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1 Introduction

The theory of random graphs deals with asymptotic properties of graphs equipped
with a certain probability distribution; for example, it studies how the component
structure of a uniform random graph evolves as the number of edges increases.
Since the foundation of the theory of random graphs by Erdős and Rényi five
decades ago, various random graph models have been introduced and studied.
Graph theory has meanwhile found its way into other sciences as a rich source
of models describing fundamental aspects of a broad range of complex phenom-
ena. This article is a gentle introduction to the theory of random graphs and its
recent developments (with focus on the phase transition and critical phenomena,
a favourite topic of the first author) and applications.
This is an extended version of the article entitled “Random Graphs: from Na-
ture to Society to the Brain” [35] published in Seoul Intelligencer, a special issue
of the Mathematical Intelligencer, on the occasion of International Congress of
Mathematicians in Seoul in 2014.

2 Erdős-Rényi Random Graphs

2.1 The Beginning

Erdős and Rényi initiated the theory of random graphs in their article [27] entitled
“On random graphs I” published in 1959, in which they addressed, among other
things, the questions of the probability of a random graph being connected, and
the probability that the largest component of a random graph covers almost all
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vertices. In a subsequent paper entitled “On the evolution of random graphs” pub-
lished in 1960 [28] , Erdős and Rényi discovered that a random graph undergoes a
drastic change in the number of vertices of the largest component when the num-
ber of edges is around half the number of vertices, i.e. there is a phase transition in
the evolution of a random graph in view of the emergence of the giant component.
Before we discuss the phase transition phenomenon in more details, we introduce
some basic definitions. A graph G = (V,E) is a pair consisting of a set V of
vertices (or nodes) and a set E of edges (or lines), which are 2-element subsets of
V . The number of edges incident to a vertex is called the degree of a vertex. A
sequence of vertices (v1, . . . ,vk) in which each two consecutive vertices form an
edge is called a path from v1 to vk if v1 6= vk, and it is called a cycle if v1 = vk. We
say that a vertex v is reachable from another vertex w if there exists a path from
v to w. Reachability is an equivalence relation, and equivalence classes are called
components of G. The number of vertices in a component is called the order of the
component. If a graph has only a single component, then it is called connected.
A connected graph with no cycle is called a tree, and a graph without cycles is
called a forest. A connected graph with exactly one cycle is called unicyclic.

2.2 Erdős-Rényi Random Graph Models

There are three random graph models hidden under the name of the Erdős-Rényi
random graphs:

(1) The uniform random graph G(n,m) is a graph chosen uniformly at random
from the set of all graphs with vertex set [n] := {1, · · · ,n} and m edges, for
an integer 0≤ m≤

(n
2

)
.

(2) The binomial random graph G(n, p) is a graph with vertex set [n] in which
each pair of vertices is joined by an edge independently with probability p,
for a real number 0≤ p≤ 1.

(3) The Erdős-Rényi process {Gn(m) : m = 0, . . . ,
(n

2

)
} begins with a graph

Gn(0) with n isolated vertices and no edges, and in each step 1 ≤ m ≤
(n

2

)
a new random edge is added to an evolving graph Gn(m− 1) to obtain a
new graph Gn(m). The graph Gn(m) created by the Erdős-Rényi process is
distributed like the uniform random graph G(n,m).

The three models are essentially equivalent when the parameters are appropriately
selected, i.e., m = p

(n
2

)
. The uniform random graph and binomial random graph

were studied earlier, among others by Gilbert [29]. A quarter of a century later
Bollobás [13] observed that the uniform random graph G(n,m) can be considered
as a graph Gn(m) created by the Erdős-Rényi process.
When discussing properties of the Erdős-Rényi random graphs we shall para-
metrise m = t n/2 or p = t/(n−1), so t denotes the expected degree of a random
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vertex, and shall be concerned with properties that hold with high probability (in
short whp), meaning with probability tending to one as the number n of vertices
tends to ∞.

2.3 Emergence of the Giant Component

One of the most important discoveries by Erdős and Rényi [28] deals with the
appearance of the phase transition in the order of the largest component: in short,
the order of the largest component in the Erdős-Rényi random graph changes from
logarithmic to linear order when the expected degree passes through one (for ex-
ample, from 0.99 to 1.01) as more edges are added.
To be more precise, we consider the Erdős-Rényi random graph with expected
degree t > 0. If the expected degree t is smaller than the critical value one, whp
the Erdős-Rényi random graph consists of trees and unicyclic components and the
largest component is a tree of order O(logn); such components are called “small”.
On the other hand, if the expected degree t is larger than one, whp there is a unique
largest component of linear order (called “the giant component”), while all but
the giant component are trees or unicyclic components of order O(logn); in other
words, all but the giant component are “small”. If the expected degree t is equal
to the critical value one, whp the order of the largest component is Θ(n2/3).
The reason why the expected degree one is so crucial in view of the emergence of
the giant component in G(n, p) was nicely explained by Karp [40] who used the
following component-exposure process based on the breadth-first search. Given a
vertex v, we first expose the neighbours (say children) of v. And then we expose
the neighbours of each of the neighbours of v, one after another. And we continue
until there are no more vertices left in the component of v. Roughly speaking,
when k = o(n) vertices are exposed so far, the number of children of each vertex
is a binomial random variable with parameters n− k and p, and thus its expecta-
tion is (n− k)p∼ t. Since the binomial distribution Bi(n− k, p) converges to the
Poisson distribution Po(t) with mean t = p(n− 1) when n→ ∞ and t is a fixed
constant, we can approximate the component-exposure process by the Galton-
Watson branching process with Poisson offspring distribution Po(t); it starts with
a unisexual organism which generates a random number of children according to
Po(t), and each of its children generates a random number of children indepen-
dently according to Po(t), and so on. The classical branching process theory says
that if t < 1, then with probability one the branching process dies out; this corre-
sponds to small components in G(n, p). On the other hand, if t > 1, with positive
probability the process continues forever. The survival probability is given as the
unique positive solution ρ = ρ(t) ∈ (0,1) of the equation

1−ρ = e−tρ. (1)

This survival probability corresponds to the probability that a random vertex in
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Figure 1: Phase transition in the Erdős-Rényi random graph.

