n > n0 we have

(1− δ)Rd(n,m) < cd(n,m) < (1 + δ)Rd(n,m).

Observe that Theorem 1 yields an asymptotic formula for the numberCd(n,m) of connected d-uniform
hypergraphs of given order n and size m, because

Cd(n,m) =

((n
d

)
m

)
cd(n,m).

To prove Theorem 1 we shall consider a “larger” hypergraph Hd(ν, p) such that the expected order and
size of the largest component of Hd(ν, p) are n and m. Then, we will infer the probability that Hd(n,m)
is connected from the local limit theorem for N (Hd(ν, p)) and M(Hd(ν, p)), which was proved by the
authors in [4] (see below Lemma 6).

We also derive the following theorem on the asymptotic probability that Hd(n, p) is connected, using
results from [3, 8] (see below Lemmas 6 and 8).

Theorem 2. Let d ≥ 2 be a fixed integer. For any compact set J ⊂ (0,∞), and for any δ > 0 there exists
n0 > 0 such that the following holds. Let p = p(n) be a sequence such that ζ = ζ(n) =

(
n−1
d−1
)
p ∈ J for

all n. There exists a unique 0 < % = %(n) < 1 such that

% = exp

(
ζ · %

d−1 − 1

(1− %)d−1

)
. (3)

Let Ψd(%, ζ) = (1− %)%
%

1−% exp
(
ζ
d ·

1−%d−(1−%)d
(1−%)d

)
for d ≥ 2. Define, for d > 2,

Sd(n, p) =
1− ζ(d− 1)

(
%

1−%

)d−1
√
1 + ζ(d− 1)%−%

d−1

(1−%)d

· exp
(
ζ(d− 1)%(1− %d − (1− %)d)

2(1− %)d

)

· exp

(
ζ(d− 1)%

2

((
%

1− %

)d−2
+ 1

))
· Ψd(%, ζ)n,

and for d = 2,

S2(n, p) =

(
1− ζ

eζ − 1

)
· exp

(
ζ(2 + ζ)

2(eζ − 1)

)
· (1− e−ζ)n.

Finally, let cd(n, p) denote the probability that Hd(n, p) is connected. Then for all n > n0 we have

(1− δ)Sd(n, p) < cd(n, p) < (1 + δ)Sd(n, p).

Remark 3. The formulas for Rd(n,m) and Sd(n, p) for d ≥ 2 given in an extended abstract version [2] of
this work were incorrect.

The distribution of the number of edges inHd(n, p) given connectedness. Interestingly, if we choose
p = p(n) and m = m(n) in such a way that

(
n
d

)
p = m for each n and set ζ =

(
n−1
d−1
)
p = dm/n, then the

function Ψd(%, ζ) from Theorem 2 is strictly bigger than Φd(r, ζ) from Theorem 1. Consequently, the prob-
ability that Hd(n, p) is connected exceeds the probability that Hd(n,m) is connected by an exponential
factor.
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The reason for this is as follows. We can think of generating Hd(n, p) as first choosing a random
number m0 of edges from the binomial distribution Bin(

(
n
d

)
, p), and then generating a random hypergraph

Hd(n,m0). The probability that Hd(n,m0) is connected increases rapidly as a function of m0. Hence,
Hd(n, p) could “boost” its probability of being connected by including a number of edges that exceeds the
expectation

(
n
d

)
p of the binomial distribution considerably. Hence, once we condition on Hd(n, p) being

connected, the total number of edges in Hd(n, p) will be significantly bigger than
(
n
d

)
p. The following

local limit theorem quantifies this phenomenon.

Theorem 4. Let d ≥ 2 be a fixed integer. For any two compact sets I ⊂ R, J ⊂ (0,∞), and for any
δ > 0 there exists n0 > 0 such that the following holds. Suppose that 0 < p = p(n) < 1 is a sequence
such that ζ = ζ(n) =

(
n−1
d−1
)
p ∈ J for all n. Let 0 < % = %(n) < 1 be the unique solution to (3), and set

µ̂ =

⌈
ζ(1− %d)
d(1− %)d

· n
⌉
, σ̂2 =

ζ

d(1− %)d

(
1− %d − ζd%(1− %d−1)2

(1− %)d + ζ(d− 1)(%− %d−1)

)
· n.

Finally, let |E(Hd(n, p))| denote the number of edges in Hd(n, p). Then for all n ≥ n0 and all integers y
such that n−

1
2 y ∈ I we have

1− δ√
2πσ̂

exp

(
− y2

2σ̂2

)
≤ P [ |E(Hd(n, p))| = µ̂+ y | Hd(n, p) is connected ]

≤ 1 + δ√
2πσ̂

exp

(
− y2

2σ̂2

)
.

In the case d = 2 the solution to (3) is % = exp(−ζ), whence the formulas from Theorem 4 simplify to

µ̂ =

⌈
ζ

2
coth(ζ/2) · n

⌉
and σ̂2 =

ζ

2
· 1− 2ζ exp(−ζ)− exp(−2ζ)

(1− exp(−ζ))2
· n.

