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Abstract. We deal with two intimately related subjects: quasi-randomness and regular partitions. The purpose
of the concept of quasi-randomness is to measure how much a given graph “resembles” a random one. More-
over, a regular partition approximates a given graph by a bounded number of quasi-random graphs. Regarding
quasi-randomness, we present a new spectral characterization of low discrepancy, which extends to sparse graphs.
Concerning regular partitions, we present a novel concept of regularity that takes into account the graph’s degree
distribution, and show that if G = (V, E) satisfies a certain boundedness condition, then G admits a regular par-
tition. In addition, building on the work of Alon and Naor [4], we provide an algorithm that computes a regular
partition of a given (possibly sparse) graph G in polynomial time. As an application, we present a polynomial time
approximation scheme for MAX CUT on (sparse) graphs without “dense spots”.
Key words: quasi-random graphs, Laplacian eigenvalues, regularity lemma, Grothendieck’s inequality.

1 Introduction and Results

This paper deals with quasi-randomness and regular partitions. Loosely speaking, a graph is quasi-random if the
global distribution of the edges resembles the expected edge distribution of a random graph. Furthermore, a regular
partition approximates a given graph by a constant number of quasi-random graphs; such partitions are of algorithmic
importance, because a number of NP-hard problems can be solved in polynomial time on graphs that come with regular
partitions. In this section we present our main results. References to related work can be found in Section 2, and the
remaining sections contain the proofs and detailed descriptions of the algorithms.

Quasi-Randomness: discrepancy and eigenvalues. Random graphs are well known to have a number of remarkable
properties (e.g., excellent expansion). Therefore, quantifying how much a given graph “resembles” a random graph
is an important problem, both from a structural and an algorithmic point of view. Providing such measures is the
purpose of the notion of quasi-randomness. While this concept is rather well developed for dense graphs (i.e., graphs
G = (V,E) with |E| = Ω(|V |2)), less is known in the sparse case, which we deal with in the present work. In fact, we
shall actually deal with (sparse) graphs with general degree distributions, including but not limited to the ubiquitous
power-law degree distributions (cf. [1]).
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We will mainly consider two types of quasi-random properties: low discrepancy and eigenvalue separation. The
low discrepancy property concerns the global edge distribution and basically states that every set S of vertices approx-
imately spans as many edges as we would expect in a random graph with the same degree distribution. More precisely,
if G = (V,E) is a graph, then we let dv signify the degree of v ∈ V . Furthermore, the volume of a set S ⊂ V is
vol(S) =

∑
v∈S dv . In addition, e(S) denotes the number of edges spanned by S.

Disc(ε): We say that G has discrepancy at most ε (“G has Disc(ε)” for short) if

∀S ⊂ V :
∣∣∣∣e(S)− vol(S)2

2vol(V )

∣∣∣∣ < ε · vol(V ). (1)

To explain (1), let d = (dv)v∈V , and let G(d) signify a uniformly distributed random graph with degree distribution
d. Then the probability pvw that two vertices v, w ∈ V are adjacent in G(d) is proportional to the degrees of both
v and w, and hence to their product. Further, as the total number of edges is determined by the sum of the degrees,
we have

∑
(v,w)∈V 2 pvw = vol(V ), whence pvw ∼ dvdw/vol(V ). Therefore, in G(d) the expected number of edges

inside of S ⊂ V equals 1
2

∑
(v,w)∈S2 pvw ∼ 1

2vol(S)2/vol(V ). Consequently, (1) just says that for any set S the
actual number e(S) of edges inside of S must not deviate from what we expect in G(d) by more than an ε-fraction of
the total volume.

An obvious problem with the bounded discrepancy property (1) is that it is quite difficult to check whether G =
(V,E) satisfies this condition. This is because one would have to inspect an exponential number of subsets S ⊂ V .
Therefore, we consider a second property that refers to the eigenvalues of a certain matrix representing G. More
precisely, we will deal with the normalized Laplacian L(G), whose entries (`vw)v,w∈V are defined as

`vw =


1 if v = w and dv ≥ 1,

−(dvdw)−
1
2 if v, w are adjacent,

0 otherwise;

Due to the normalization by the geometric mean
√
dvdw of the vertex degrees, L(G) turns out to be appropriate for

representing graphs with general degree distributions. Moreover, L(G) is well known to be positive semidefinite, and
the multiplicity of the eigenvalue 0 equals the number of connected components of G (cf. [8]).

Eig(δ): Letting 0 = λ1(L(G)) ≤ · · · ≤ λ|V |(L(G)) denote the eigenvalues of L(G), we say that G has δ-eigenvalue
separation (“G has Eig(δ)”) if 1− δ ≤ λ2(L(G)) ≤ λ|V |(L(G)) ≤ 1 + δ.

As the eigenvalues of L(G) can be computed in polynomial time (within arbitrary numerical precision), we can
essentially check efficiently whether G has Eig(δ) or not.

It is not difficult to see that Eig(δ) provides a sufficient condition for Disc(ε). That is, for any ε > 0 there is a
δ > 0 such that any graph G that has Eig(δ) also has Disc(ε). However, while the converse implication is true if G
is dense (i.e., vol(V ) = Ω(|V |2)), it is false for sparse graphs. In fact, providing a necessary condition for Disc(ε) in
terms of eigenvalues has been an open problem in the area of sparse quasi-random graphs since the work of Chung and
Graham [10]. Concerning this problem, we basically observe that the reason why Disc(ε) does in general not imply
Eig(δ) is the existence of a small set of “exceptional” vertices. With this in mind we refine the definition of Eig as
follows.

ess-Eig(δ): We say that G has essential δ-eigenvalue separation (“G has ess-Eig(δ)”) if there is a set W ⊂ V of
volume vol(W ) ≥ (1− δ)vol(V ) such that the following is true. Let L(G)W = (`vw)v,w∈W denote the minor of
L(G) induced on W ×W , and let λ1(L(G)W ) ≤ · · · ≤ λ|W |(L(G)W ) signify its eigenvalues; then we require
that 1− δ < λ2(L(G)W ) < λ|W |(L(G)W ) < 1 + δ.

Theorem 1. There is a constant γ > 0 such that the following is true for all graphs G = (V,E) and all ε > 0.

1. If G has ess-Eig(ε), then G satisfies Disc(10
√
ε).

2. If G has Disc(γε2), then G satisfies ess-Eig(ε).

The main contribution is the second implication. Its proof is based on Grothendieck’s inequality and the duality the-
orem for semidefinite programs. In effect, the proof actually provides us with an efficient algorithm that computes a
set W as in the definition of ess-Eig(ε). The second part of Theorem 1 is best possible, up to the precise value of the
constant γ (cf. Section 7).
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The algorithmic regularity lemma. Loosely speaking, a regular partition of a graph G = (V,E) is a partition of
(V1, . . . , Vt) of V such that for “most” index pairs i, j the bipartite subgraph spanned by Vi and Vj is quasi-random.
Thus, a regular partition approximates G by quasi-random graphs. Furthermore, the number t of classes may depend
on a parameter ε that rules the accuracy of the approximation, but it does not depend on the order of the graph G itself.
Therefore, if for some class of graphs we can compute regular partitions in polynomial time, then this graph class will
admit polynomial time algorithms for quite a few problems that are NP-hard in general.