G(n, p) lies in the giant component. This approach can be made mathematically
rigorous and yields that if t > 1, then whp the order of the giant component in
G(n, p) is ρn+o(n).

2.4 Critical Window of the Phase Transition

Returning to the result of Erdős and Rényi, the order of the largest component
changes from logarithmic to sublinear and then to linear order; more precisely
it changes from O(logn) to Θ(n2/3) and to Θ(n) depending on whether the ex-
pected degree t satisfies t < 1, t = 0, or t > 1. Erdős and Rényi described this
phenomenon as a “double jump” and considered it to be one of the most striking
facts concerning random graphs.
But it leads to several natural questions: are there ‘real’ jumps? In other words,
is the phase transition in the Erdős-Rényi random graph discontinuous? Or is
it continuous? If it is continuous, how “smooth” or how “sharp” is the phase
transition? How big should the difference between the expected vertex degree and
the critical value one be, so as to be able to distinguish the order of the largest
component from the order of the second largest component?
Bollobás [13] showed that there is in fact no jump, but a smooth phase transition
with three different phases when the number of edges is around half the number of
vertices: the subcritical phase in which whp there are many small components of
almost equal order; the critical phase in which whp there are a few large compo-
nents of the same order up to constant factor; and the supercritical phase which is
characterised by the fact that whp there is a unique largest component that is much
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larger than the second largest component. The result of Bollobás was improved
by Łuczak [44].
To state the results of Bollobás and Łuczak, we consider the binomial random
graph G(n, p) with p = t

n−1 , where t = 1 ± ε for ε = ε(n) > 0 satisfying ε→ 0,
so the expected degree converges to one. In order to capture how fast ε tends to
zero, we let ω(n) be any function tending to infinity arbitrarily slowly with n and
let ε = ε(n) satisfy ω(n) ≤ ε3 n. In other words, we let ε→ 0 and ε3n→ ∞. If
t = 1− ε, then for any fixed positive integer i whp the order of the i-th largest
component is asymptotically 2ε−2 log(ε3 n), which is substantially smaller than
n2/3. On the other hand, if t = 1+ ε, whp the order of the largest component is
asymptotically 2εn, which is substantially larger than n2/3, and the order of the
second largest component is substantially smaller than n2/3.
When ε3 n = Θ(1), Aldous [4] provided a precise description of the sequence of
the orders (rescaled by n2/3) of largest components, using multiplicative coales-
cent processes and a sequence of lengths of the excursions of a reflecting inhomo-
geneous Brownian motion.

2.5 Limit Theorems for the Giant Component

Can we say more about the distribution of the order of the giant component when
the expected degree t is larger than one?
Let I ⊂ (1,∞) be a compact interval, let p = p(n) be a sequence such that t =
p(n− 1) ∈ I for all n and let ρ = ρ(t) ∈ (0,1) be the unique positive solution of
the equation (1). Let L1(t) denote the order of the giant component in G(n, p).
The first limit theorem for the giant component is a strong law of large numbers
which provides that for any δ1,δ2 > 0, there exists n0 ∈N such that for any n≥ n0

1−δ2 ≤ P[
∣∣∣L1(t)

n
−ρ

∣∣∣ ≤ δ1 ] ≤ 1+δ2.

So, the typical value of L1(t) can be determined up to fluctuations of order o(n).
A natural question is whether we can characterise the distribution of L1(t) more
precisely. We define µ = µ(ρ,n) and σ = σ(t,ρ,n) as

µ := ρn and σ :=

√
ρ(1−ρ)

(1− t(1−ρ))2 n.

We can show that σ−1(L1(t)− µ) converges in distribution to N(0,1), where
N(0,1) denotes the standard normal distribution. This provides a central limit
theorem for L1(t): for any a < b with a,b ∈ R and any δ > 0, there exists n0 ∈ N
such that for any n≥ n0

1−δ√
2π

Z b

a
exp
(
−t2

2

)
dt ≤ P[ a ≤ L1(t)−µ

σ
≤ b ] ≤ 1+δ√

2π

Z b

a
exp
(
−t2

2

)
dt.
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Thus one can estimate the value of L1(t) up to an error of o(σ) = o(
√

n).
Indeed, one can derive even a stronger result, a local limit theorem for L1(t): for
any compact interval J ⊂ R and any δ > 0, there exists n0 ∈ N such that for any
n≥ n0 and any integer k ∈ N satisfying σ−1(k−µ) ∈ J, we have

1−δ

σ
√

2π
exp
(
−(k−µ)2

2σ2

)
≤ P[ L1(t) = k ] ≤ 1+δ

σ
√

2π
exp
(
−(k−µ)2

2σ2

)
.