1.3 Techniques and Outline

In Section 2 we derive Theorem 1 from Lemma 6. The basic reason why this is possible is that given that the
largest component of Hd(ν, p) has order n and size m (for suitably chosen ν > n), the largest component
is a uniformly distributed connected hypergraph with these parameters. This observation was also exploited
by Łuczak [14] to estimate the number of connected graphs up to a polynomial factor, and in [8], where an
explicit relation between the numbers cd(n,m) and P [N (Hd(ν, p)) = n, M(Hd(ν, p)) = m] was derived
(see Lemma 5 below). Combining this relation with Lemma 6, we obtain Theorem 1. Finally, in Sections 3
and 4 we use similar arguments to establish Theorems 2 and 4.

1.4 Notation

We use the “O-notation” to express asymptotic estimates as n→∞. Occasionally we will apply this nota-
tion to expressions that do not only depend on n, but also on further parameters. Suppose that f(x1, . . . , xk, n),
g(x1, . . . , xk, n) are functions of n and further parameters xi are from domains Di ⊂ R (1 ≤ i ≤ k), and
that g ≥ 0. Then we say that the estimate f(x1, . . . , xk, n) = O(g(x1, . . . , xk, n)) holds uniformly in
x1, . . . , xk if the following is true: there exist numbers C and n0 such that

|f(x1, . . . , xk, n)| ≤ Cg(x1, . . . , xk, n) for all n ≥ n0 and (x1, . . . , xk) ∈
∏k
j=1Dj .

Similarly, we say that f(x1, . . . , xk, n) ∼ g(x1, . . . , xk, n) holds uniformly in x1, . . . , xk if for any ε > 0
there exists n0 > 0 such that for all n > n0

sup
(x1,...,xk)∈D1×···×Dk

∣∣∣∣f(x1, . . . , xk, n)g(x1, . . . , xk, n)
− 1

∣∣∣∣ < ε.

We define uniformity analogously for the other Landau symbols Ω, Θ, etc.
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2 The Probability thatHd(n,m) is Connected: Proof of Theorem 1

We will derive the probability that Hd(n,m) is connected (Theorem 1) from the local limit theorem for
the joint distribution of the order and size of the largest component in Hd(ν, p), for suitably chosen ν > n.
The latter was proved by us in [3] and restated below in Lemma 6.

Let J ⊂ (d(d− 1)−1,∞) be a compact interval, and let m(n) be a sequence of integers such that ζ =
ζ(n) = dm/n ∈ J for all n. The basic idea is to choose ν and p in such a way that |n−E(N (Hd(ν, p)))|
and |m − E(M(Hd(ν, p)))| are “small”, i.e., n and m will be “probable” outcomes of N (Hd(ν, p)) and
M(Hd(ν, p)). Since given that N (Hd(ν, p)) = n and M(Hd(ν, p)) = m, the largest component of
Hd(ν, p) is a uniformly distributed connected graph of order n and size m, we can then express the proba-
bility that Hd(n,m) is connected in terms of the probability

χ = P [N (Hd(ν, p)) = n, M(Hd(ν, p)) = m] .

The (somewhat technical) details of this approach were carried out in [8], where the following lemma was
established.

Lemma 5. Suppose that n > n0 for some large enough number n0 = n0(J ). Then there exist an integer
ν = ν(n) = Θ(n) and a number 0 < p = p(n) < 1 such that the following is true.

(i) Let c =
(
ν−1
d−1
)
p. Then (d− 1)−1 < c = O(1), and letting 0 < ρ = ρ(c) < 1 signify the solution to (1),

we have

n = (1− ρ)ν,
∣∣∣m− (1− ρd)

(
ν

d

)
p
∣∣∣ = O(1).

(ii) The solution r to (2) satisfies |r − ρ| = o(1) and |c− 1−r
1−rd ζ| = o(1).

(iii) Furthermore,

cd(n,m) ∼ ν · χ · uvw · Φd(r, ζ)n (4)

uniformly for ζ ∈ J , where

Φd(r, ζ) = (1− r)1−ζ rr/(1−r)
(
1− rd

)ζ/d
, (5)

u = 2π
√
r(1− r)(1− rd)c/d, (6)

v = exp

(
(d− 1)rc

2

(
1− rd + (1− r)rd−2

))
, and (7)

w =

{
1 if d > 2,

exp
(
c2r(1+r)

2

)
if d = 2.

(8)

The formulas (4)–(8) are reformulated from the corresponding ones in [8] by translating the notations as
follows. We exchange the roles of ν and n and those of µ and m respectively; r and ρ play the same role as
1− a1 and 1− a5 respectively. The formula (5) follows from the term (a5(1− a5)(1−a5)/a5)ν(a−d5 b5)

µ =

(a1−ζ5 (1 − a5)
(1−a5)/a5(1 − (1 − a5)

d)ζ/d)ν in (15) of [8]. Letting Φd(x, ζ) := (1 − x)1−ζx
x

1−x (1 −
xd)

ζ
d , we have from Lemma 12 of [8] that Φd(1 − a5, ζ)ν ∼ Φd(1 − a1, ζ)ν , so we have in the current

setting that Φd(ρ, ζ)n ∼ Φd(r, ζ)
n. Furthermore, (6) follows from the term 2π

n

√
a5(1− a5)b5nm ∼ u in

(15) of [8]; (7) from the term exp
[
1
2 (d− 1)(1− a5)c(b5 + a5(1− a5)d−2)

]
∼ v; and (8) from the term

exp
[
b5mp(1−ad5−(1−a5)

d)

2ad5

]
∼ w.