In the sequel we introduce a new concept of regular partitions that takes into account the degree distribution
of the graph. If G = (V,E) is a graph and A,B ⊂ V are disjoint, then the relative density of (A,B) in G is
%(A,B) = e(A,B)

vol(A)vol(B) . Further, we say that the pair (A,B) is ε-volume regular if for all X ⊂ A, Y ⊂ B satisfying
vol(X) ≥ εvol(A), vol(Y ) ≥ εvol(B) we have

|e(X,Y )− %(A,B)vol(X)vol(Y )| ≤ ε · vol(A)vol(B)/vol(V ), (2)

where e(X,Y ) denotes the number of X-Y -edges in G. This condition essentially means that the bipartite graph
spanned by A and B is quasi-random, given the degree distribution of G. Indeed, in a random graph the proportion of
edges between X and Y should be proportional to both vol(X) and vol(Y ), and hence to vol(X)vol(Y ). Moreover,
%(A,B) measures the overall density of (A,B).

Finally, we state a condition that ensures the existence of regular partitions. While every dense graphG (of volume
vol(V ) = Ω(|V |2)) admits a regular partition, such partitions do not necessarily exist for sparse graphs, the basic
obstacle being extremely “dense spots”. To rule out such dense spots, we consider the following notion.

(C, η)-boundedness. We say that a graph G is (C, η)-bounded if for all X,Y ⊂ V with vol(X ∪ Y ) ≥ ηvol(V ) we
have %(X,Y )vol(V ) ≤ C.

Now, we can state the following algorithmic regularity lemma for graphs with general degree distributions. which
does not only ensure the existence of regular partitions, but also that such a partition can be computed efficiently.

Theorem 2. For any two numbers C ≥ 1 and ε > 0 there exist η > 0 and n0 > 0 such that for all n > n0 the
following holds. If G = (V,E) is a (C, η)-bounded graph on n vertices such that vol(V ) ≥ η−1n, then there is a
partition P = {Vi : 0 ≤ i ≤ t} of V that enjoys the following two properties.

REG1. For all 1 ≤ i ≤ t we have ηvol(V ) ≤ vol(Vi) ≤ εvol(V ), and vol(V0) ≤ εvol(V ).
REG2. Let L be the set of all pairs (i, j) ∈ {1, . . . , t}2 such that (Vi, Vj) is not ε-volume-regular. Then∑

(i,j)∈L

vol(Vi)vol(Vj) ≤ εvol2(G).

Furthermore, for fixed C > 0 and ε > 0 such a partition P of V can be computed in time polynomial in n.

Condition REG1 states that each of the classes V1, . . . , Vt has some non-negligible volume, and that the “excep-
tional” class V0 is not too big. Moreover, REG2 requires that the share of edges of G that belongs to irregular pairs
(Vi, Vj) is small. Thus, a partition P that satisfies REG1 and REG2 approximatesG by a bounded number of bipartite
quasi-random graphs, i.e., the number t of classes can be bounded solely in terms of ε and the boundedness parameter
C.

We illustrate the use of Theorem 2 with the example of the MAX CUT problem. While approximating MAX CUT
within a ratio better than 16

17 is NP-hard on general graphs [17, 22], the following theorem provides a polynomial time
approximation scheme for (C, η)-bounded graphs.

Theorem 3. For any δ > 0 and C > 0 there exist two numbers η > 0, n0 and a polynomial time algorithm
ApxMaxCut such that for all n > n0 the following is true. If G = (V,E) is a (C, η)-bounded graph on n ver-
tices and vol(V ) > η−1n, then ApxMaxCut(G) outputs a cut (S, S̄) of G that approximates the maximum cut within
a factor of 1− δ.

The corresponding result for dense graphs was obtained by Frieze and Kannan [12].
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2 Related Work

Quasi-random graphs. Quasi-random graphs with general degree distributions were first studied by Chung and
Graham [9]. They considered the properties Disc(ε) and Eig(δ), and a number of further related ones (e.g., concerning
weighted cycles). Chung and Graham observed that Eig(δ) implies Disc(ε), and that the converse is true in the case
of dense graphs (i.e., vol(V ) = Ω(|V |2)).

Regarding the step from discrepancy to eigenvalue separation, Butler [7] proved that any graph G such that for all
sets X,Y ⊂ V the bound

|e(X,Y )− vol(X)vol(Y )/vol(V )| ≤ ε
√

vol(X)vol(Y ) (3)

holds, satisfies Eig(O(ε(1− ln ε))). His proof builds upon the work of Bilu and Linial [5], who derived a similar result
for regular graphs, and on the earlier related work of Bollobás and Nikiforov [6].

Butler’s result relates to the second part of Theorem 1 as follows. The r.h.s. of (3) refers to the volumes of the sets
X , Y , and may thus be significantly smaller than εvol(V ). By contrast, the second part of Theorem 1 just requires
that the “original” discrepancy condition Disc(δ) is true, i.e., we just need to bound |e(S) − 1

2vol(S)2/vol(V )| in
terms of the total volume vol(V ). Hence, Butler shows that the “original” eigenvalue separation condition Eig follows
from a stronger version of the discrepancy property. By contrast, Theorem 1 shows that the “original” discrepancy
condition Disc implies a weak form of eigenvalue separation ess-Eig, thereby answering a question posed by Chung
and Graham [9, 10]. Furthermore, relying on Grothendieck’s inequality and SDP duality, the proof of Theorem 1
employs quite different techniques than the methods used in [5–7].

In the present work we consider a concept of quasi-randomness that takes into account the graph’s degree sequence.
Other concepts that do not refer to the degree sequence (and are therefore restricted to approximately regular graphs)
were studied by Chung, Graham and Wilson [11] (dense graphs) and by Chung and Graham [10] (sparse graphs). Also
in this setting it has been an open problem to derive eigenvalue separation from low discrepancy, and concerning this
simpler concept of quasi-randomness, our techniques yield a similar result as Theorem 1 as well. The proof is similar
and we omit the details here.

Regular partitions. Szemerédi’s original regularity lemma [21] shows that any dense graph G = (V,E) (with
|E| = Ω(|V |2)) can be partitioned into a bounded number of sets V1, . . . , Vt such that almost all pairs (Vi, Vj)
are quasi-random. This statement has become an important tool in various areas, including extremal graph theory
and property testing. Furthermore, Alon, Duke, Lefmann, Rödl, and Yuster [3] presented an algorithmic version,
and showed how this lemma can be used to provide polynomial time approximation schemes for dense instances of
NP-hard problems (see also [19] for a faster algorithm). Moreover, Frieze and Kannan [12] introduced a different
algorithmic regularity concept, which yields better efficiency in terms of the desired approximation guarantee.

A version of the regularity lemma that applies to sparse graphs was established independently by Kohayakawa [18]
and Rödl (unpublished). This result is of significance, e.g., in the theory of random graphs, cf. Gerke and Steger [13].
The regularity concept of Kohayakawa and Rödl is related to the notion of quasi-randomness from [10] and shows that
any graph that satisfies a certain boundedness condition has a regular partition.

In comparison to the Kohayakawa-Rödl regularity lemma, the new aspect of Theorem 2 is that it takes into account
the graph’s degree distribution. Therefore, Theorem 2 applies to graphs with very irregular degree distributions, which
were not covered by prior versions of the sparse regularity lemma. Further, Theorem 2 yields an efficient algorithm
for computing a regular partition (see e.g., [14] for a non-polynomial time algorithm in the sparse setting). To achieve
this algorithmic result, we build upon the algorithmic version of Grothendieck’s inequality due to Alon and Naor [4].
Besides, our approach can easily be modified to obtain a polynomial time algorithm for computing a regular partition
in the sense of Kohayakawa and Rödl, which was not known previously.