These results were established by Stepanov [64] and Pittel and Wormald [54]
who used counting techniques, and were reproved by Behrisch, Coja-Oghlan and
Kang [10] who applied Stein’s method to the total number of vertices outside the
giant component.
Indeed, much stronger results hold. Stepanov [64] and Pittel and Wormald [54]
derived a local limit theorem for the joint distribution of the number of vertices and
edges in the giant component. Behrisch, Coja-Oghlan and Kang [10] reproved this
result using the so-called two-round exposure and “smoothing technique” as well
as Fourier analysis. Let E(t) denote the number of edges in the giant component
in G(n, p). We define

µe :=
t(1− (1−ρ)2)

2
n,

σe :=

√(
t2(1−ρ)2(2− (2t−1)ρ(1−ρ))

(1− t(1−ρ))2 +
t(1− (1−ρ)2)

2

)
n,

σ j :=
t(1−ρ)(1− (1−ρ)2 + tρ(1−ρ))

(1− t(1−ρ))2 n2.

Then for any compact intervals J,Je ⊂ R and for any δ > 0, there exists n0 ∈ N
such that for any n ≥ n0 and any integers k, ` ∈ N satisfying σ−1(k− µ) ∈ J and
σ−1

e (`−µe) ∈ Je, we have

(1−δ)Φ(k, `) ≤ P[ L1(t) = k and E(t) = ` ] ≤ (1+δ)Φ(k, `),

where

Φ(k, `) :=
1

2π

√
σ2σ2

e−σ2
j

· exp

(
− σ2σ2

e

2(σ2σ2
e−σ2

j)

(
(k−µ)2

σ2 −
2σ j(k−µ)(`−µe)

σ2σ2
e

+
(`−µe)2

σ2
e

))
.

As for local limit theorems in the (more sophisticated) supercritical regime when
t = 1+ε for ε = ε(n) > 0 satisfying ε→ 0 and ε3n→∞, Bollobás and Riordan [17]
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gave a simple new proof of a strong law of large numbers for the order of the giant
component, using the Galton-Watson branching process. Pittel and Wormald [54]
established a central limit theorem for the order of the giant component all the
way through the supercritical regime, by counting connected graphs. Their re-
sult was reproved recently by Bollobás and Riordan [18], using random walk and
martingale arguments.

3 Generalisations of Erdős-Rényi Random Graphs

Since the seminal work of Erdős and Rényi [28], various random graph models
have been extensively studied. Examples include random hypergraphs, random
planar graphs, random graph processes, and inhomogeneous random graphs, each
of which we briefly review below.

3.1 Random Hypergraphs

One of the most natural generalisations of the Erdős-Rényi random graph G(n, p)
is the random k-uniform hypergraph Hk(n, p), which is a hypergraph with vertex
set [n] in which each of the

(n
k

)
possible edges (i.e. k-element subsets of [n]) is

present independently with probability p.
We say that a vertex v in a hypergraph H is reachable from w (or v and w are
vertex-connected) if there exists a sequence of edges (e1, . . . ,e`) such that v ∈ e1,
w ∈ e` and ei ∩ ei+1 6= /0 for all 1 ≤ i ≤ `− 1. Reachability is an equivalence
relation, and the equivalence classes are called the components of H.
Phase transition phenomena were discovered also in random hypergraphs. The
critical point of the emergence of the giant component in Hk(n, p) was first
determined by Schmidt-Pruzan and Shamir in [61]. To be more precise, let
p = t(k− 1)−1(n−1

k−1

)−1
for t > 0. Schmidt-Pruzan and Shamir showed that if

t < 1, then whp the number of vertices in the largest component is O(logn), but
if t > 1, then whp there is a unique component containing a linear number of
vertices. Indeed, more is known: whp the number of vertices in the giant compo-
nent is ρn +o(n), where ρ = ρ(k, t) ∈ (0,1) is the unique positive solution to the
equation

1−ρ = exp(t((1−ρ)k−1−1)).

When k = 2, this corresponds to the result of the graph case.
Karoński and Łuczak [39] studied the phase transition in the early supercritical
phase, when t = 1 + o((logn/n log logn)1/3), proving a local limit theorem for
the number of vertices in the largest component. Behrisch, Coja-Oghlan and
Kang [11] established central and local limit theorems for the number of vertices
in the largest component when t > 1 + ε for an arbitrarily small but fixed ε > 0.
In addition, they derived the local limit theorem for the joint distribution of the
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number of vertices and the number of edges in the largest component of Hk(n, p).
As an application, Behrisch, Coja-Oghlan and Kang [11] obtained an asymptotic
formula for the probability that Hk(n, p) is connected. To this end, they applied
new purely probabilistic approaches, such as two-round edge exposure, Stein’s
method, and Fourier analysis. Bollobás and Riordan [18] subsequently proved
that the distribution of the number of vertices in the largest component tends
to a normal distribution for t = 1 + ε whenever ε = ε(n) > 0 satisfies ε3n→ ∞,
i.e. throughout the supercritical regime.
Such local limit theorems are closely related to the asymptotic number of con-
nected k-uniform hypergraphs with n vertices and m edges. Using combinatorial
enumeration, Karoński and Łuczak [39] derived the asymptotic number of con-
nected k-uniform hypergraphs with given numbers of vertices and edges in the
barely supercritical regime when m− n

k−1 �
logn

log logn . Behrisch, Coja-Oghlan and
Kang derived the corresponding result from the local limit theorem in the strictly
supercritical regime when m− n

k−1 = Θ(n), and Bollobás and Riordan [19] all
the way through the supercritical regime m− n

k−1 = o(n). Sato and Wormald [60]
also derived the asymptotic number of connected 3-uniform hypergraphs using
cores and kernels when n1/3log2 n � m− n

2 � n.