Thus, once we know the explicit expression for

χ = P [N (Hd(ν, p)) = n, M(Hd(ν, p)) = m] ,

we can derive the exact asymptotic expression for cd(n,m) from (4). We can in fact compute χ explicitly
using the following local limit theorem for the joint distribution ofN (Hd(ν, p)) andM(Hd(ν, p)) from [4].
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Lemma 6. Let d ≥ 2 be a fixed integer. For any two compact sets I ⊂ R2, J ⊂ ((d − 1)−1,∞), and
for any δ > 0 there exists ν0 > 0 such that the following holds. Let p = p(ν) be a sequence such that
c = c(ν) =

(
ν−1
d−1
)
p ∈ J for all ν and let 0 < ρ = ρ(ν) < 1 be the unique solution to (1). Further, let

σ2
N =

ρ
(
1− ρ+ c(d− 1)(ρ− ρd−1)

)
(1− c(d− 1)ρd−1)2

· ν, (9)

σ2
M = c2ρd · 2 + c(d− 1)(ρ2d−2 − 2ρd−1 + ρd)− ρd−1 − ρd

(1− c(d− 1)ρd−1)2
· ν

+(1− ρd) c
d
· ν, (10)

σNM = cρ · 1− ρ
d − c(d− 1)ρd−1(1− ρ)
(1− c(d− 1)ρd−1)2

· ν. (11)

Suppose that ν ≥ ν0 and that n,m are integers such that

x = n− (1− ρ)ν and y = m− (1− ρd)
(
ν

d

)
p (12)

satisfy ν−
1
2 (x, y) ∈ I. Define

P (x, y) =
1

2π
√
σ2
Nσ

2
M − σ2

NM

· exp
(
− σ2

Nσ
2
M

2(σ2
Nσ

2
M − σ2

NM)

(
x2

σ2
N
− 2σNMxy

σ2
Nσ

2
M

+
y2

σ2
M

))
. (13)

Then we have

(1− δ)P (x, y) ≤ P [N (Hd(ν, p)) = n,M(Hd(ν, p)) = m] ≤ (1 + δ)P (x, y). (14)

Note that from (9)–(11) we have

σ2
Nσ

2
M − σ2

NM

=
cρ
d

(
1− ρ+ c(d− 1)(ρ− ρd−1)

)
(1− ρd)− c2ρ2(1− ρd−1)2

(1− c(d− 1)ρd−1)2
· ν2. (15)

From Lemma 5 (i) and (12), x = 0, y = O(1), and from (10) σM = Θ(ν). Thus (13)–(15) yield

χ = P [N (Hd(ν, p)) = n, M(Hd(ν, p)) = m]

∼ 1

2π
√
σ2
Nσ

2
M − σ2

NM

=
1− c(d− 1)ρd−1

2πν
√

cρ
d

(
1− ρ+ c(d− 1)(ρ− ρd−1)

)
(1− ρd)− c2ρ2(1− ρd−1)2

. (16)

Since r ∼ ρ and c ∼ 1−r
1−rd ζ by Lemma 5 (ii), we can express ν · χ, u, v, w in (16) and (6)–(8) solely in

terms of r and ζ:

ν · χ ∼
1− 1−r

1−rd ζ(d− 1)rd−1

2π

√
1−r
1−rd ζ

r
d

(
1− r + 1−r

1−rd ζ(d− 1)(r − rd−1)
)
(1− rd)−

(
1−r
1−rd ζ

)2
r2(1− rd−1)2

=
1− 1−r

1−rd ζ(d− 1)rd−1

2π

√
(1−r)2
1−rd

ζr
d

(
1− rd + ζ(d− 1)(r − rd−1)

)
−
(

1−r
1−rd

)2
ζ2r2(1− rd−1)2
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=
1− 1−r

1−rd ζ(d− 1)rd−1

2π

√
ζr
d

(
1−r
1−rd

)2 ((
1− rd + ζ(d− 1)(r − rd−1)

)
(1− rd)− dζr(1− rd−1)2

)
=

1− rd − (1− r)ζ(d− 1)rd−1

2π

√
ζr
d (1− r)2

((
1− rd + ζ(d− 1)(r − rd−1)

)
(1− rd)− dζr(1− rd−1)2

) ,
u ∼ 2π

√
r(1− r)(1− rd) 1− r

1− rd
ζ
1

d
= 2π

√
ζr

d
· (1− r),

v ∼ exp

(
(d− 1)r

2

1− r
1− rd

ζ
(
1− rd + (1− r)rd−2

))
= exp

(
ζ(d− 1)(r − r2 + rd−1 − 2rd + rd+2)

2(1− rd)

)
, and

w ∼

{
1 if d > 2,

exp
(

(1−r)2ζ2r(1+r)
2(1−r2)2

)
= exp

(
ζ2r

2(1+r)

)
if d = 2.