3 Preliminaries

3.1 Notation

If S ⊂ V is a subset of some set V , then we let 1S ∈ RV denote the vector whose entries are 1 on the components
corresponding to elements of S, and 0 otherwise. More generally, if ξ ∈ RV is a vector, then ξS ∈ RV signifies the
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vector obtained from ξ by replacing all components with indices in V \ S by 0. Moreover, if A = (avw)v,w∈V is a
matrix, then AS = (avw)v,w∈S denotes the minor of A induced on S × S. Further, for a vector ξ ∈ RV we let ‖ξ‖
signify the `2-norm, and for a matrix we let ‖M || = sup06=ξ∈RV

‖Mξ‖
‖ξ‖ denote the spectral norm.

If ξ = (ξv)v∈V is a vector, then diag(ξ) signifies the V × V matrix with diagonal ξ and off-diagonal entries
equal to 0. In particular, E = diag(1) denotes the identity matrix (of any size). Moreover, if M is a ν× ν matrix, then
diag(M) ∈ Rν signifies the vector comprising the diagonal entries ofM . If bothA = (aij)1≤i,j≤ν , B = (bij)1≤i,j≤ν
are ν × ν matrices, then we let 〈A,B〉 =

∑ν
i,j=1 aijbij .

If M is a symmetric ν × ν matrix, then λ1(M) ≤ · · · ≤ λν(M) = λmax(M) denote the eigenvalues of M . Recall
that a symmetric matrix M is positive semidefinite if λ1(M) ≥ 0; in this case we write M ≥ 0. Furthermore, M
positive definite if λ1(M) > 0, denoted as M > 0. If M,M ′ are symmetric, then M ≥ M ′ (resp. M > M ′) denotes
the fact that M −M ′ ≥ 0 (resp. M −M ′ > 0).

3.2 Grothendieck’s inequality

An important ingredient to our proofs and algorithms is Grothendieck’s inequality. Let M = (mij)i,j∈I be a matrix.
Then the cut-norm of M is

‖M‖cut = max
I,J⊂I

∣∣∣∣∣∣
∑

i∈I,j∈J
mij

∣∣∣∣∣∣ .
In addition, consider the following optimization problem:

SDP(M) = max
∑
i,j∈I

mij 〈xi, yj〉 s.t. ‖xi‖ = ‖yi‖ = 1. (4)

While we allow xi, yi to be elements of any Hilbert space, one can always assume without loss of generality that
xi, yi ∈ R2|I| (because the space spanned by the vectors xi, yi has dimension ≤ 2|I|). Therefore, SDP(M) can be
reformulated as a linear optimization problem over the cone of positive semidefinite 2|I| × 2|I| matrices, i.e., as a
semidefinite program (cf. Alizadeh [2]).

Lemma 4. For any ν × ν matrix M we have

SDP(M) =
1
2

max
〈(

0 1
1 0

)
⊗M,X

〉
s.t. diag(X) = 1, X ≥ 0, X ∈ R2ν×2ν . (5)

Proof. Let x1, . . . , x2ν ∈ R2ν be a family of unit vectors such that SDP(M) =
∑ν
i,j=1mij 〈xi, xj+ν〉. Then we

obtain a positive semidefinite matrix X = (xij)1≤i,j≤2ν by setting xij = 〈xi, xj〉. Since xii = ‖xi‖2 = 1 for all i,
this matrix satisfies diag(X) = 1. Moreover,〈(

0 1
1 0

)
⊗M,X

〉
= 2

ν∑
i,j=1

mijxij+ν = 2
ν∑

i,j=1

mij 〈xi, xj+ν〉 . (6)

Hence, the optimization problem on the r.h.s. of (5) yields an upper bound on SDP(M).
Conversely, if X = (xij) is a feasible solution to (5), then there exist vectors x1, . . . , x2ν ∈ R2ν such that

xij = 〈xi, xj〉, because X is positive semidefinite. Moreover, since diag(X) = 1, we have 1 = xii = ‖xi‖2. Thus,
x1, . . . , x2ν is a feasible solution to (5), and (6) shows that the resulting objective function values coincide. ut

Since by Lemma 4 SDP(M) can be stated as a semidefinite program, an optimal solution to SDP(M) can be approx-
imated within any numerical precision, e.g., via the ellipsoid method [16].

Grothendieck [15] established the following relation between SDP(M) and ‖M‖cut.

Theorem 5. There is a constant θ > 1 such that for all matrices M we have ‖M‖cut ≤ SDP(M) ≤ θ · ‖M‖cut .
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The best current bounds on the above constant are π
2 ≤ θ ≤

π
2 ln(1+

√
2)

[15, 20]. Furthermore, by applying an appropri-
ate rounding procedure to a near-optimal solution to SDP(M), Alon and Naor [4] obtained the following algorithmic
result.

Theorem 6. There are a constant θ′ > 0 and a polynomial time algorithm ApxCutNorm that computes on input M
two sets I, J ⊂ I such that θ′ · ‖M‖cut ≤

∣∣∣∑i∈I,j∈J mij

∣∣∣.
Alon and Naor presented a randomized algorithm that guarantees an approximation ration θ′ > 0.56, and a determin-
istic one with θ′ ≥ 0.03.

To facilitate the proof of Theorem 1, we point out the following simple fact.

Lemma 7. Let M = (mij)i,j∈I be a matrix, and let J ⊂ I. Then SDP(MJ ) ≤ SDP(M).

Proof. Let (xi)i∈J , (yj)j∈J be an optimal solution to SDP(MJ ); that is, xi, yj are unit vectors such that SDP(MJ ) =∑
i,j∈J mij 〈xi, yj〉 . Without loss of generality we may assume that xi, yj ∈ R2|I|. Since the subspace of R2|I|

spanned by the vectors {xi, yj : i, j ∈ J } has dimension ≤ 2|J |, there is a family {xi, yj : i, j ∈ I \ J } of mutually
perpendicular unit vectors such that the space spanned by {xi, yj : i, j ∈ I \J } is perpendicular to the space spanned
by {xi, yj : i, j ∈ J }. Therefore, we obtain

SDP(M) ≥
∑
i,j∈I

mij 〈xi, yj〉 =
∑
i,j∈J

mij 〈xi, yj〉 = SDP(MJ ),

as desired. ut

4 Quasi-Randomness: Proof of Theorem 1

4.1 From Essential Eigenvalue Separation to Low Discrepancy

Here we prove the first part of Theorem 1. Suppose that G = (V,E) is a graph that admits a set W ⊂ V of volume
vol(W ) ≥ (1− ε)vol(V ) such that the eigenvalues of the minor LW of the normalized Laplacian satisfy

1− ε ≤ λ2(LW ) ≤ λmax(LW ) ≤ 1 + ε. (7)

We may assume without loss of generality that ε < 10−6. Our goal is to show that G has Disc(10
√
ε).

Let ∆ = (
√
dv)v∈W ∈ RW , and let LW denote the matrix whose vw’th entry is (dvdw)−

1
2 if v, w are adjacent,

and 0 otherwise (v, w ∈ W ), so that LW = E − LW . Further, letMW = vol(V )−1∆∆T − LW . Then for all unit
vectors ξ ⊥ ∆ we have

LW ξ − ξ = −LW ξ =MW ξ. (8)

Moreover, for all S ⊂W

|〈MW∆S , ∆S〉| =
∣∣∣∣vol(S)2

vol(V )
− 2e(S)

∣∣∣∣ . (9)

We will derive the following bound on the operator norm ofMW .