3.2 Random Hypergraphs as Random Simplicial Complexes

We can view random hypergraphs as random simplicial complexes, for example
random 3-uniform hypergraphs as random simplicial 2-complexes, by regarding
3-element subsets as trianglular 2-cells and 2-element subsets as 1-cells. Topolog-
ical aspects of random simplicial complexes – such as collapsibility and vanishing
of the top homology – were investigated, for example, in [5, 6, 43].
Motivated partly by the study of random simplicial complexes, we consider higher
order connectivity. The notion of higher order connectivity in hypergraphs is how-
ever ambiguous and in fact there are several possible definitions. As an example,
we shall consider the one suggested by Bollobás and Riordan [18], i.e. the j-tuple
connectivity: a j-element subset J1 is said to be reachable from another j-ele-
ment subset J2 if there exists a sequence of edges (E1, . . . ,E`) such that J1 ⊆ E1,
J2 ⊆ E` and |Ei∩Ei+1| ≥ j for each i = 1, . . . , `−1. The reachability is an equiva-
lence relation on j-element subsets, and the equivalence classes are called j-tuple
connected components, or j-components in short. The case j = 1 corresponds to
the notion of vertex-connectedness.
In view of the emergence of a giant j-component for any 1 ≤ j ≤ k− 1, Cooley,
Kang and Person [25] showed that Hk(n, p) undergoes a phase transition at the
threshold pk, j := 1(

(k
j)−1

)
·(n− j

k− j)
. Let p = t · pk, j for t > 0 and let L j(t) denote the

number of j-element subsets contained in the largest j-component in Hk(n, p).
For an arbitrarily small but fixed ε > 0, Cooley, Kang and Person showed that
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whp L j(t) = Ω(εn j) and the giant component is unique if t = 1 + ε, but L j(t) =
O(ε−2 logn) if t = 1− ε.
Cooley, Kang and Koch [24] took a closer look at the giant component in the
supercritical regime and proved that when t = 1 + ε for ε = ε(n) > 0 satisfying
ε→ 0 and ε3n→ ∞, whp L j(t) = (1 + o(1))2ε

1
(k

j)−1

(n
j

)
. For k = 2, j = 1, the

threshold and the number of vertices in the giant component match those for the
graph case: p2,1 = 1

n−1 and whp L1(t) = (1+o(1))2εn.

These results open up many new questions. What can we say about L j(t) at the
criticality when t = 1? What about the number of j-element subsets contained in
the second largest j-component in the supercritical regime? What is the actual dis-
tribution of the number of j-element subsets contained in the giant j-component?
What about central or local limit theorems for the giant j-component?

3.3 Random Planar Graphs

A graph is called planar if it can be embedded in the plane without crossing edges.
One of the most well-known results about planar graphs is the Four Colour Theo-
rem: it states roughly that given any separation of a plane into regions, say coun-
tries, the countries can be coloured using at most four colours so that no two
countries sharing a common border have the same colour.
Random planar graphs have attained a considerable attention since McDiarmid,
Steger and Welsh derived important asymptotic properties of random planar
graphs [48] and Giménez and Noy determined the exact asymptotic number of
labelled planar graphs [30].
Consider a uniform random planar graph P(n,m) which is a graph chosen uni-
formly at random among all labelled planar graphs with n vertices and m edges.
Łuczak and Kang [36] showed that there are, surprisingly, two critical periods in
the evolution of a random planar graph. The first one takes place when the giant
component is formed; this happens when m = n/2 + O(n2/3), analogously to the
uniform random graph G(n,m). The second critical period of a random planar
graph occurs when the giant component covers nearly all vertices; this happens
when m = n+O(n3/5).
As we have seen in Section 2.3 – after expressing the results in terms of G(n,m)
– the giant component in G(n,m) suddenly emerges at m = n/2 + O(n2/3). If
m = n/2 + s and −n� s� −n2/3, then whp G(n,m) consists of isolated trees
and unicyclic components, so it is clearly planar, and the largest component is a
tree of order (1 + o(1)) n2

2s2 log |s|
3

n2 . On the other hand, if n2/3� s� n, then whp
G(n,m) contains exactly one complex component (called the giant component)
of order (4 + o(1))s, while the second largest component is whp a tree of order
(1 + o(1)) n2

2s2 log s3

n2 , a remarkable similarity between the subcritical graph and
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A B D

When the number of edges is
small, the random graph 
consists of many small 
components

As more edges are added, 
a giant component emerges 
(blue).

Planar graph can be drawn
in plane so that its edges 
do not cross.

The degree of a vertex is the number of 
adjacent edges. The dark blue vertex in B 

has the largest degree 9.

The order of a component is the number 
of vertices it contains. The blue component
in B has order 30, the coloured components

in A have order 5 (green), 4 (blue), 
3 (yellow), 2 (orange) and 1 (grey).

High clustering means that any neighbours

of a vertex are also very likely to be 
connected, as in the green component in C.

In a "small‐world" network, the typical 
shortest distance between any two vertices 

in the large component is "short", i. e., 

the largest component has a small diameter 
(marked by a red line in B and D).

