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ABSTRACT: We show that the number of labeled cubic planar graphs on n vertices with n even is
asymptotically αn−7/2ρ−nn!, where ρ−1 .= 3.13259 and α are analytic constants. We show also that
the chromatic number of a random cubic planar graph that is chosen uniformly at random among all
the labeled cubic planar graphs on n vertices is three with probability tending to e−ρ4/4! .= 0.999568
and four with probability tending to 1 − e−ρ4/4! as n → ∞ with n even. The proof given combines
generating function techniques with probabilistic arguments. © 2006 Wiley Periodicals, Inc. Random
Struct. Alg., 30, 78–94, 2007
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1. INTRODUCTION

Random planar maps are well-studied objects in combinatorics [2, 4, 34, 35]. In contrast,
random planar graphs did not receive much attention until recently. For planar graphs, we
do not distinguish between different embeddings of the same graph. We are interested in
the asymptotic number of labeled planar graphs (or subclasses of labeled planar graphs)
and the properties of a graph chosen uniformly at random from the set of all labeled planar
graphs on n vertices for large n. To study properties of random planar structures mainly three
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approaches have been applied: the first is the probabilistic method [7, 8, 15, 22–24, 30, 32];
the second is based on connectivity decomposition and generating functions [1,3,5,7,9–12,
25, 29]; the third is the matrix integral method [6, 13, 14, 16, 17, 27].

In this paper we combine the first two approaches to determine the asymptotic number of
labeled cubic planar graphs (i.e., labeled planar graphs where every vertex has degree three)
and to study typical properties of a random cubic planar graph (i.e., a graph that is chosen
uniformly at random among all the labeled cubic planar graphs), such as connectedness,
components, containment of a triangle, and the chromatic number. Note that cubic planar
maps were enumerated only recently by Gao and Wormald [21].

We first apply well-known connectivity decomposition techniques [28], which specialize
nicely in the case of cubic graphs. From that, we derive a system of algebraic equations
that describe the exponential generating function for the number of labeled connected cubic
planar graphs. Using the singularity analysis method discussed in [19] we then derive the
asymptotic number of labeled connected cubic planar graphs. From the relation between
labeled connected graphs and labeled graphs we also derive the asymptotic number of
labeled cubic planar graphs.

Using the asymptotic numbers obtained and probabilistic arguments we investigate the
asymptotic probability of connectedness of a random cubic planar graph, the limiting dis-
tribution of the number of components isomorphic to a given graph (for example K4) in a
random cubic planar graph, and the asymptotic probability of the containment of a triangle
in a random cubic planar graph. Having these, we determine the chromatic number of a
random cubic planar graph.

Based on the connectivity decomposition exact counting formulas and a deterministic
polynomial time sampling procedure then follow from general principles [19, 20, 31].

2. ROOTED CUBIC GRAPHS

To count labeled cubic planar (simple) graphs, we introduce “labeled rooted cubic planar
graphs.” We will present a decomposition scheme for such graphs, which can then be used
to count (unrooted) labeled cubic planar (simple) graphs.

From now on, except in part of Section 5, we will consider only labeled graphs and thus
leave out the term “labeled” unless explicitly stated otherwise.

A rooted cubic graph G = (V , E, st) consists of a connected cubic multigraph G = (V , E)

and an ordered pair of adjacent vertices s and t such that the underlying graph G− obtained
by deleting an edge between s and t is simple. Thus, in G, if s and t are distinct there may
be either one or two edges between them, and if s = t there is a loop at this vertex, and
otherwise there are no loops or parallel edges. The oriented edge st is called the root of G,
and s and t are the poles. Thus, G− is obtained from G by deleting the root edge. Note that
a rooted cubic graph must have at least 4 vertices: we may not have a “triple edge.”

The following lemma is easily checked. Note that G\{s, t} denotes the graph G less the
vertices s and t.

Lemma 1. A rooted cubic graph G = (V , E, st) has exactly one of the following types
(Figure 1).