Lemma 8. We have ‖MW ‖ ≤ 10
√
ε.

The Lemma easily implies that G has Disc(10
√
ε); for let R ⊂ V be arbitrary. Set S = R ∩W and T = R \W .

Since ‖∆S‖2 = vol(S) ≤ vol(V ), Lemma 8 and (9) imply that∣∣∣∣ vol(S)2

2vol(V )
− e(S)

∣∣∣∣ ≤ 5
√
εvol(V ). (10)
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Furthermore, as vol(W ) ≥ (1− ε)vol(V ),

e(R)− e(S) ≤ e(T ) + e(S, T ) ≤ vol(T ) ≤ vol(V \W ) ≤ εvol(V ), and (11)
vol(R)2 − vol(S)2

2vol(V )
≤ vol(T )2

2vol(V )
+

vol(S)vol(T )
vol(V )

≤ vol(V \W )2

2vol(V )
+ vol(V \W ) ≤ 2εvol(V ). (12)

Finally, combining (10)–(12), we see that
∣∣∣ vol(R)2

2vol(V ) − e(R)
∣∣∣ < 10

√
εvol(V ), whence G satisfies Disc(10

√
ε).

Proof of Lemma 8. Although the smallest eigenvalue of L equals 0 and the corresponding eigenvector is∆, the smallest
eigenvalue λ1(LW ) of the minor LW may be strictly positive. Let ζ be an eigenvector of LW with eigenvalue λ1(LW )
of unit length. Then we have a decomposition ∆ = ‖∆‖ · (sζ + tχ), where s2 + t2 = 1 and χ ⊥ ζ is a unit vector.
Since 〈LW∆,∆〉 = e(W,V \W ) ≤ vol(V \W ) ≤ εvol(V ) and ‖∆‖2 = vol(W ) ≥ 0.99vol(V ), (7) entails that

2ε ≥ ‖∆‖−2 〈LW∆,∆〉 = s2 〈LW ζ, ζ〉+ t2 〈LWχ, χ〉 ≥ t2λ2(LW ) ≥ t2

2
.

Consequently,
t2 ≤ 4ε, and s2 ≥ 1− 4ε. (13)

Now, let ξ ⊥ ∆ be a unit vector, and decompose ξ = xζ + yη, where η ⊥ ζ is a unit vector. Because ζ =
s−1

(
∆
‖∆‖ − tχ

)
, we have x = 〈ζ, ξ〉 = s−1

〈
∆
‖∆‖ , ξ

〉
− t

s 〈χ, ξ〉 = − t
s 〈χ, ξ〉 . Hence, (13) entails

x2 ≤ 5ε, y2 ≥ 1− 5ε. (14)

Combining (7), (8) and (14), we conclude that ‖MW ξ‖ = ‖LW ξ − ξ‖ ≤ x(1 − λ1(LW )) + y‖LW η − η‖ ≤ 3
√
ε.

Hence, we have established that

sup
0 6=ξ⊥∆

‖MW ξ‖
‖ξ‖

≤ 3
√
ε. (15)

Furthermore, as by assumption vol(W ) ≥ (1− ε)vol(V ),

|〈MW∆,∆〉|
‖∆‖2

=
∣∣∣∣ ‖∆‖2vol(V )

− 2e(W )
‖∆‖2

∣∣∣∣ =
∣∣∣∣vol(W )

vol(V )
− 2e(W )

vol(W )

∣∣∣∣
=

vol(V \W )
vol(V )

+
e(W,V \W )

vol(W )
≤ 3vol(V \W )

vol(V )
< 3ε. (16)

Finally, combining (15) and (16), we conclude that ‖MW ‖ ≤ 10
√
ε. ut

4.2 From Low Discrepancy to Essential Eigenvalue Separation

In this section we establish the second part of Theorem 1. Assume that G = (V,E) is a graph that has Disc(γε2),
where γ > 0 signifies some small enough constant (e.g., γ = (6400θ)−1, where θ is the constant from Theorem 5).
We may assume that ε < 0.001. Moreover, let dv denote the degree of v ∈ V , n = |V |, and d̄ = n−1

∑
v∈V dv . Our

goal is to show that G has ess-Eig(ε). To this end, we need to introduce an additional property.

Cut(ε): We say G has Cut(ε), if the matrix M = (mvw)v,w∈V with entries

mvw =
dvdw

vol(V )
− e(v, w)

has cut norm ‖M‖cut < ε · vol(V ); here e(v, w) = 1 if {v, w} ∈ E and 0 otherwise.

Since for any S ⊂ V we have 〈M1S ,1S〉 = vol(S)2

vol(V ) − 2e(S), one can easily derive the following.

Proposition 9. If G satisfies Disc(0.01δ), then G enjoys Cut(δ).

7



Proof. Suppose that G = (V,E) has Disc(0.01δ). We shall prove below that for any two S, T ⊂ V

|〈M1S ,1T 〉| ≤ 0.06δvol(V ) if S ∩ T = ∅, (17)
|〈M1S ,1T 〉| ≤ 0.02δvol(V ) if S = T. (18)

To see that (17) and (18) imply the assertion, consider two arbitrary subsets X,Y ⊂ V . Letting Z = X ∩ Y and
combining (17) and (18), we obtain

|〈M1X ,1Y 〉| ≤
∣∣〈M1X\Z ,1Y \Z

〉∣∣+
∣∣〈M1Z ,1Y \Z

〉∣∣+
∣∣〈M1Z ,1X\Z

〉∣∣+ 2 |〈M1Z ,1Z〉|
≤ δvol(V ).

Since this bound holds for any X,Y , we conclude that ‖M‖cut ≤ δvol(V ).
To prove (17), we note that Disc(0.01δ) implies that∣∣∣∣e(S)− vol(S)2

2vol(V )

∣∣∣∣ ≤ 0.01δvol(V ), (19)∣∣∣∣e(T )− vol(T )2

2vol(V )

∣∣∣∣ ≤ 0.01δvol(V ), (20)∣∣∣∣e(S ∪ T )− (vol(S) + vol(T ))2

2vol(V )

∣∣∣∣ ≤ 0.01δvol(V ). (21)

As S and T are disjoint, (19)–(21) yield

| 〈M1S ,1T 〉 | = 2
∣∣∣∣e(S, T )− vol(S)vol(T )

2vol(V )

∣∣∣∣
= 2

∣∣∣∣e(S ∪ T )− e(S)− e(T )− (vol(S) + vol(T ))2 − vol(S)2 − vol(T )2

2vol(V )

∣∣∣∣
≤ 2

∣∣∣∣e(S)− vol(S)2

2vol(V )

∣∣∣∣+ 2
∣∣∣∣e(T )− vol(T )2

2vol(V )

∣∣∣∣+ 2
∣∣∣∣e(S ∪ T )− (vol(S) + vol(T ))2

2vol(V )

∣∣∣∣
≤ 0.06δvol(V ).

Finally, as | 〈M1S ,1S〉 | = 2
∣∣∣e(S)− vol(S)2

2vol(V )

∣∣∣, (18) follows from (19). ut

To show that Disc(γε2) implies ess-Eig(ε), we proceed as follows. By Proposition 9, Disc(γε2) implies Cut(100γε2).
Moreover, if G satisfies Cut(100γε2), then Theorem 5 entails that not only the cut norm of M is small, but even the
semidefinite relaxation SDP(M) satisfies SDP(M) < βε2vol(V ), for some constant 0 < β ≤ 100θγ. This bound on
SDP(M) can be rephrased in terms of an eigenvalue minimization problem for a matrix closely related to M . More
precisely, using the duality theorem for semidefinite programs, we can infer the following.