Real‐world networks often have a small 
diameter and exhibit high clustering.

The graph diameter is the longest minimum 
distance between any two vertices. 

The largest component in A has a diameter 
three, in B four, in C two, and in D eight.

C

Figure 2: Basic concepts in graph theory.

the supercritical graph after the removal of the giant component. Furthermore, if
s� n2/3, then whp G(n,m) contains a topological copy of K3,3 and thus is not
planar.
Another random structure relevant to the behaviour of a random planar graph
P(n,m) is a uniform random forest F(n,m), i.e. a forest chosen uniformly at ran-
dom among all labelled forests with n vertices and m edges. Łuczak and Pittel [46]
found that although the giant component in F(n,m) emerges at m = n/2+O(n2/3),
the critical behaviour of F(n,m) is somewhat different from that of G(n,m) when
n2/3 � s � n. Let m = n/2 + s. If s � −n2/3, then the structures of both
F(n,m) and G(n,m) are similar, e.g. the order of the largest tree in F(n,m) is whp

(1+o(1)) n2

2s2 log |s|
3

n2 . However in the supercritical phase, when n2/3� s� n, the
giant tree of F(n,m) is whp of order (2 + o(1))s, which is roughly half the or-
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der of the largest component of G(n,m), while the second largest tree of F(n,m)
is of order Θ(n2/3), which is by far larger than the second largest component of
G(n,m).
Łuczak and Kang showed that as far as m = n/2 + s with n2/3� s� n (i.e. the
supercritical regime of the first critical period), the behaviour of P(n,m) is similar
to that of F(n,m). Namely, whp the order of the largest complex component is
(2+o(1))s, while the second largest component has Θ(n2/3) vertices. So, unlike
in G(n,m), there is no similarity between the subcritical planar graph and the
supercritical planar graph after the removal of the giant component.
The second critical period in the evolution of P(n,m) does not correspond to phase
transitions in F(n,m) and G(n,m). To see why P(n,m) features the second type
of the critical behaviour, we note that the maximum number of edges in F(n,m)
is n−1, while that in P(n,m) is 3n−6, so the growth rate of the order of complex
components in P(n,m) must change at some point. Łuczak and Kang proved that
this occurs when m = n + O(n3/5). To be more precise, we let m = n + t, where
t = o(n). If t�−n3/5 but n/2+t� n2/3, the giant component of P(n,m) contains
whp n− (2 + o(1))|t| vertices, while for n3/5 � t � n2/3 the giant component
contains n− (α + o(1))(n/t)3/2 vertices for some computable constant α > 0.
The unfortunate condition t� n2/3 is a result of the proof method and most likely
can be replaced by t� n.

3.4 Random Graph Processes

A natural modification of the Erdős-Rényi process is the class of random processes
based on the paradigm of the power of multiple choices, which are now known as
Achlioptas processes. In each step of Achlioptas processes, two or more potential
edges are chosen randomly, and according to a certain rule, one of them is chosen
and added to the evolving graph.
One natural question is whether there is a simple rule that shifts the critical time
for the emergence of a giant component. The product rule was suggested as the
most likely to delay the critical time: the product rule selects between the two
given potential edges the one that minimises the product of the sizes of the com-
ponents of its endvertices. Shortly thereafter, Bohman and Frieze showed that a
much simpler rule, now known as the Bohman-Frieze process, delays the criti-
cal time [12]: if the first edge would join two isolated vertices, it is added to the
evolving graph; otherwise, the second edge is added. Their work showed that this
simple rule delayed the appearance of the giant component, that is, the critical
point of the phase transition in the Bohman-Frieze process is strictly larger than
one. It initiated three major directions of research into Achlioptas processes.
The first direction is concerned with testing the power and limits of Achlioptas
processes. How much can we accelerate or delay the phase transition? How
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long can we delay the formation of a Hamiltonian cycle? These questions can be
asked in the original context of an Achlioptas process or in the off-line case in
which all pairs of edges are given first, then the choices are made. The results
often generalise to the case in which ` edges are presented at each step instead
of 2, for some fixed constant `. Recent results concern mostly the delaying of
the phase transition, the avoidance of small subgraphs, and the acceleration of the
appearance of Hamiltonian cycles.
The second direction involves choosing one fixed Achlioptas rule and explor-
ing the fine details of the evolution of the graph. For example, Spencer and
Wormald [62], Janson and Spencer [34] examined the state of the Bohman-Frieze
process after m = t n/2 rounds. Spencer and Wormald [62] showed there is a
critical time tc ∼ 1.176 at which the Bohman-Frieze process undergoes a phase
transition: in the subcritical region t = tc− ε (for a constant ε > 0) the largest
component is of order O(logn), while in the supercritical region t = tc + ε there
is a giant component of order Ω(n). Janson and Spencer [34] studied the barely
supercritical phase with t = tc + ε for a constant small ε > 0 and showed that whp
the largest component is of order Θ(εn), and the order of the second largest com-
ponent is Θ(ε−2 logn). Kang, Perkins and Spencer [37] looked closer into the
component size distribution near the criticality. In fact, the Bohman-Frieze pro-
cess is shorthand for a much wider class of Achlioptas rules, so-called ‘bounded-
size rules’ introduced by Spencer and Wormald [62]. In a bounded-size rule, the
choice between the two edges can only depend on the sizes of the components
that may be connected by these edges, and all components of order larger than K
must be treated equally, for some fixed constant K.
The third direction is to understand the detailed behaviour of a general class
of Achlioptas processes. The distribution of component sizes in bounded-size
rules was determined [58, 59]. The interest in Achlioptas processes increased
immensely, when Achlioptas, D’Souza and Spencer [1] conjectured, based on ex-
tensive simulations, that the product rule behaves quite differently from the Erdős-
Rényi process. It exhibits the so-called explosive percolation, in other words, the
order of the largest component “jumps” from sublinear to linear order within sub-
linear steps of the process. However, Riordan and Warnke proved that this is not
the case [57, 58]: the phase transition for a large class of generalised Achlioptas
processes including the product rule is continuous.
Despite the intensive study of Achlioptas processes, the detailed behaviour of the
component size distribution of a large class of Achlioptas processes, including the
product rule, is not known. What can be further said about the phase transition
for the product rule? What is the critical time for the emergence of a giant com-
ponent? How large is the giant component shortly after the critical point? What is
the size of the critical window?
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3.5 Inhomogeneous Random Graphs