Putting these together, we obtain for d > 2,

ν · χ · uvw ∼ 1− rd − (1− r)ζ(d− 1)rd−1√(
1− rd + ζ(d− 1)(r − rd−1)

)
(1− rd)− dζr(1− rd−1)2

· exp
(
ζ(d− 1)(r − r2 + rd−1 − 2rd + rd+2)

2(1− rd)

)
, (17)

and for d = 2,

ν · χ · uvw ∼ 1 + r − ζr√
(1 + r)

2 − 2ζr
· exp

(
ζr(2− r − r2 + ζ)

2(1 + r)

)
. (18)

Thus, (4), (17) and (18) imply the desired result.

Remark 7. While Lemma 5 was established in Coja-Oghlan, Moore, and Sanwalani [8], the exact joint lim-
iting distribution ofN (Hd(ν, p)) andM(Hd(ν, p)) (i.e. Lemma 6) was not known at that point. Therefore,
Coja-Oghlan, Moore, and Sanwalani could only compute the cd(n,m) up to a constant factor. By contrast,
combining Lemma 6 with Lemma 5, here we have obtained tight asymptotics for cd(n,m).

3 The Probability thatHd(ν, p) is Connected: Proof of Theorem 2

Let J ⊂ (0,∞) be a compact set, and let 0 < p = p(n) < 1 be a sequence such that ζ = ζ(n) =(
n−1
d−1
)
p ∈ J for all n. All asymptotics in this section are uniform in ζ.

To compute the probability cd(n, p) that a random hypergraph Hd(n, p) is connected, we will establish
that

P [N (Hd(ν, p)) = n] ∼
(
ν

n

)
cd(n, p)(1− p)(

ν
d)−(

ν−n
d )−(nd) (19)

for a suitably chosen integer ν > n. Then, we will employ the local limit theorem forN (Hd(ν, p)), which
is implied by Lemma 6 and as well as our previous result [3] on the local limit theorem for N (Hd(n, p)),
to compute the l.h.s. of (19), so that we can just solve (19) for cd(n, p).

In order to carry this out, we use the following lemma on the component structure of Hd(ν, p), which
is a slight variant of Theorem 5 of [8]. To obtain it, we can easily adapt the argements of the proof of
Theorem 5 of [8]. We may skip here the details, as the computations become quite technical and tedious
without providing useful new insights.
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Lemma 8. Let c = c(ν) be a sequence of non-negative reals and let p = c
(
ν−1
d−1
)−1

andm =
(
ν
d

)
p = cν/d.

Then for both H = Hd(ν, p) and H = Hd(ν, µ) the following holds.

(i) For any c0 < (d−1)−1 there is a number ν0 such that for all ν > ν0 for which c = c(ν) ≤ c0 we have

P
[
N (H) ≤ 300(d− 1)2(1− (d− 1)c0)

−2 ln ν
]
≥ 1− ν−100.

(ii) For any c0 > (d − 1)−1 there are numbers ν0 > 0, 0 < c′0 < (d − 1)−1 such that for all ν > ν0
for which c0 ≤ c = c(ν) < ln ν/ ln ln ν the following holds. The transcendental equation (1) has a
unique solution 0 < ρ = ρ(ν) < 1, which satisfies

ρd−1c < c′0.

Furthermore, with probability≥ 1−ν−100 there exists precisely one component of order (1−ρ)ν+o(ν)
in H , while all other components have order ≤ ln2 ν. In addition,

E [N (H)] = (1− ρ)ν + o(
√
ν).

We pick ν as follows. By Lemma 8 for each integer k such that c(k) =
(
k−1
d−1
)
p > (d − 1)−1 the tran-

scendental equation ρ(k) = exp(c(k)(ρ(k)d−1 − 1)) has a unique solution ρ(k) that lies strictly between
0 and 1. We let ν = max{k ∈ N : (1− ρ(k))k < n}. Moreover, set ρ = ρ(ν) and c = c(ν) =

(
ν−1
d−1
)
p, and

let 0 < s < 1 be such that (1− s)ν = n. We claim

|n− (1− ρ)ν| < O(1). (20)

To see this, we observe that (1 − ρ(ν))ν < n = (1 − s)ν ≤ (1 − ρ(ν + 1))(ν + 1). In order to establish
(20), it suffices to show that |ρ(ν +1)− ρ(ν)| = O(1/ν), because n− (1− ρ(ν))ν < (1− ρ(ν +1))(ν +

1)− (1− ρ(ν))ν < 1+ ν(ρ(ν)− ρ(ν +1)). To prove this, we note that since ζ =
(
n−1
d−1
)
p =

(
(1−s)ν−1
d−1

)
p,

c(ν + 1)− c(ν) =
(

ν

d− 1

)
p−

(
ν − 1

d− 1

)
p = p

(
ν − 1

d− 1

)
d− 1

ν − d+ 1

=
ζ
(
ν−1
d−1
)(

(1−s)ν−1
d−1

) · (d− 1)

ν − d+ 1
= O(1/ν).