Lemma 10. For any symmetric n× n matrix Q we have

SDP(Q) = n · min
z∈Rn, z⊥1

λmax

[(
0 1
1 0

)
⊗Q− diag

(
z

z

)]
.

We defer the proof of Lemma 10 to Section 4.3. Let D = diag(dv)v∈V be the matrix with the vertex degrees on the
diagonal. Establishing the following lemma is the key step in the proof.

Lemma 11. Suppose that SDP(M) < ε2vol(V )/64. Then there exists a subset W ⊂ V of volume vol(W ) ≥
(1− ε) · vol(V ) such that the matrixM = D−

1
2MD−

1
2 satisfies ‖MW ‖ < ε.

Observe that vw’th the entry ofM if
√
dvdw

vol(V ) − (dvdw)−1/2 if v, w are adjacent, and
√
dvdw

vol(V ) otherwise.
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Before we get to the proof of Lemma 11, we show that the lemma implies that G has ess-Eig(ε). Combining
Theorem 5, Proposition 9, and Lemma 11, we conclude if G has Disc(γε2), then there is a set W such that vol(W ) ≥
(1− ε)vol(V ) and ‖MW ‖ < ε. Furthermore,MW relates to the minor LW of the Laplacian as follows. Let

LW = E − LW

be the matrix whose vw’th entry is (dvdw)−1/2 if v, w ∈ W are adjacent, and 0 otherwise. Moreover, let ∆ =
(
√
dv)v∈W ∈ RW . Then

MW = vol(V )−1∆∆T − LW .

Therefore, for all unit vectors ξ ⊥ ∆ we have

|〈LW ξ, ξ〉 − 1| = |〈LW ξ, ξ〉| = |〈MW ξ, ξ〉| ≤ ‖MW ‖ < ε. (22)

Combining (22) with the Rayleigh characterization of λ2(LW ), we obtain

λ2(LW ) = max
06=ζ∈RW

min
ξ⊥ζ, ‖ξ‖=1

〈LW ξ, ξ〉 ≥ min
ξ⊥∆, ‖ξ‖=1

〈LW ξ, ξ〉 ≥ 1− ε. (23)

In addition, since ‖∆‖2 = vol(W ) ≥ 1
2vol(V ), we have

‖LW∆‖2

‖∆‖2
=
∑
v∈W

(e(v,W )− dv)2

dv · vol(W )
≤ 2

∑
v∈W

dv − e(v,W )
vol(V )

≤ 2vol(V \W )
vol(V )

< 2ε. (24)

Further, decomposing any unit vector η ∈ RW as η = α‖∆‖−1∆+ βξ with ξ ⊥ ∆ and α2 + β2 = 1, we get

〈LW η, η〉 = α2‖∆‖−2 〈LW∆,∆〉+ 2αβ‖∆‖−1 〈LW∆, ξ〉+ β2 〈LW ξ, ξ〉
(24)
≤ 4α2ε2 + 4αβε+ β2 〈LW ξ, ξ〉

(22)
≤ 4α2ε1/2 + 4αβε1/2 + β2(1 + ε) ≤ 1 + ε,

because we are assuming that ε < 0.001. Hence,

λmax(LW ) = max
‖η‖=1

〈LW η, η〉 ≤ 1 + ε. (25)

Thus, (23) and (25) imply that G has ess-Eig(ε).

Proof of Lemma 11. Let U = {v ∈ V : dv > εd̄/8}. Then

vol(V \ U) ≤ εd̄|V \ U |/8 ≤ εvol(V )/2. (26)

Since SDP(MU ) ≤ SDP(M) by Lemma 7, Lemma 10 entails that there is a vector 1 ⊥ z ∈ RU such that

λmax

[(
0 1
1 0

)
⊗MU − diag

(
z

z

)]
< ε2d̄/64. (27)

Consequently, as all entries of the diagonal matrix DU exceed εd̄/8, for y = D−1
U z we have

λmax

[(
0 1
1 0

)
⊗MU − diag

(
y

y

)]
=λmax

[(
1 0
0 1

)
⊗D−

1
2

U ·
[(

0 1
1 0

)
⊗MU − diag

(
z

z

)]
·
(

1 0
0 1

)
⊗D−

1
2

U

]
≤ 8

(
εd̄
)−1

λmax

[(
0 1
1 0

)
⊗MU − diag

(
z

z

)]
< ε/8. (28)

Moreover, as z ⊥ 1,
〈y,DU1〉 = 〈DUy,1〉 = 〈z,1〉 = 0. (29)
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Now, let W = {v ∈ U : |yv| < ε/8} consist of all vertices v on which the “correcting vector” y is small. Since
on W all entries of the diagonal matrix diag

(
y
y

)
are smaller than ε/8 in absolute value, we have ‖diag

(
yW

yW

)
‖ < ε/8.

Therefore, (28) yields

λmax

[(
0 1
1 0

)
⊗MW

]
≤ λmax

[(
0 1
1 0

)
⊗MW − diag

(
yW
yW

)]
+
∥∥∥∥diag

(
yW
yW

)∥∥∥∥ ≤ ε/4; (30)

in other words, on W the effect of y is negligible.
Further, (30) entails that ‖MW ‖ < ε. To see this, consider a pair ξ, η ∈ RW of unit vectors. Since MW is

symmetric, (30) implies that

2ε > 2λmax

[(
0 1
1 0

)
⊗MW

]
≥
〈(

0 1
1 0

)
⊗MW ·

(
ξ

η

)
,

(
ξ

η

)〉
=
〈(
MW η

MW ξ

)
,

(
ξ

η

)〉
= 〈MW η, ξ〉+ 〈MW ξ, η〉 = 2 〈MW ξ, η〉 .

Since this holds for any pair ξ, η, we conclude that ‖MW ‖ < ε.
Finally, we need to show that vol(W ) is large. To this end, we consider the set S = {v ∈ U : yv < 0}. Then (27)

yields

ε2d|S|/32 =
ε2d

64

∥∥∥∥(1S
1S

)∥∥∥∥2

≥
〈[(

0 1
1 0

)
⊗MU − diag

(
z

z

)]
·
(
1S
1S

)
,

(
1S
1S

)〉
= 2 〈MU1S ,1S〉 − 2

∑
v∈S

zv = 2 〈MU1S ,1S〉 − 2
∑
v∈S

dvyv, (31)

because z = DUy. Further, Theorem 5 and Lemma 7 entail that

| 〈MU1S ,1S〉 | ≤ ‖MU‖cut ≤ SDP(MU ) ≤ SDP(M) ≤ ε2vol(V )/64.

Plugging this bound into (31) and recalling that yv < 0 for all v ∈ S, we conclude that∑
v∈S

dv|yv| ≤ (ε2|S|d+ ε2vol(V ))/64 ≤ ε2vol(V )/32. (32)

Combining (29) and (32), we get ∑
v∈U

dv|yv| ≤ ε2vol(V )/16.

As |yv| ≥ ε/8 for all v ∈ U \W (by the definition of W ), we thus obtain vol(U \W ) ≤ εvol(V )/2. Hence, (26)
yields vol(V \W ) < εvol(V ), as desired. ut

4.3 Proof of Lemma 10

Let Q be a symmetric n× n matrix, and set Q = 1
2

(
0 1
1 0

)
⊗Q. Furthermore, let

DSDP(Q) = min 〈1, y〉 s.t. Q ≤ diag(y), y ∈ R2n.