• b: the root is a self-loop.
• d: G− is disconnected.
• s: G− is connected but there is a cut edge in G− that separates s and t.
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Fig. 1. The five types of rooted cubic graphs in Lemma 1.

• p: G− is connected, there is no cut edge in G− separating s and t, and either st is an
edge of G− or G\{s, t} is disconnected.

• h: G− is connected, there is no cut-edge in G− separating s and t, G is simple and
G\{s, t} is connected.

We will make use of a replacement operation for rooted cubic graphs. We are often
interested in rooted cubic graphs that are not d-graphs, i.e., b-, s-, p-, or h-graphs: let us
call these c-graphs. Let G = (VG, EG, sGtG) be a rooted cubic graph, let uGvG be obtained
by orienting an edge in G−, and let H = (VH , EH , sHtH) be a c-graph. The rooted cubic
graph G′ obtained from G by the replacement of uGvG by H has vertex set the disjoint
union of VG and VH , edge set the disjoint union of EG\{uGvG} and EH\{sHtH} together with
the edges uGsH and vGtH , and the same root as G. When we perform a replacement by H
we always insist that H is a c-graph. The following result may be compared with network
decomposition results of Trakhtenbrot [33, 36].

Theorem 1. (a) Let H be a 3-connected simple rooted cubic graph, let F be a set of
oriented edges of H−, and for each uv ∈ F let Huv be a c-graph. Let G be obtained by
replacing the edges uv ∈ F by Huv. Then G is an h-graph. Further, if H is planar and each
Huv is planar then so is G.

(b) Let G = (V , E, st) be an h-graph. Then there is a unique 3-connected rooted cubic
graph H (called the core of G) such that we can obtain G by replacing some oriented edges
e of H− by c-graphs He. Further, H is simple, and if G is planar then so is H and each He.

Proof. (a) Note that H is an h-graph; and if G′ is an h-graph and we replace an oriented
edge by a c-graph then we obtain another h-graph (which is planar if both the initial and the
replacing graph are). Thus, part (a) follows by induction on the number of edges replaced.

(b) The main step is to identify the core H. Let W be the set of vertices v ∈ V\{s, t} such
that there is a set of three pairwise internally vertex-disjoint (or equivalently, edge-disjoint)
paths between v and {s, t}. Then W is non-empty. For, let P1 and P2 be internally vertex-
disjoint paths between s and t in G−. There must be a path Q between an internal vertex of
P1 and an internal vertex of P2 (since neither P1 nor P2 is just a single edge, and G\{s, t} is
connected), and we can insist that Q be internally vertex-disjoint from P1 and P2. Now the
terminal vertices of Q must both be in W .

Let H be the graph with vertex set VH = W ∪ {s, t}, where for distinct vertices u and v
in VH we join u and v in H if there is a u − v path in G using no other vertices in VH . Thus,
in particular if vertices u, v ∈ VH are adjacent in G, then they are adjacent also in H.

It is easy to check that H is 3-connected and thus also is simple.
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Let X be the set of vertices of G not in H. If X = ∅ then G = H and we are done:
suppose then that X is non-empty. Consider a component C of the subgraph of G induced
by X. We claim that there are distinct vertices u and v in VH that are adjacent in H but not
in G, vertices x and y in C (possibly x = y), and edges ux and vy in G that are the only
edges between C and VH . Let Huv be the rooted cubic graph obtained from C by adding the
root edge xy. Now it is clear that we may obtain G by starting with H and replacing any
edge uv of H not in G by the corresponding Huv.

We have now seen that the rooted cubic graph H is simple and 3-connected, and we may
obtain G by starting with H and replacing some edges e of H− by c-graphs He. Finally, it
is easy to see that H is unique. For if H ′ also has these properties, then we immediately see
that VH = VH ′ , and it follows easily that the graphs are the same.