This, together with Taylor series expansion, implies that |ρ(ν + 1) − ρ(ν)| = O(1/ν), because ρ(k) =
exp(c(k)(ρ(k)d−1 − 1)) and ρ(k) is differentiable due to the implicit function theorem.

To establish (19), note that the r.h.s. is just the expected number of components of order n in Hd(ν, p).
For there are

(
ν
n

)
ways to choose the vertex set C of such a component, and the probability that C spans

a connected hypergraph is cd(n, p). Moreover, if C is a component, then Hd(ν, p) features no edge that
connects C with V \C, and there are

(
ν
d

)
−
(
ν−n
d

)
−
(
n
d

)
possible edges of this type, each being present with

probability p independently. Hence, we conclude that

P [N (Hd(ν, p)) = n] ≤
(
ν

n

)
cd(n, p)(1− p)(

ν
d)−(

ν−n
d )−(nd). (21)

On the other hand,

P [N (Hd(ν, p)) = n] ≥
(
ν

n

)
cd(n, p)(1− p)(

ν
d)−(

ν−n
d )−(nd)P [N (Hd(ν − n, p)) < n] , (22)

because the r.h.s. equals the probability that Hd(ν, p) has exactly one component of order n. Furthermore,
as |n− (1− ρ)ν| < O(1) by (20), Lemma 8 entails that

P [N (Hd(ν − n, p)) < n] ∼ 1.

Hence, combining (21) and (22), we obtain (19).
To derive an explicit formula for cd(n, p) from (19), we need the following lemma.
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Lemma 9. (i) We have c = ζ(1− s)1−d
(
1 +

(
d
2

)
s

(1−s)ν +O(ν−2)
)

.

(ii) The transcendental equation (3) has a unique solution 0 < % < 1, which satisfies |s− %| = O(ν−1).
(iii) Letting

Ψ(x) = Ψd(x, ζ) := (1− x)x
x

1−x exp

(
ζ

d
· 1− x

d − (1− x)d

(1− x)d

)
,

we have Ψ(%)n ∼ Ψ(s)n.

Proof of Lemma 9. Regarding the first assertion, we note that

(1− s)d−1
(
ν−1
d−1
)(

(1−s)ν−1
d−1

) =

d−1∏
j=1

(
1 +

sj

(1− s)ν − j

)
= 1 +

(
d

2

)
s

(1− s)ν
+O(ν−2). (23)

Since c =
(
ν−1
d−1
)
p = ζ

(ν−1
d−1)
(n−1
d−1)

and n = (1− s)ν, (23) implies the first assertion.

In order to show the second assertion, we set

ϕz : (0, 1)→ R, t 7→ exp

(
z
td−1 − 1

(1− t)d−1

)
for z > 0.

Then limt↘0 ϕz(t) = exp(−z) > 0, while limt↗1 ϕz(t) = 0. In addition, ϕz is convex for any z > 0.
Therefore, for each z > 0 there is a unique 0 < tz < 1 such that tz = ϕz(tz), whence (3) in Theorem 2
has the unique solution 0 < % = tζ < 1. Moreover, letting ζ ′ = (1− ρ)d−1c, we have ρ = tζ′ . Thus, since
t 7→ tz is differentiable by the implicit function theorem and |ζ − ζ ′| = O(ν−1) by the first assertion, we
conclude that |% − ρ| = O(ν−1). In addition, |s − ρ| = O(ν−1) by (20). Hence, |s − %| = O(ν−1), as
desired.

To establish the third assertion, we compute

∂

∂x
Ψ(x) = (1− x)−d−1x

2x−1
1−x exp

(
ζ

d

1− xd − (1− x)d

(1− x)d

)
×
(
ζ(1− x)(x− xd) + (1− x)dx lnx

)
. (24)

As % = exp
(
ζ %d−1−1
(1−%)d−1

)
, (24) entails that ∂

∂xΨ(%) = 0. Therefore, Taylor’s formula yields that Ψ(s) −
Ψ(%) = O(s− %)2 = O(ν−2), because s− % = O(ν−1) by the second assertion. Consequently, we obtain(

Ψ(s)

Ψ(%)

)ν
=

(
1 +

Ψ(s)− Ψ(%)
Ψ(%)

)ν
∼ exp

(
ν · Ψ(s)− Ψ(%)

Ψ(%)

)
= exp(O(ν−1)) ∼ 1,

thereby completing the proof of the third assertion. ut

Let us continue with the proof of Theorem 2. Note that Lemma 6 implies

P [N (Hd(ν, p)) = n] ∼ 1√
2πσN

exp

(
− (n− (1− ρ)ν)2

2σ2
N

)
. (25)

It follows also from our previous result [3] on the local limit theorem for N (Hd(n, p)). Since |s − ρ| =
O(ν−1) by (20), we can express σ2

N (in (9)) in terms of s:

σ2
N =

ρ
(
1− ρ+ c(d− 1)(ρ− ρd−1)