Another well-studied natural generalisation of the Erdős-Rényi random graph are
random graphs with a given degree sequence – an example of inhomogeneous ran-
dom graphs. Łuczak [45] and Chung and Lu [23] studied the component structure
of a random graph with a given degree sequence. The phase transition in random
graphs with a given degree sequence has been much more extensively studied,
among others by Molloy and Reed [50, 51], Newman, Strogatz, and Watts [52],
Kang and Seierstad [38], and Riordan [56].
Consider a sequence D = {d0(n),d1(n), . . .}, such that di(n) = 0 for i ≥ n, and
∑i≥0 di(n) = n. The value di(n) denotes the number of vertices of degree i in a
graph of order n. Consider a uniform random graph Gn(D) with D as a degree
sequence. Under a mild smoothness condition on D , λi(n) := di(n)/n converges
to a constant: we define λ∗i = limn→∞ λi(n) and Q(D) = ∑i≥1 i(i−2)λ∗i . Molloy
and Reed [50, 51] showed that if Q(D) < 0, then whp all components in Gn(D)
are of order Θ(logn), while if Q(D) > 0, then whp Gn(D) contains a unique
giant component of order Θ(n). Kang and Seierstad [38] studied the critical phase
when ∑i≥1 i(i−2)λi(n) converges to 0. To capture how fast the quantity ∑i≥1 i(i−
2)λi(n) converges to 0, we let τn be the largest zero of the function Qn(x) :=
∑i≥1 i(i−2)λi(n)xi, i.e. Qn(τn) = 0. Kang and Seierstad determined the order of
the largest component in a weakly supercritical regime with a logarithmic gap,
i.e. when (1− τn)n1/3� logn. Here the parameter 1− τn plays the same role for
Gn(D) as t−1 does for G(n, p) when p = t/(n−1). More recently, Riordan [56]
determined the exact width of the critical window and the limiting distribution
of the asymptotic order of the largest component when the maximum degree is
bounded.
During the last few decades, it was observed that real-world networks – arising
in the fields of economy, physics, and social sciences – belong to the class of the
so-called small-world networks which are characterised by high clustering (mean-
ing that vertices are highly but locally connected among each other) and a small
diameter (meaning that short paths link globally all vertices of the network, so
all vertices are linked through relatively few number of steps). Furthermore, the
number of connections (i.e. the degree of a vertex) in many real-world networks
has a power law distribution. This property, among others, motivated the pref-
erential attachment model introduced and studied, for example, by Barabási and
Albert [2, 7].
To model and analyse real-world networks, numerous random graphs are intro-
duced as their stochastic models, and many of them are special cases of inhomo-
geneous random graphs introduced by Bollobás, Janson, and Riordan [15], where
vertices come in different types, and the probability of realising an edge depends
on the types of its terminal vertices. In particular, the edges appear independently
and the number of edges is linear in the number of vertices. Among other things,
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Bollobás, Janson, and Riordan [15] determined the critical point of the phase tran-
sition and the order of the giant component after the transition, by relating their
model to multi-type branching processes.

4 Related Areas and Applications

Random graphs have been extensively studied since their introduction, and be-
came one of the central themes of contemporary mathematics, partly because
they are closely related to various random discrete structures such as random sur-
faces, random maps, random matrices, random satisfiability problems, Ising and
Potts models, and percolation, and partly because they are useful for modelling,
analysis, and solving of structural and algorithmic problems arising in mathe-
matics, theoretical computer science, natural sciences, social sciences, and life
sciences [2]. The intense study of random discrete structures, in particular the
study of their phase transition phenomena, has brought together different fields of
research, such as discrete mathematics, probability theory, theoretical computer
science, and statistical physics.

4.1 Phase Transition

The phase transition deals with a sudden change in the properties of a large struc-
ture caused by altering a critical parameter. It is observed in mathematics and
natural sciences in many different contexts. We have seen the phase transitions in
various random graph models through Sections 2.3–3.5.
The phase transitions that everybody is most familiar with are those of water:
from ice (solid) to water (liquid), and from water to vapour (gas). There are two
critical temperatures: zero degree Celsius, the freezing point of water, and one
hundred degree Celsius, the boiling point of water. At low temperatures, in the
solid state, the atoms and molecules interact strongly with their neighbours and
are densely packed, typically in a regular pattern. At intermediate temperatures,
the interactions are weakened, resulting in a constantly changing short-range or-
der. And at high temperatures, the molecules barely interact and display a sparse,
highly dynamic, and a rather random pattern – see Figure 3. The intriguing fact is
that these temperature-induced changes do not occur continuously but exhibit two
sharp jumps – phase transitions – at the melting and boiling temperatures.
A well-known example that exhibits phase transition is the percolation. In physics,
materials science, and geography, the theory of percolation deals with questions
related to the passage of fluid or gas through porous or disordered media. It can
be applied to a wide range of seemingly unrelated phenomena, for example, the
change of the earth’s surface caused by weathering or erosion, the spreading of
forest fire, the functioning of a cigarette filter or a coffee percolator.
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Figure 3: Organisation of atoms or molecules at different temperatures.