Lemma 12. We have SDP(Q) = DSDP(Q).

Proof. By Lemma 4 we can rewrite the vector program SDP(Q) in the standard form of a semidefinite program:

SDP(Q) = max 〈Q, X〉 s.t. diag(X) = 1, X ≥ 0, X ∈ R(2n)×(2n).

Since DSDP(Q) is the dual of SDP(Q), the lemma follows directly from the SDP duality theorem as stated in [23,
Corollary 2.2.6]. ut
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To infer Lemma 10, we shall simplify DSDP and reformulate this semidefinite program as an eigenvalue mini-
mization problem. First, we show that it suffices to optimize over y ∈ Rn rather than y ∈ R2n.

Lemma 13. Let DSDP′(Q) = min 2 〈1, y′〉 s.t. Q ≤ diag
(

1
1

)
⊗ y′, y′ ∈ Rn. Then DSDP(Q) = DSDP′(Q).

Proof. Since for any feasible solution y′ to DSDP′(Q) the vector y =
(

1
1

)
⊗ y′ is a feasible solution to DSDP(Q),

we conclude that DSDP(Q) ≤ DSDP′(Q). Thus, we just need to establish the converse inequality DSDP′(Q) ≤
DSDP(Q).

To this end, let F(Q) ⊂ R2n signify the set of all feasible solutions y to DSDP(Q). We shall prove that F(Q) is
closed under the linear operator

I : R2n → R2n, (y1, . . . , yn, yn+1, . . . , y2n) 7→ (yn+1, . . . , y2n, y1, . . . , yn),

i.e., I(F(Q)) ⊂ F(Q); note that I just swaps the first and the last n entries of y. To see that this implies the assertion,
consider an optimal solution y = (yi)1≤i≤2n ∈ F(Q). Then 1

2 (y + Iy) ∈ F(Q), because F(Q) is convex. Now, let
y′ = (y′i)1≤i≤n be the projection of 1

2 (y + Iy) onto the first n coordinates. Since 1
2 (y + Iy) is a fixed point of I,

we have 1
2 (y + Iy) =

(
1
1

)
⊗ y′. Hence, the fact that 1

2 (y + Iy) is feasible to DSDP(Q) implies that y′ is feasible to
DSDP′(Q). Thus, we conclude that

DSDP′(Q) ≤ 2 〈1, y′〉 = 〈1, y〉 = DSDP(Q).

To show that F(Q) is closed under I, consider a vector y ∈ F(Q). Since diag(y)−Q is positive semidefinite, we
have

∀η ∈ R2n : 〈(diag(y)−Q)η, η〉 ≥ 0. (33)

Furthermore, our objective is to show that diag(Iy)−Q is positive semidefinite, i.e.,

∀ξ ∈ R2n : 〈(diag(Iy)−Q)ξ, ξ〉 ≥ 0. (34)

To derive (34) from (33), we decompose y into its two halfs y =
(
u
v

)
(u, v ∈ Rn). Then Iy =

(
v
u

)
. Moreover, let

ξ =
(
α
β

)
∈ R2n be any vector, and set η = Iξ =

(
β
α

)
. As Q is symmetric, we obtain

〈(diag(Iy)−Q)ξ, ξ〉 = 〈diag(v)α, α〉+ 〈diag(u)β, β〉 − 2 〈Qα, β〉 = 〈(diag(y)−Q)η, η〉
(33)
≥ 0,

thereby proving (34). ut

Proof of Lemma 10. Let

DSDP′′(Q) = n · min
z∈Rn, z⊥1

λmax

[(
0 1
1 0

)
⊗Q+ diag

(
1
1

)
⊗ z
]
.

By Lemmas 12 and 13, it suffices to prove that DSDP′(Q) = DSDP′′(Q).
To see that DSDP′′(Q) ≤ DSDP′(Q), consider an optimal solution y′ to DSDP′(Q). Let λ = n−1 〈1, y′〉 and

z = 2(λ1− y′). Then 〈z,1〉 = 2(nλ − 〈1, y′〉) = 0, whence z is a feasible solution to DSDP′′(Q). Furthermore, as
y′ is a feasible solution to DSDP′(Q), we have(

0 1
1 0

)
⊗Q = 2Q ≤ 2diag

(
1
1

)
⊗ y′ = 2λE − diag

(
1
1

)
⊗ z,

where E is the identity matrix. Consequently, λmax

((
0 1
1 0

)
⊗Q+ diag

(
1
1

)
⊗ z
)
≤ 2λ, and thus

DSDP′′(Q) ≤ nλmax

[(
0 1
1 0

)
⊗Q+ diag

(
1
1

)
⊗ z
]
≤ 2nλ = 2 〈1, y′〉 = DSDP′(Q).
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Conversely, consider an optimal solution z to DSDP′′(Q). Set

µ = λmax

[(
0 1
1 0

)
⊗Q− diag

(
1
1

)
⊗ z
]

= n−1DSDP′′(Q), y′ =
1
2

(µ1 + z).

Then the definition of µ implies that
(

0 1
1 0

)
⊗Q− diag

(
1
1

)
⊗ z ≤ µE, whence

Q =
1
2

(
0 1
1 0

)
⊗Q ≤ 1

2

(
µE + diag

(
1
1

)
⊗ z
)

= diag
(

1
1

)
⊗ y′.

Hence, y′ is a feasible solution to DSDP′(Q). Furthermore, since z ⊥ 1 we obtain

DSDP′(Q) ≤ 2 〈1, y′〉 = µn = DSDP′′(Q),

as desired. ut

5 The Algorithmic Regularity Lemma: Proof of Theorem 2

In this section we present a polynomial time algorithm Regularize that computes for a given graph G = (V,E) a
partition satisfying REG1 and REG2, provided that G satisfies the assumptions of Theorem 2. In particular, this will
show that such a partition exists and thus prove Theorem 2 We will outline Regularize in Section 5.1. The crucial
ingredient is a subroutine Witness for checking whether a given pair (A,B) of subsets of V is ε-volume regular.
This subroutine is the content of Section 5.2.

Throughout this section, we let ε > 0 be an arbitrarily small but fixed and C > 0 an arbitrarily large but fixed
number. In addition, we define a sequence (tk)k≥1 by letting

t1 = d2/εe and tk+1 = tk2tk . (35)

Moreover, let
k∗ = dCε−3e, η = t−6

k∗ ε
−8k∗ , (36)

and choose n0 = n0(C, ε) > 0 big enough.
We always assume that G = (V,E) is a graph on n = |V | > n0 vertices that is (C, η)-bounded, and that

vol(V ) ≥ η−1n.

5.1 The Algorithm Regularize

In order to compute the desired regular partition of its input graphG, the algorithm Regularize proceeds as follows.
In its first step, Regularize computes any initial partition P1 = {V 1

i : 0 ≤ i ≤ s1} such that each class Vi
(1 ≤ i ≤ s1) has a decent volume.

Algorithm 14. Regularize(G)
Input: A graph G = (V,E). Output: A partition of V .

1. Compute an initial partition P1 = {V 1
0 : 0 ≤ i ≤ s1} such that 1

4
εvol(V ) ≤ vol(V 1

i ) ≤ 3
4
εvol(V )

for all 1 ≤ i ≤ s1; thus, s1 ≤ 4ε−1. Set V 1
0 = ∅.