)
(1− c(d− 1)ρd−1)2

· ν

∼
s
(
1− s+ c(d− 1)(s− sd−1)

)
(1− c(d− 1)sd−1)2

· ν. (26)

Further, since |n− (1− ρ)ν| < O(1) by (20), we have from (25) and (26)

P [N (Hd(ν, p)) = n] ∼ (2π)−
1
2

(
s
(
1− s+ c(d− 1)(s− sd−1)

)
(1− c(d− 1)sd−1)2

· ν

)−1/2
. (27)
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Via Stirling’s formula and n = (1− s)ν we can estimate the binomial coefficient(
ν

n

)
∼
(
ssν(1− s)(1−s)ν

√
2πs(1− s)ν

)−1
. (28)

Plugging (27) and (28) into (19), we obtain

cd(n, p) ∼
(
ν

n

)−1
· P [N (Hd(ν, p)) = n] · (1− p)(

ν−n
d )+(nd)−(

ν
d)

∼ ssν(1− s)(1−s)ν · η · (1− p)(
ν−n
d )+(nd)−(

ν
d), (29)

where

η =

(
(1− s)(1− c(d− 1)sd−1)2

1− s+ c(d− 1)(s− sd−1)

)1/2

. (30)

Let us consider the cases d = 2 and d > 2 separately, because
(
ν
d

)
p2 = o(1) for d > 2, while(

ν
2

)
p2 = Θ(1) and therefore the asymptotics for (1− p)(

ν−n
d )+(nd)−(

ν
d) behave quite differently.

1st case: d = 2. Note first that
(
ν−n
2

)
+
(
n
2

)
−
(
ν
2

)
= s(s− 1)ν2, because n = (1− s)ν. Using p = c

ν−1 ,
we get

(1− p)(
ν−n

2 )+(n2)−(
ν
2) = (1− p)s(s−1)ν

2

∼ exp

(
−
(
p+

p2

2

)
s(s− 1)ν2

)
∼ exp

(
− c

ν − 1
s(s− 1) ((ν − 1)(ν + 1) + 1)− 1

2

(
c

ν − 1

)2

s(s− 1)ν2

)

∼ exp

(
cs(1− s)(ν + 1) +

c2

2
s(1− s)

)
. (31)

Moreover, (30) simplifies to η = 1− cs. Hence, recalling that ν = (1− s)−1n and using Lemma 9 (i)-

(iii), i.e. c = ζ
1−s

(
1 + s

(1−s)ν +O(ν−2)
)

, |s − %| = O(ν−1) and
(
(1− s)s

s
1−s exp

(
ζs
1−s

))n
∼(

(1− %)%
%

1−% exp
(
ζ%
1−%

))n
, we can estimate (29) as

c2(n, p) ∼ ssν(1− s)(1−s)ν · (1− cs) · exp
(
cs(1− s)ν + cs(1− s) + c2

2
s(1− s)

)
∼ s

sn
1−s (1− s)n

(
1− ζs

1− s

)
exp

(
ζsn

1− s
+

ζs2

1− s
+ ζs+

ζ2s

2(1− s)

)
=

(
s

s
1−s (1− s) exp

(
ζs

1− s

))n(
1− ζs

1− s

)
exp

(
ζs2

1− s
+ ζs+

ζ2s

2(1− s)

)
∼
(
%

%
1−% (1− %) exp

(
ζ%

1− %

))n(
1− ζ%

1− %

)
exp

(
ζ%2

1− %
+ ζ%+

ζ2%

2(1− %)

)
= (% exp(ζ))

%n
1−% (1− %)n

(
1− ζ%

1− %

)
exp

(
ζ(2 + ζ)%

2(1− %)

)
. (32)

Finally, for d = 2 the unique solution to (3) is just % = exp(−ζ), so we have %
1−% = 1

eζ−1 . Plugging
these into (32), we obtain

c2(n, p) ∼ (1− e−ζ)n
(
1− ζ

eζ − 1

)
exp

(
ζ(2 + ζ)

2(eζ − 1)

)
, (33)

as desired.
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2nd case: d > 2. For 0 < α < 1, using

αd
(
αν

d

)−1(
ν

d

)
=

d−1∏
i=0

α(ν − i)
αν − i

=

d−1∏
i=0

(
1 +

(1− α)i
αν − i

)
= 1 +

1− α
αν

(
d

2

)
+O(ν−2),

and n = (1− s)ν, we estimate(
n

d

)(
ν

d

)−1
+

(
ν − n
d

)(
ν

d

)−1
=

(
(1− s)ν

d

)(
ν

d

)−1
+

(
sν

d

)(
ν

d

)−1
= (1− s)d

(
1− s

(1− s)ν

(
d

2

)
+O(ν−2)

)
+ sd

(
1− 1− s

sν

(
d

2

)
+O(ν−2)

)
= (1− s)d + sd − 1

ν

(
d

2

)(
s(1− s)d−1 + (1− s)sd−1

)
+O(ν−2)

and thus we have (
n

d

)
+

(
ν − n
d

)
−
(
ν

d

)
=

(
ν

d

)(
(1− s)d + sd − 1

)
−
(
ν

d

)
1

ν

(
d

2

)(
s(1− s)d−1 + (1− s)sd−1

)
+O(νd−2). (34)