We are interested here only in planar graphs. However, all results in Sections 2 and 3
can be formulated more generally for subclasses of connected cubic graphs that are closed
under replacements.

3. DECOMPOSING ROOTED GRAPHS

In this section we decompose rooted graphs into b-, d-, s-, p-, and h-graphs. The decom-
position can be formulated with algebraic equations for the corresponding exponential
generating functions.

Exponential Generating Functions

Let bn, dn, sn, pn, hn, and cn be the number of b-, d-, s-, p-, h-, and c-graphs on n vertices,
respectively. Thus, cn = bn + sn + pn + hn. Let B(x), D(x), S(x), P(x), H(x), and C(x) be
the corresponding exponential generating functions. For instance, B(x) is defined by

B(x) :=
∑
n≥0

bn

n! xn.

Note that bn = dn = sn = pn = hn = cn = 0 for all odd n, due to cubicity, also for n = 0
by convention, and for n = 2. Thus, for instance, B(x) is of the form

∑
n≥2

b2n
(2n)! x

2n.

b-Graphs

The structure of a b-graph is restricted by 3-regularity and the shaded area in Figure 2
together with an oriented edge between u and v is a d-, s-, p-, or h-graph. Therefore,
B(x) = x2/2(D(x) + S(x) + P(x) + H(x)), where the factor 1/2 is due to the orientation of
the edge between u and v. This can be rewritten as B(x) = x2(D(x) + C(x) − B(x))/2.

Fig. 2. Decomposing a b-graph.
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Fig. 3. Decomposing a d-graph.

d-Graphs

A d-graph can be decomposed uniquely into two b-graphs as shown in Figure 3. We therefore
have D(x) = B(x)2/x2.

s-Graphs

For a given s-graph G, the graph G− has a cut-edge that separates s and t and that is
closest to s as in Figure 4. (Note that the cut edge could be a second copy of st.) We obtain
S(x) = (S(x) + P(x) + H(x) + B(x))(P(x) + H(x) + B(x)) = C(x)2 − C(x)S(x).

p-Graphs

For a given p-graph, we distinguish whether s and t are adjacent in G−. Both situations are
depicted in Figure 5. We obtain P(x) = x2(S(x) + P(x) + H(x) + B(x)) + x2/2(S(x) +
P(x) + H(x) + B(x))2 = x2C(x) + x2C(x)2/2, where the factor 1/2 in the latter term is
there because two c-graphs are not ordered.

h-Graphs

From Theorem 1 we know that an h-graph is built from a rooted three-connected cubic
planar graph by replacing some edges, except the root edge, by b-, s-, p-, or h-graphs, i.e.,
c-graphs; see Figure 6. Let mn,l be the number of rooted 3-connected cubic planar graphs
on n vertices and l edges and let M(x, y) := ∑

n,l≥0
mn,l
n! xn yl be its exponential generating

function. Clearly, mn,l = 0 for odd n, n = 0, 2 or l �= 3n/2 since a cubic planar graph on n
vertices has 3n/2 edges. Hence,

M(x, y) =
∑
n≥2

m2n,3n

(2n)! x2ny3n,

which we will determine in Section 5 (see Eq. (5)).

Fig. 4. Decomposing an s-graph.
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Fig. 5. Decomposing two types of a p-graph.

Note that the variable y in M(x, y) marks the edges in rooted 3-connected cubic planar
graphs. Thus, in order to derive the exponential generating function for h-graphs, we replace
the variable y in M(x, y) by C(x) + 1 (where the constant term 1 is there because an edge
need not be replaced) and divide this by C(x)+ 1, because we do not replace the root edge.
Thus, we get

H(x) = M(x, (C(x) + 1))

(C(x) + 1)
. (1)

4. CUBIC PLANAR GRAPHS

For k = 0, 1, 2, 3 let g(k)
n be the number of k-vertex-connected cubic planar (simple) graphs

on n vertices and G(k)(x) be the corresponding exponential generating functions. Note that
g(k)

n = 0 for odd n and also for n = 0, 2 except that we set g(0)