Then, in the subsequent steps, Regularize computes a sequence Pk of partitions such that Pk+1 is a “more
regular” refinement of Pk (k ≥ 1). As soon as Regularize can verify that Pk satisfies both REG1 and REG2, the
algorithm stops.

To check whether the current partition Pk = {V ki : 1 ≤ i ≤ s1} satisfies REG2, Regularize employs the
subroutine Witness (which is the subject of the next section). Given a pair (V ki , V

k
j ), Witness tries to check

whether (V ki , V
k
j ) is ε-volume-regular. Recall that the relative density of A,B ⊂ V is

%(A,B) =
e(A,B)

vol(A)vol(B)
.
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Lemma 15. There is a polynomial time algorithm Witness that satisfies the following. Let A,B ⊂ V be disjoint.

1. If Witness(G,A,B) answers “yes”, then the pair (A,B) is ε-volume regular.
2. On the other hand, if the answer is “no”, then (A,B) is not ε/200-volume regular. In this case Witness outputs

a pair (X∗, Y ∗) of subsets X∗ ⊂ A, Y ∗ ⊂ B such that vol(X∗) ≥ ε
200vol(A), vol(Y ∗) ≥ ε

200vol(B), and
|e(X∗, Y ∗)− %(A,B)vol(X∗)vol(Y ∗)| > εvol(A)vol(B)

200vol(V ) .

We call a pair (X∗, Y ∗) as in 2. an ε
200 -witness for (A,B).

By applying Witness to each pair (V ki , V
k
j ) of the partition Pk, Regularize can single out a set Lk such that

all pairs Vi, Vj with (i, j) 6∈ Lk are ε-volume regular. Hence, if∑
(i,j)∈Lk

vol(V ki )vol(V kj ) < εvol(V )2, (37)

then Pk satisfies REG2. Indeed, if (37) holds, then Regularize stops and outputs the desired regular partition, as
we will see below that by construction Pk satisfies REG1 for all k.

2. For k = 1, 2, 3, . . . , k∗ do
3. Initially, let Lk = ∅.

For each pair (V k
i , V k

j ) (i < j) of classes of the previously partition Pk
4. call the procedure Witness(G, V k

i , V k
j , ε).

If it answers “no” and hence outputs an ε
200

-witness (Xk
ij , X

k
ji) for (V k

i , V k
j ), then add

(i, j) to Lk.
5. If

P
(i,j)∈Lk vol(V k

i )vol(V k
j ) < εvol(V )2, then output the partition Pk and halt.

If Step 5 does not halt, Regularize constructs a refinement Pk+1 of Pk. To this end, the algorithm decomposes
each class V ki of Pk into up to 2sk pieces, where sk is the number of classes of Pk. Consider the sets Xij with
(i, j) ∈ Lk and define an equivalence relation ≡ki on Vi by letting u ≡ki v iff for all j such that (i, j) ∈ Lk it is true
that u ∈ Xij ↔ v ∈ Xij . Thus, the equivalence classes of ≡ki are the regions of the Venn diagram of the sets Vi and
Xij with (i, j) ∈ Lk. Then Regularize obtains Pk+1 as follows.

6. Let Ck be the set of all equivalence classes of the relations ≡ki (1 ≤ i ≤ sk).
Moreover, let Ck∗ = {V k+1

1 , . . . , V k+1
sk+1} be the set of all classes W ∈ C such that

vol(W ) > ε4(k+1)vol(V )/(15t3k+1). Finally, let V k+1
0 = V k

0 ∪
S
W∈Ck\Ck

∗
W , and set

Pk+1 = {V k+1
i : 0 ≤ i ≤ sk+1}.

Since for each i there are at most sk indices j such that (i, j) ∈ Lk, in Pk+1 every class V ki gets split into at most
2sk pieces. Hence, sk+1 ≤ sk2sk . Thus, as s1 ≤ t1, (35) implies that that sk ≤ tk for all k. Therefore, our choice (36)
of η ensures that

vol(V k+1
i ) ≥ ηvol(V ) for all 1 ≤ i ≤ sk+1 (38)

(because Step 6 puts all equivalence classes W ∈ Ck of “extremely small” volume into the exceptional class). More-
over, it is easily seen that vol(V k+1

0 ) ≤ εvol(V ). In effect, Pk+1 satisfies REG1.
Thus, to complete the proof of Theorem 2 it just remains to show that Step 5 of Regularize will actually output

a partition Pk for some k ≤ k∗. To show this, we define the index of a partition P = {Vi : 0 ≤ i ≤ s} as

ind(P) =
∑

1≤i<j≤s

%(Vi, Vj)2vol(Vi)vol(Vj) =
∑

1≤i<j≤s

e(Vi, Vj)2

vol(Vi)vol(Vj)
.

Note that we do not take into account the (exceptional) class V0 here. Using the boundedness-condition, we derive the
following.

Proposition 16. If G = (V,E) is a (C, η)-bounded graph and P = {Vi : 0 ≤ 1 ≤ t} is a partition of V with
vol(Vi) ≥ ηvol(V ) for all i ∈ {1, . . . , t}, then ind(P) ≤ C.
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Proof. ¿From vol(Vi) ≥ ηvol(V ) we derive for all i ∈ {1, . . . , t}

ind(P) =
∑

1≤i<j≤s

e(Vi, Vj)2

vol(Vi)vol(Vj)
≤

∑
1≤i<j≤s

Ce(Vi, Vj)
vol(V )

≤ C.

ut

Proposition 16 and (38) entail that ind(Pk) ≤ C for all k. In addition, since Regularize obtains Pk+1 by refin-
ing Pk according to the witnesses of irregularity computed by Witness, the index of Pk+1 is actually considerably
larger than the index of Pk. More precisely, the following is true.

Lemma 17. If
∑

(i,j)∈Lk vol(V ki )vol(V kj ) ≥ εvol(V )2, then ind(Pk+1) ≥ ind(Pk) + ε3/8.

To prove the Lemma 17 we follow the lines of the original proof of Szemerédi [21]. First we need the following
observation.

Proposition 18. Let P ′ = {V ′j : 0 ≤ j ≤ s} and P = {Vi : 0 ≤ i ≤ t} be two partitions of V . If P ′ refines P then
ind(P ′) ≥ ind(P).

Proof. For Vi ∈ P , i ∈ [t] let Ii = {j : V ′j ∈ P ′, V ′j ⊂ Vi}. Then, using the Cauchy-Schwarz-inequality, we conclude

ind(P ′) =
∑

1≤i<j≤s

e2(V ′i , V
′
j )

vol(V ′i )vol(V ′j )
≤

∑
1≤k<l≤t

∑
i∈Ik
j∈Il

e2(V ′i , V
′
j )

vol(V ′i )vol(V ′j )

≥
∑

1≤k<l≤t

(∑
i∈Ik
j∈Il

e(V ′i , V
′
j )
)2

∑
i∈Ik
j∈Il

vol(V ′i )vol(V ′j )
=

∑
1≤k<l≤t

e2(Vk, Vl)
vol(Vk)vol(Vl)

= ind(P).

ut

Furthermore the proof will use the following defect-form of the Cauchy-Schwarz-Lemma.

Lemma 19 (Defect form of Cauchy-Schwarz-inequality). For all i ∈ I let σi, di be positive real numbers satisfying∑
i∈I σi = 1. Furthermore let J ⊂ I , % =

∑
i∈I σi%i and σJ =

∑
j∈J σj . If∑

j∈J
σj%j = σJ(%+ ν)

then ∑
i∈I

σi%
2
i ≥ %2 + ν2σJ .