Assume that a liquid is poured on top of some porous material. Will the liquid be
able to make its way from the top to the bottom? This physical question can be
modelled mathematically by bond percolation: each bond (or edge or connection)
between each two neighbours in a square lattice may be open (allowing the liquid
through) with probability p, or closed with probability 1− p, independently of
each other. The bond percolation on the complete graph Kn (i.e. the graph with n
vertices and

(n
2

)
edges) is just the binomial random graph G(n, p). Another useful

model is site percolation, where each site is occupied with probability p or empty
with probability 1− p.
The mathematical reformulation of the question from above is: for a given p, what
is the probability that an open path exists from the top to the bottom? Interestingly,
it turns out that for an infinite lattice there is a critical value pc such that for p
smaller than pc the probability that such a path exists is zero, while for p larger
than pc the probability is one. In some cases pc can be calculated explicitly. For
example, for the bond percolation on the square lattice in two dimensions Z2,
pc = 1/2, a fact which was an open question for more than 20 years and was
finally resolved by Kesten in the early 1980s [41].
Unfortunately, the exact calculation of pc for most infinite lattice graphs is not
known. For more detailed mathematical discussions on percolation, see the books
with the same title “Percolation” by Grimmett [31] and by Bollobás and Rior-
dan [16].

4.2 Social Sciences

Analysis of human interactions and communication by means of the theory of de-
terministic and random graphs is a useful tool in social sciences. One of the oldest
and best-known examples is the ‘six degree of separation’ phenomenon described
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Figure 4: Bond percolation on two-dimensional square lattice for two values of
the probability p that a bond between two sites exists. Left: p below the perco-
lation threshold pc = 0.5; there is no path connecting two opposing sides of the
square. Right: p above the percolation threshold; a path connecting the top with
the bottom (and the left with the right) sides of the square exists.

decades ago [49]: any two people can be connected by a chain of acquaintances on
average six persons long. Similarly to the Erdős-Rényi random graph, the graph of
human acquaintanceship has a small diameter. However, unlike the Erdős-Rényi
random graph, it has a high clustering coefficient, making it a ‘small-world net-
work’. The chances that two people who have a common friend also know each
other are much higher than in a random graph. Many human interaction networks
have this structure, for example, the scientific co-authorship network, known to
mathematicians by the concept of the Erdős number.
The expansion of the internet into our daily lives greatly benefited social sciences:
the patterns of human activity on the internet, such as navigation between the
web pages or communication within virtual communities, is a rich source of data.
In a recent example, the analysis of online-gaming patterns in internet identified
clusters of players that coincided with the boundaries of traditional Chinese cul-
tural regions [67]. While this coincidence is not surprising in itself, the fact that
the player groups can be identified and analysed without using the geographical
information is useful. The behaviour in the internet can be used to find culturally
distinct groups, monitor their emergence and evolution, interactions, geographi-
cal distribution, etc. The network structure and dynamics of these groups can then
help to predict their future development and influence on the society far beyond
the limits of the internet.
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The pattern of human mobility is relevant in many different contexts, for example,
it has obvious consequences for the spread of infectious diseases. Modelling the
human travel as diffusion on the Erdős-Rényi random graph does not take into ac-
count the geographical restrictions, which, unlike the case of communication over
the internet, certainly play a strong role here. On the other hand, random walk on
a regular lattice neglects the effect of long jumps enabled by air travel. In an in-
teresting experiment reflecting the human mobility, the circulation of bank notes
was monitored by volunteers using tracking websites. The analysis of the data
revealed a power-law decay of distribution of travelling distances [20]. The pres-
ence of long-distance jumps means that the disease spreading across this network
is a fast, super-diffusive process. Interestingly, the spread of plague in Europe in
14th century did not follow this trend, suggesting the absence of the long-range
links and therefore a different structure of human contacts at the time [47].
The structure of the network determines the efficiency of spreading of information
or diseases over it [26]. Will the spreading be more efficient on a well-connected
network (a graph with a small diameter), where no two individuals are too far from
each other, or is high clustering a more relevant network property? An experiment
in which an internet community with a controlled network structure was created
showed that a particular human behaviour spreads faster and further on a highly
clustered rather than random network [22]. Reinforcement by multiple neighbours
proved to be important for adopting the behaviour by an individual, and therefore
for its spreading. A similar scenario may apply for spreading of a disease which
requires multiple contacts, as opposed to a highly contagious disease that is trans-
mitted on a single encounter. Another recent work identifies models in which
some fraction of the network will not be reached [69]; the size of this fraction
again depends on the network structure. All these findings have implications for
designing strategies for distributing information or for vaccination [65]. At the
time of writing this article, a severe Ebola epidemic broke out in West Africa. The
variable network structures of the social contacts in different communities across
the affected region is being used to explain and predict the differences between
the involved countries in the spread and further development of the disease [42].