0 = 1 by convention.
If we select an arbitrary edge in a connected cubic planar (simple) graph and orient this

edge, we obtain a rooted cubic graph G = (V , E, st) that is neither a b-graph, nor an s- or
p-graph where s and t are adjacent in the underlying graph G−; see Figure 7. Note that the
number of connected cubic planar (simple) graphs with one distinguished oriented edge is
counted by 3x dG(1)(x)

dx , and the number of s- (resp. p-)graphs G = (V , E, st) where s and t
are adjacent in G− as depicted in the middle (resp., right) picture in Figure 7 is counted by
B(x)2 (resp., x2C(x)). Therefore, we get

3x
dG(1)(x)

dx
= D(x) + S(x) + P(x) + H(x) − B(x)2 − x2C(x). (2)

Finally, the exponential generating function for connected cubic planar graphs and that for
not necessarily connected ones are related by the following well-known identity (see [26]).

G(0)(x) = exp(G(1)(x)). (3)

Fig. 6. Decomposing an h-graph.
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Fig. 7. Types of rooted cubic graphs that are not simple.

5. THREE-CONNECTED CUBIC PLANAR GRAPHS

The number of labeled rooted three-connected cubic planar graphs is closely related to that
of rooted triangulations. A rooted triangulation is an edge-maximal plane graph with a
distinguished directed edge on the outer face, called the root edge. Tutte [34] derived exact
and asymptotic formulas for the number of such objects up to isomorphisms that preserve
the outer face and the root edge. Since such objects do not have non-trivial automorphisms
that fix the root edge, we can easily obtain the number of labeled objects from the number
of unlabeled objects. Note that labeled rooted three-connected planar graphs with at least
four vertices have exactly two non-equivalent embeddings in the plane. Using duality, we
can compute the number of labeled rooted three-connected cubic planar graphs from the
number of unlabeled rooted triangulations.

Let tn be the number of unlabeled rooted triangulations on n + 2 vertices. From the
formulas Tutte computed for unlabeled rooted triangulations on n + 3 vertices, it follows that
the ordinary generating function T(z) for tn, i.e., T(z) = ∑

n≥1 tnzn, satisfies the following.

T(z) = u(1 − 2u)

z = u(1 − u)3. (4)

The first terms of T(z) are z + z2 + 3z3 + 13z4 + 68z5 + 399z6 + · · · . Further, T(z)
has a dominant singularity at ξ = 27/256 and the asymptotic growth of tn is α4n−5/2ξ−nn!,
where α4 is a constant. Let T̃(x, y) be the corresponding ordinary generating function,
but where x marks the number of faces and y marks the number of edges. By Euler’s
formula, a triangulation on n + 2 vertices has 2n faces and 3n edges. Therefore, T̃(x, y) :=∑

n≥1 tnx2ny3n can be computed by T̃(x, y) = T(x2y3).
We now determine the exponential generating function M(x, y) for the number of labeled

rooted 3-connected cubic planar graphs, which was needed in the decomposition of h-graphs
in Section 3. Note that the number of labeled rooted 3-connected cubic planar maps on 2n
vertices (and hence with 3n edges) is twice the number of labeled rooted 3-connected
cubic planar graphs on 2n vertices (and hence with 3n edges). Since the dual of a rooted
3-connected cubic map on 2n vertices is a rooted triangulation on n + 2 vertices, we have
2m2n,3n = (2n)! tn for n ≥ 2. We therefore obtain

M(x, y) =
∑
n≥2

m2n,3n

(2n)! x2ny3n = 1

2

(
T̃(x, y) − x2y3

) = 1

2

(
T(x2y3) − x2y3

)
. (5)

Thus, M(x, y) = (x4y6 + 3x6y9 + 13x8y12 + 68x10y15 + 399x12y18 + · · · )/2. Furthermore,
the dominant singularity of M(x) = M(x, 1) = 1/2(T(x2) − x2) is the square-root of the

Random Structures and Algorithms DOI 10.1002/rsa
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dominant singularity of T(z) and the asymptotic growth of mn with n even is α3n−5/2θ−nn!,
where θ = 3

√
3/16 and α3 is a constant.