Because
(
ν−1
d−1
)
p = c = Θ(1), we have

(
ν
d

)
p2 = o(1) for d > 2, and hence

(1− p)(
ν
d)((1−s)

d+sd−1) ∼ exp

(
−p
(
ν

d

)(
(1− s)d + sd − 1

))
= exp

(cν
d

(
1− sd − (1− s)d

))
(35)

and

(1− p)−(
ν
d)

1
ν (
d
2)(s(1−s)

d−1+(1−s)sd−1)

∼ exp

(
p

(
ν

d

)
1

ν

(
d

2

)(
s(1− s)d−1 + (1− s)sd−1

))
= exp

(
p

(
ν − 1

d− 1

)
d− 1

2

(
s(1− s)d−1 + (1− s)sd−1

))
∼ exp

(
c(d− 1)

2

(
s(1− s)d−1 + (1− s)sd−1

))
. (36)

Putting (34)–(36) together, we get

(1− p)(
n
d)+(

ν−n
d )−(νd)

∼ exp

(
cν

d
(1− sd − (1− s)d) + c(d− 1)

2
((1− s)sd−1 + s(1− s)d−1)

)
. (37)

Before proceeding further computations toward the asymptotic estimation of cd(n, p), we note that
taking d = 2 in the estimate (37) yields (1 − p)(

n
2)+(

ν−n
2 )−(ν2) ∼ exp (cs(1− s)(ν + 1)), which

differs by a factor exp( c
2

2 s(1 − s)) from the estimate (31), the reason being that
(
ν
d

)
p2 = o(1) for

d > 2, while
(
ν
2

)
p2 = Θ(1). This in turn results in an extra factor exp( c

2

2 %(1−%)) in the estimate (32)
of c2(n, p), in comparison to the estimate of cd(n, p) when taking d = 2 in (41).
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We now return to the computation of (37). Using

c = ζ(1− s)1−d
(
1 +

(
d

2

)
s

(1− s)ν
+O(ν−2)

)
by Lemma 9 (i) and recalling that ν = (1− s)−1n,

cν

d
=

ζn

d(1− s)d
+
ζ(d− 1)s

2(1− s)d
+O(n−1),

and thus

cν

d
(1− sd − (1− s)d) + c(d− 1)

2
((1− s)sd−1 + s(1− s)d−1)

=
ζn

d(1− s)d
(1− sd − (1− s)d) + ζ(d− 1)s

2(1− s)d
(1− sd − (1− s)d)

+
ζ(1− s)1−d(d− 1)

2
((1− s)sd−1 + s(1− s)d−1) +O(n−1)

=
ζn

d(1− s)d
(1− sd − (1− s)d) + ζ(d− 1)s

2(1− s)d
(1− sd − (1− s)d)

+
ζ(d− 1)s

2

((
s

1− s

)d−2
+ 1

)
+O(n−1). (38)

Using this, we can restate (37) as

(1− p)(
n
d)+(

ν−n
d )−(νd)

∼ exp

(
ζ
(
1− sd − (1− s)d

)
n

d(1− s)d
+
ζ(d− 1)s(1− sd − (1− s)d)

2(1− s)d

)

· exp

(
ζ(d− 1)s

2

((
s

1− s

)d−2
+ 1

))
. (39)

Due to the same reasons, we estimate (30) as

η =

(
(1− s)(1− c(d− 1)sd−1)2

1− s+ c(d− 1)(s− sd−1)

)1/2

= (1− c(d− 1)sd−1)
(
1 + c(d− 1)(1− s)−1(s− sd−1)

)−1/2
=

(
1− ζ(d− 1)

(
s

1− s

)d−1
+O(n−1)

)

·
(
1 +

ζ(d− 1)(s− sd−1)
(1− s)d

+O(n−1)

)−1/2
=

(
1− ζ(d− 1)

(
s

1− s

)d−1)

·
(
1 +

ζ(d− 1)(s− sd−1)
(1− s)d

)−1/2
+O(n−1). (40)

Plugging (39) and (40) into (29) and recalling ν = (1− s)−1n , we obtain

cd(n, p) ∼ ssν(1− s)(1−s)ν(1− p)(
ν−n
d )+(nd)−(

ν
d) · η

∼ s
sn
1−s (1− s)n exp

(
ζ
(
1− sd − (1− s)d

)
n

d(1− s)d

)
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· exp

[
ζ(d− 1)s(1− sd − (1− s)d)

2(1− s)d
+
ζ(d− 1)s

2

((
s

1− s

)d−2
+ 1

)]

·

(
1− ζ(d− 1)

(
s

1− s

)d−1)(
1 +

ζ(d− 1)(s− sd−1)
(1− s)d

)−1/2
.