4.3 Man-made Networks

Large complex structures found in nature are often formed by individual uncorre-
lated interactions between a large number of their constituents; therefore it is not
surprising that random graphs provide good models for many of them. Man-made
structures, on the other hand, may be thought of as a result of rational design opti-
mised for a given purpose; one would therefore expect a regular structure without
much room for randomness (electrical circuits, cell phone network). Many cre-
ations of man that can be viewed as a network, however, exhibit sufficient ‘ran-
domness’, often because their structure developed over time (like the world wide
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web), or because they copy a pre-existing network (e.g. airport network, electricity
network) or are subject to random or other constraints (e.g. geography). Random
graphs with well-chosen characteristics can thus serve as useful models for the
evolution and the function of many complex artificial structures.
New insights can be gained by studying the effects of interactions between two
or more networks. If the interaction is such that the removal of a vertex in one
network can eliminate vertices in the other network, the chain of subsequent vertex
removals can lead to a large-scale fragmentation of both networks. A well known
example of such a collapse of coupled networks is an electrical blackout in Italy
in 2003, when a shutdown of power stations caused failure of internet network
controlling the power grid [21]. Studies of interdependent networks can help to
design networks resistant to this type of failure [55].
Although scale-free networks, such as internet, are robust against random removal
of a vertex, they are highly sensitive against an attack: a targeted removal of a ver-
tex with a high degree [3]. This knowledge can be used to design the ways to con-
trol the spread of viruses across the internet, or to identify the weak and sensitive
points of the network that require extra protection against attacks. Understanding
the properties of the underlying network structure can help in practical design of
a real network with a balance between its effectiveness, redundancy, robustness
and cost.

4.4 Life Sciences

The recent boom in life sciences has generated huge amounts of data: genomes of
whole organisms have been sequenced, proteins and patterns of their interactions
have been identified, metabolic networks relating the biochemical reactions have
been mapped. Detailed analysis of gene and protein interaction networks is ex-
pected to help us to understand the properties of the network that are determined
by its large-scale structure rather than by the details of individual interactions, for
example, how a combination of mutations of different proteins increases the risk
of a disease, how the topology of a protein network affects its robustness against
random mutations, or how the network may have evolved over time [8].
Biological networks are often scale-free, with a broad vertex degree distribution.
Such networks are robust against removal of a randomly chosen vertex [3], a prop-
erty important for resistance against random elimination of one unit, for example,
mutation making a protein nonfunctional.
In graphs representing biological networks, some subgraphs (called motifs) can be
identified as sub-units fulfilling a well-defined function. Analysis of a biological
network in terms of subgraphs can therefore reveal so far unknown sub-units and
thus help our understanding of the functionality of a large network [32].
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Figure 5: The graph depicting the connections between the neurons of C. ele-
gans. The size and the colour of the vertices correspond to their degree. The data
originate from ref. [68].

4.5 The Brain

The theory of deterministic or random graphs can help us describe, and in the
future hopefully also understand, perhaps the most complex structure found in na-
ture: the brain [53]. The network of interconnected neurons in the brain has been
modelled as a random graph with different properties (e.g. scale-free network).
While the ‘brain’ of a simple worm C. elegans, a widely studied model organ-
ism, consists of 302 neurons connected by around 7300 synapses, and has been
mapped in detail [66], the human brain contains ∼ 1011 neurons, with the number
of synapses hard to estimate (1014–1015?), let alone map. The way the neurons are
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connected and interact with each other largely determines the brain functionality.
For example, there is evidence that the functional connectivity structure within
the brain changes in patients with Alzheimer’s disease: the activity networks ex-
hibit lower clustering, being closer to a random network than those of a healthy
brain [63]. Experimental studies of spontaneous brain activity – the analysis of
electric spikes produced by neurons, and of the size and duration of avalanches
of this neuronal activity – often produce results that can be described by power-
law distributions (scale-free). This has led to a hypothesis that brain, viewed as a
network of neurons, may be operating at a critical state, a state close to a phase
transition. This is relevant, as various network properties related to the commu-
nication efficiency, dynamic range of response, etc., are optimised at the critical
point [9].

5 Conclusion

This article aims to give a flavour of how the field of random graphs has evolved
over the last 50 years from the first definition of a random graph to a rich math-
ematical theory with applications across many scientific disciplines. It should,
however, be mentioned that this article is not an exhaustive survey on the theory
of random graphs, but rather a brief collection of special topics and results that
are of particular interest to the authors.
From the theory point of view, a special focus was put on the fascinating phe-
nomenon of phase transition in terms of the emergence of a giant component in
a random graph. There are, however, also other important and interesting prop-
erties of random graphs, such as small subgraphs, long cycles, diameter, cliques,
independent sets, and the chromatic number, to name a few. For a comprehensive
account of these topics we refer the readers to two excellent books on random
graphs by Bollobás [14] and by Janson, Łuczak, and Ruciński [33].
From the viewpoint of application, the theory of random graphs has proven to be
appropriate for the description and analysis of complex structures arising every-
where from the nature to the society, even of the brain. On the other hand, diverse
applications continue to motivate and inform the study of random graphs.
The expansion of random graph theory and its applications shows us again how
much abstract mathematical ideas can teach us about the “real world”.
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[34] S. Janson and J. Spencer, Phase transitions for modified Erdős-Rényi processes,
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