6. SINGULARITY ANALYSIS

We summarize the equations derived so far.

B(x) = x2(D(x) + C(x) − B(x))/2 (6)

C(x) = S(x) + P(x) + H(x) + B(x) (7)

D(x) = B(x)2/x2 (8)

S(x) = C(x)2 − C(x)S(x) (9)

P(x) = x2C(x) + x2C(x)2/2. (10)

We can also describe the substitution in Eq. (1) for H(x) algebraically, using Eqs. (4) and (5).

2(C(x) + 1)H(x) = u(1 − 2u) − u(1 − u)3 (11)

x2(C(x) + 1)3 = u(1 − u)3. (12)

Using algorithms for computing resultants and factorizations (these are standard proce-
dures in e.g., Maple or Mathematica), we obtain a single algebraic equation Q(C(x), x) = 0
from Eqs. (6)–(12) that describes the generating function C(x) uniquely, given sufficiently
many initial terms of cn. This is in principle also possible for all other generating functions
involved in the above equations; however, the computations turn out to be more tedious,
whereas the computations to compute the algebraic equation for C(x) are manageable.

From this equation, following the discussion in Section VII.4 in [19], one can obtain
the two dominant singularities ρ and −ρ of C(x), where ρ is an analytic constant and
the first digits are ρ

.= 0.319224. One can also compute the expansion at the dominant
singularity ρ. Changing the variables Y = C(x) − C(ρ) and X = x − ρ in Q(C(x), x) = 0,
one can symbolically verify that the equation Q(C(x), x) = 0 can be written in the form

(aY + bX)2 = pY 3 + qXY 2 + rX2Y + sX3 + higher order terms,

where a, b, p, q, r, s are constants that are given analytically. This implies the following
expansion of C(x) near the dominant singularity ρ.

C(x) = C(ρ) + bρ/a (1 − x/ρ) + β1(1 − x/ρ)3/2 + O((1 − x/ρ)2),

where β1 := ρ3/2/a
√

p(b/a)3 − q(b/a)2 + r(b/a) − s is a positive constant. For large n,
the coefficient c+

n of xn on the right-hand side satisfies

c+
n ∼ β2 n−5/2 ρ−n n!,

where β2 = β1/�(3/2) = 2β1/
√

π . Similarly we get the expansion at the dominant
singularity −ρ

C(x) = C(ρ) + bρ/a (1 + x/ρ) + β1(1 + x/ρ)3/2 + O((1 + x/ρ)2),

Random Structures and Algorithms DOI 10.1002/rsa
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and for large n, the coefficient c−
n of xn on the right-hand side satisfies

c−
n ∼ β2 n−5/2 (−ρ)−n n!.

Following Theorem VI.8 [19], the asymptotic number cn is then the summation of these
two contributions c+

n and c−
n , and thus for large even n

cn ∼ 2β2 n−5/2 ρ−n n!,

whereas cn = 0 for odd n.
Since the generating functions for B(x), D(x), S(x), P(x), H(x) are related with C(x) by

algebraic equations, they all have the same dominant singularities ρ and −ρ. The singular
expansion of G(1)(x) can be obtained from Eq. (2) through a term-by-term integration, and
thus we obtain the singular expansions at ρ and −ρ,

G(1)(x) = G(1)(ρ) + c(1 − x/ρ)2 + β3(1 − x/ρ)5/2 + O((1 − x/ρ)3),

G(1)(x) = G(1)(ρ) + c(1 + x/ρ)2 + β3(1 + x/ρ)5/2 + O((1 + x/ρ)3),

where c and β3 are analytically given constants. Thus, for an analytically given constant α1

and for large even n we get

g(1)
n ∼ α1 n−7/2 ρn n!,

whereas g(1)
n = 0 for odd n.