Finally, using Lemma 9 (ii)–(iii), i.e. |s− %| = O(ν−1) and(
s

s
1−s (1− s) exp

(
ζ
(
1− sd − (1− s)d

)
d(1− s)d

))n

∼

(
%

%
1−% (1− %) exp

(
ζ
(
1− %d − (1− %)d

)
d(1− %)d

))n
,

we estimate (41) as

cd(n, p) ∼
(
(1− %)%

%
1−% exp

(
ζ(1− %d − (1− %)d)

d(1− %)d

))n
· exp

(
ζ(d− 1)%(1− %d − (1− %)d)

2(1− %)d
+
ζ(d− 1)%

2

((
%

1− %

)d−2
+ 1

))

×

(
1− ζ(d− 1)

(
%

1− %

)d−1)(
1 +

ζ(d− 1)(%− %d−1)
(1− %)d

)−1/2
, (41)

which is exactly the formula stated in Theorem 2.
ut

4 The Conditional Edge Distribution: Proof of Theorem 4

Let J ⊂ (0,∞) and I ⊂ R be compact sets, and let 0 < p = p(n) < 1 be a sequence such that
ζ = ζ(n) =

(
n−1
d−1
)
p ∈ J for all n. All asymptotics in this section are uniform in ζ.

To compute the limiting distribution of the number of edges of Hd(n, p) given that this random hyper-
graph is connected, we choose ν > n as in Section 3. Thus, letting c =

(
ν−1
d−1
)
p, we know from Section 3

that c > (d− 1)−1, and that the solution 0 < ρ < 1 to (1) satisfies (1− ρ)ν ≤ n < (1− ρ)ν+O(1). Now,
we investigate the random hypergraph Hd(ν, p) given that N (Hd(ν, p)) = n. Then the largest component
of Hd(ν, p) is a random hypergraph Hd(n, p) given that Hd(n, p) is connected. Therefore,

P [|E(Hd(n, p))| = m | Hd(n, p) is connected]
= P [M(Hd(ν, p)) = m | N (Hd(ν, p)) = n]

=
P [M(Hd(ν, p)) = m, N (Hd(ν, p)) = n]

P [N (Hd(ν, p)) = n]
. (42)

Furthermore, as |n − (1 − ρ)ν| < O(1) by (20), we can apply Lemma 6 to get an explicit expression
for the r.h.s. of (42). Namely, using (13) with x = O(1), for any integer m such that ν−

1
2 y ∈ I and

y = m− (1− ρd)
(
ν
d

)
p satisfying ν−

1
2 y ∈ I we obtain

P [|E(Hd(n, p))| = m | Hd(n, p) is connected]

∼ 1√
2π
·
(

σ2
N

(σ2
Nσ

2
M − σ2

NM)

) 1
2

exp

(
− σ2

N
2(σ2
Nσ

2
M − σ2

NM)
· y2
)
. (43)

From (9) and (15) we have

σ2
N =

ρ
(
1− ρ+ c(d− 1)(ρ− ρd−1)

)
(1− c(d− 1)ρd−1)2

· ν,

σ2
Nσ

2
M − σ2

NM =
cρ
((
1− ρ+ c(d− 1)(ρ− ρd−1)

)
(1− ρd)− dcρ(1− ρd−1)2

)
d (1− c(d− 1)ρd−1)

2 · ν2.
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Thus we have

σ2
N

σ2
Nσ

2
M − σ2

NM
=

d
(
1− ρ+ c(d− 1)(ρ− ρd−1)

)
c ((1− ρ+ c(d− 1)(ρ− ρd−1)) (1− ρd)− dcρ(1− ρd−1)2)

· 1
ν

=
d

c ν

(
1− ρd − dcρ(1− ρd−1)2

1− ρ+ c(d− 1)(ρ− ρd−1)

)−1
. (44)

In order to reformulate (44) in terms of n, ζ, and the solution % to (3), we just observe that |c − ζ(1 −
ρ)1−d| = O(ν−1) and |ρ− %| = O(ν−1) by Lemma 9, and that |ν − (1− ρ)−1n| = O(ν−1). Using these
we obtain (

σ2
N

σ2
Nσ

2
M − σ2

NM

)−1
=
cν

d

(
1− ρd − dcρ(1− ρd−1)2

1− ρ+ c(d− 1)(ρ− ρd−1)

)
∼ ζn

d(1− ρ)d

(
1− ρd − dζ(1− ρ)1−dρ(1− ρd−1)2

1− ρ+ ζ(1− ρ)1−d(d− 1)(ρ− ρd−1)

)−1
=

ζ

d(1− ρ)d

(
1− ρd − dζρ(1− ρd−1)2

(1− ρ)d + ζ(d− 1)(ρ− ρd−1)

)
· n

∼ ζ

d(1− %)d

(
1− %d − dζ%(1− %d−1)2

(1− %)d + (d− 1)ζ(%− %d−1)

)
· n

= σ̂2, (45)

and

(1− ρd)
(
ν

d

)
p = (1− ρd)ν

d
c ∼ (1− ρd) n

d(1− ρ)
ζ(1− ρ)1−d = ζ(1− %d)

d(1− %)d
· n.

Plugging (45) into (43) we have

P [|E(Hd(n, p))| = m | Hd(n, p) is connected] ∼ 1√
2πσ̂

exp

(
− y2

2σ̂2

)
,

as desired.
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