Because of Eq. (3), the generating functions G(0)(x) and G(1)(x) have the same dominant
singularities ρ and −ρ, and indeed we may see that g(1)

n /g(0)
n → e−λ where λ = G(1)(ρ).

Based on the above decomposition it is also easy to derive equations for the exponential
generating function G(2)(x) for the number of biconnected cubic planar graphs, which has
a slightly larger radius of convergence η (whose first digits are 0.319521).

We finally obtain the following.

Theorem 2. The asymptotic number of cubic planar graphs, connected cubic planar
graphs, 2-connected cubic planar graphs, and 3-connected cubic planar graphs is given by
the following. For large even n

g(0)
n ∼ α0 n−7/2 ρ−n n!

g(1)
n ∼ α1 n−7/2 ρ−n n!

g(2)
n ∼ α2 n−7/2 η−n n!

g(3)
n ∼ α3 n−7/2 θ−n n!.

All constants are analytically given. Also α1/α0 = e−λ where λ = G(1)(ρ). The first digits
of ρ−1, η−1, and θ−1 are 3.132595 , 3.129684, and 3.079201, respectively.

Table 1 shows the exact numbers g(0)
n , g(1)

n , g(2)
n , and g(3)

n of cubic planar graphs, connected
cubic planar graphs, 2-connected cubic planar graphs, and 3-connected cubic planar graphs,
up to n = 20.
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7. RANDOM CUBIC PLANAR GRAPHS

In this section, we use Theorem 2 to investigate the connectedness, components, and
the chromatic number of a random cubic planar graph. Throughout the section, for
k = 0, 1, 2, 3 let G(k)

n denote a random graph chosen uniformly at random among all the
k-vertex-connected cubic planar graphs on vertices 1, . . . , n for even n.

7.1. Connectedness

Theorem 3. Let λ = G(1)(ρ). As n → ∞ with n even, Pr(G(0)
n is connected) →

e−λ, whereas each of Pr(G(0)
n is 2-connected), Pr(G(1)

n is 2-connected) and Pr(G(2)
n is

3-connected) tends to 0.

Proof. From Theorem 2, we see that as n → ∞ with n even

Pr
(
G(0)

n is connected
) = g(1)

n /g(0)
n → α1/α0 = e−λ.

Also,
Pr

(
G(0)

n is 2-connected
) = g(2)

n /g(0)
n ∼ α2/α0(η/ρ)−n → 0,

with a similar proof in the other cases.

Using the numbers in Table 1 we compute the probability that G(0)
n is connected, up to

n = 20, in Table 2.

7.2. Components of G (0)
n

In order to discuss coloring later (Theorem 6) we need to find the limiting probability that
G(0)

n has a component isomorphic to K4. Here we consider a more general problem.

Lemma 2. Let H be a given connected cubic planar graph, and let λH = ρvH /Aut(H),
where ρ is as in Theorem 2, vH denotes the number of vertices in H (and hence it is even), and
Aut(H) denotes the size of its automorphism group. Let the random variable XH = XH(n) be
the number of components of G(0)

n isomorphic to H for even n. Then XH has asymptotically
the Poisson distribution Po(λH) with mean λH; that is, for k = 0, 1, 2, . . .

Pr(XH(n) = k) → e−λH
λk

H

k! as n → ∞.

In particular, the probability that G(0)
n has at least one component isomorphic to H tends to

1 − e−λH as n → ∞ with n even.

This result can be proved along the lines of the proof of Theorem 5.6 of [30]; see also [3].
Indeed, we may obtain the following generalization.

TABLE 2. The Probability that a Random Cubic Planar Graph is Connected

n 4 6 8 10 12 14 16 18 20

g(1)
n /g(0)

n 1 1 0.997403 0.997837 0.997982 0.998117 0.998249 0.998368 0.998472
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Lemma 3. Let H1, . . . , Hm be given pairwise non-isomorphic connected cubic planar
graphs; and as before let λHi = ρ

vHi /Aut(Hi) and let the random variable XHi = XHi(n) be
the number of components of G(0)

n isomorphic to Hi, where n is even. Then XH1 , . . . , XHm are
asymptotically jointly distributed like independent random variables Po(λH1), . . . , Po(λHm),
and so the total number of components isomorphic to some Hi is asymptotically Po

(∑
i λHi

)
.

Let us observe here that if H1, H2, . . . is an enumeration of all the pairwise non-isomorphic
connected cubic planar graphs, then

∑
i λHi = G(1)(ρ). For

G(1)(ρ) =
∑

n

g(1)
n · 1

n!ρ
n =

∑
n

∑
i:vHi

=n

n!
Aut(Hi)

· 1

n!ρ
n =

∑
i

ρ
vHi

Aut(Hi)
=

∑
i

λHi . (13)

Next we want to show that G(0)
n usually has a giant component.

Lemma 4. For any ε > 0 there exists t such that the probability is less than ε that each
component in G(0)

n has order at most n − t.

Proof. Let C(n) denote the set of labeled cubic planar (simple) graphs on the vertices
1, . . . , n and so |C(n)| = g(0)

n . By Theorem 2, there are constants α > 0 and β > 1 such that

g(0)
n ∼ αn−βρ−nn!

as n → ∞ with n even. Thus, there is an n0 such that for all even n ≥ n0

1

2
αn−βρ−nn! ≤ g(0)

n ≤ 2αn−βρ−nn!.
Let t be a positive integer at least n0 sufficiently large that

8α · 2β · (t − 1)−(β−1)

β − 1
< ε.

The reason for this choice will of course emerge shortly. Let D(n) be the set of graphs
G ∈ C(n) such that each component has order at most n − t. Then for even n ≥ 3t,

|D(n)| ≤
n/2∑
j=t

(
n

j

)
g(0)

j g(0)

n−j

≤ 4α2ρ−nn!
n/2∑
j=t

j−β(n − j)−β

≤ 4α2ρ−nn!
(n

2

)−β
n/2∑
j=t

j−β

≤ 8αg(0)
n 2β

n/2∑
j=t

j−β .

But
n/2∑
j=t

j−β ≤
∫ n/2

t−1
x−βdx <

(t − 1)−(β−1)

β − 1
.

Thus, our choice of t yields |D(n)|/g(0)
n < ε as required.
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Theorem 4. The number of components of G(0)
n is asymptotically 1 + Po(λ), where

λ = G(1)(ρ).

Observe that this theorem shows again (as in Theorem 4) that the probability that G(0)
n is

connected tends to e−λ as n → ∞.

Proof. We may use Lemmas 3 and 4, together with (15), and follow the lines of the proof
of Theorem 5.5 of [30].

7.3. Triangles and Other Subgraphs

In order to discuss coloring later we also need to know about triangles, in particular the
unsurprising result that G(k)

n usually contains at least one triangle. In fact, far more is true.

Lemma 5. Let Y (k)
n be the number of triangles in G(k)

n . Then there exists δ > 0 such that
for even n

Pr
(
Y (k)

n ≥ δn
) = 1 − e−�(n).

We shall avoid using round-down �x and round-up �x� in order to keep our formulas
readable.

Proof. Let us consider Y (0)
n : the other cases are very similar. Let δ > 0 be sufficiently

small that
ρ2(1 − 4δ)

4eδ
> 2.

By Theorem 2 there exist constants α > 0, β > 1, and n0 ≥ 2/δ such that for all even
n ≥ n0

1

2
αn−βρ−nn! ≤ g(0)

n ≤ 2αn−βρ−nn!. (14)

Assume for a contradiction that for some even n ≥ n0

Pr
(
Y (0)

n ≤ δn
) ≥ e−δn. (15)

Consider the following construction of cubic planar graphs on vertices 1, . . . , n+2δn :

• pick an ordered list of 2δn special vertices, say s1, s2, . . . , s2δn; there are (n+2δn)!
n! choices;

• take a cubic planar graph G on the remaining n vertices with at most δn triangles; by
(14) and (15) there are at least e−δng(0)

n ≥ e−δn 1
2αn−βρ−nn! choices;

• pick a set of δn vertices in G that form an independent set and list them in increasing
order, say v1, v2, . . . , vδn; the number of choices is at least

n(n − 4) · · · (n − 4δn + 4)

(δn)! ≥ nδn(1 − 4δ)δn

(δn)! ≥
(

1 − 4δ

δ

)δn

;

• construct a cubic graph G′ in such a way that for each vi we select its two largest
neighbors, say m and l, and insert s2i−1 on the edge (vi, m) and s2i on (vi, l) together
with an edge (s2i−1, s2i); see Figure 8.

For a given set of δn triangles in G′, there is at most one construction as above yielding G′

with these as the new triangles (see Figure 8 and note that we can identify vi in the triangle
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Fig. 8. Creating a new triangle.

as the vertex adjacent to s). But G′ has at most 2δn triangles. Hence, the same graph G′ is
constructed at most

(2δn
δn

) ≤ 22δn times. But of course g(0)

n+2δn is at least the number of graphs
constructed in this way. Thus,

g(0)

n+2δn ≥ (n + 2δn)!
n! · e−δn 1

2
αn−βρ−nn! ·

(
1 − 4δ

δ

)δn

· 2−2δn

>
1

2
α(n + 2δn)!(n + 2δn)−βρ−n−2δnρ2δne−δn

(
1 − 4δ

δ

)δn

4−δn

≥ 1

4
g(0)

n+2δn

(
ρ2(1 − 4δ)

4eδ

)δn

> g(0)

n+2δn,

a contradiction.

It is triangles that we need to know about for coloring, but we could also ask about
appearances of other subgraphs. Here is one such result, which may be proved along the
lines of the proof of Theorem 4.1 in [30].

Theorem 5. Let H be a fixed connected planar graph with one vertex of degree 1 and
each other vertex of degree 3. Let k be 0 or 1. Then there exists δ > 0 such that for even n

Pr
(
G(k)

n contains < δn copies of H
) = e−�(n).

Note that each copy of H contributes at least one cut-edge to the graph, and each such
edge is counted at most twice, so we see that G(0)

n and G(1)
n are very far from being 2-edge-

connected; see Theorem 3 above.

7.4. Coloring

Finally we can give a full story about the chromatic number χ(G(k)
n ).

Theorem 6. Let ν = ρ4/4! .= 0.000432, where ρ is as in Theorem 2. Then as n → ∞
with n even

Pr
(
χ(G(0)

n ) = 3
) → e−ν .= 0.999568,

Pr
(
χ(G(0)

n ) = 4
) → 1 − e−ν .

For k = 1, 2, 3 we have Pr(χ(G(k)
n ) = 3) → 1 as n → ∞.
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Proof. By Brook’s Theorem (see, e.g., [18]), for a cubic graph G with at least one triangle,
χ(G) = 3 unless there is a component K4, in which case χ(G) = 4. Thus, the theorem
follows from Lemmas 2 and 5.

8. CONCLUDING REMARKS

Using the decomposition in Section 3 we can derive recursive counting formulas that count
the exact number of cubic planar graphs. The decomposition and the counting formulas also
yield a deterministic polynomial time sampling procedure—this is known as the recursive
method for sampling [20, 31]. The sampling procedure was implemented in [29], where
several other empirical properties of a random cubic planar graph are discussed, e.g., the
number of cut-edges and the diameter. The present decomposition, exact and asymptotic
enumeration, and the sampling procedure can also be adapted to multi-graphs, i.e., graphs
that might contain double edges and loops.
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