Lastly, for technical reasons we state the following proposition. Its proof is straightforward and we omit it here.

Proposition 20. Let 1/5 > δ > 0, G = (V,E) and A,B ⊂ V be disjoint subsets of V . Furthermore let A′ ⊂ A and
B′ ⊂ B with vol(A \A′) < δvol(A) and vol(B \B′) < δvol(B). Then the following inequalities hold∣∣∣∣ e(A,B)

vol(A)vol(B)
− e(A′, B′)

vol(A′)vol(B′)

∣∣∣∣ ≤ 5δ
min{vol(A), vol(B)}

(39)∣∣∣∣ e2(A,B)
vol(A)vol(B)

− e2(A′, B′)
vol(A′)vol(B′)

∣∣∣∣ ≤ 15δ. (40)
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Proof of the Lemma 17. Without loss of generality we assume ε ≤ 1/8. Moreover, we let K ⊂ V be the union of the
equivalence classes with a negligible volume size, more precisely

K =
⋃

W∈Ck
∗\Ck

vol(W ) =
⋃{

W ∈ Ck : vol(W ) ≤ ε4(k + 1)vol(V )
15t3k+1

}
.

Now let P ′ = {V ′i : 0 ≤ i ≤ sk} be an auxiliary partition given by

V ′i =

{
V k0 ∪K if i = 0,
V ki \K otherwise.

To show the index increment ind(Pk+1) ≥ ind(Pk) + ε3/8 we will proceed in two steps. In the first step we will
compare the index of P ′ to the index of Pk. This will yield the following.

Claim 1 |ind(Pk)− ind(P ′)| ≤ ε4.

The second step will reveal the index increment of Pk+1 compared to P ′.

Claim 2 ind(Pk+1) ≥ ind(P) + ε3/4.

Together, with ε ≤ 1/8, this yields an index increment

ind(Pk+1) ≥ ind(Pk) + ε3/8.

ut
Proof of Claim 1. Let (V ki , V

k
j ) be a pair of partition classes of Pk and let V ′i = V ki \K and V ′j = V kj \K. Note that

vol(V ki ) ≥ ε4kvol(V )/15t3k. Thus we have

vol(V ′i ) ≥ vol(V ki )− vol(K) ≥ vol(V ki )− ε4

(
ε4k

15
vol(G)
t2k+1

)
≥
(

1− ε4

15t2k

)
vol(V ki ).

Analogously vol(V ′j ) ≥
(
1− ε4/(15t2k)

)
vol(V kj ) holds. In effect, using the Proposition 20 we get∣∣∣∣∣ e2(V ′i , V

′
j )

vol(V ′i )vol(V ′j )
−

e2(V ki , V
k
j )

vol(V ki )vol(V kj )

∣∣∣∣∣ ≤ ε4

t2k
.

Consequently

|ind(Pk)− ind(P ′)| ≤
∑

1≤i<j≤sk

∣∣∣∣∣ e2(V ki , V
k
j )

vol(V ki )vol(V kj )
−

e2(V ′i , V
′
j )

vol(V ′i )vol(V ′j )

∣∣∣∣∣ ≤ ε4.

ut
Proof of Claim 2. Let (V ki , V

k
j ) be an irregular pair and (A,B) = (V ki \K,V kj \K). Furthermore let (Xk

ij , X
k
ji) be

the witness of irregularity. Then, for X = Xk
ij \K ⊂ A and Y = Xk

ji \K ⊂ B, we have∣∣∣∣ e(X,Y )
vol(X)vol(Y )

− e(A,B)
vol(A)vol(B)

∣∣∣∣ = ε
vol(A)vol(B)

vol(Xk
ij)vol(Xk

ji)vol(G)
− 10ε4

tk+1vol(B)

≥ ε

2
vol(A)vol(B)

vol(X)vol(Y )vol(G)

due to Proposition 20. Thus, (X,Y ) witnesses that (A,B) is not ε/2-volume-regular.
Now we will use the Lemma 19 to prove ind(Pk+1) ≥ ind(P ′) + ε3/4. So let I = (A×B) and for all (u, v) ∈ I

let

σuv =
deg(u) deg(v)
vol(A)vol(B)

and duv = %(V k+1(u), V k+1(y))
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where V k+1(x) denote the partition class V k+1
i ∈ Pk+1 such that x ∈ V k+1

i . Then∑
(u,v)∈I

σuv = 1 and d =
∑

(u,v)∈I

σuvduv = %(A,B).

Moreover, let J = (X × Y ) and σJ =
∑

(u,v)∈J σuv = vol(X)vol(Y )
vol(A)vol(B) . Then we have

1
σJ

∑
(u,v)∈J

σuvduv =
vol(A)vol(B)
vol(X)vol(Y )

∑
V k+1

i ⊂A
V k+1

j ⊂B

∑
u∈V k+1

i

v∈V k+1
j

deg(u) deg(v)
vol(A)vol(B)

%(V k+1
i , V k+1

j )

=
e(X,Y )

vol(X)vol(Y )
= %(X,Y ) = %(A,B) + ν

for some |ν| ≥ ε
2

vol(A)vol(B)
vol(X)vol(Y )vol(G) due to (41).

Hence, from the Cauchy-Schwarz-inequality (Lemma 19) we deduce∑
(u,v)∈I

σuvd
2
uv =

∑
u,v∈I

deg(u) deg(v)
vol(A)vol(B)

%2(V k+1(u), V k+1(v)) (41)

=
1

vol(A)vol(B)

∑
V k+1

i ⊂A
V k+1

j ⊂B

%2(V k+1
i , V k+1

j )vol(V k+1
i )vol(V k+1

j ) (42)

≥ %2(A,B) +
(

εvol(A)vol(B)
2vol(X)vol(Y )vol(G)

)2

× vol(X)vol(Y )
vol(A)vol(B)

(43)

≥ 1
vol(A)vol(B)

(
ind(A,B) +

ε2vol(A)vol(B)
4vol2(G)

)
. (44)

¿From (42) and (44) we infer the amount of the index increment on the irregular pair (A,B). So, summing over
all irregular pairs we get

ind(Pk+1)− ind(P ′) ≥
∑

(i,j)∈L

ε2

4
vol(A)vol(B)

vol2(G)
− ε4 ≥ ε3

4
.

ut
Since the index of the initial partition P1 is non-negative, Propositions 16 and Lemma 17 readily imply that

Regularize will terminate and output a feasible partition Pk for some k < k∗.
Finally, we point out that the overall running time of Regularize is polynomial. For the running time of Steps

1–3 and 5–6 is O(vol(V )), and the running time of Step 4 is polynomial due to Lemma 15.

5.2 The Procedure Witness: Proof of Lemma 15

The subroutine Witness for Lemma 15 employs the algorithm ApxCutNorm from Theorem 6 for approximating
the cut norm as follows.

Algorithm 21. Witness(G,A,B)
Input: A graph G = (V,E), disjoint sets A,B ⊂ V , and a number ε > 0.
Output: A partition of V .

1. Set up the matrix M = (mvw)(v,w)∈A×B with entries mvw = 1 − %(A, B)dvdw if v, w are
adjacent in G, and mvw = −%(A, B)dvdw otherwise.
Call ApxCutNorm(M) to compute sets X ⊂ A, Y ⊂ B such that | 〈M1X ,1Y 〉 | ≥ 3

100
‖M‖cut.
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2. If | 〈M1X ,1Y 〉 | < 3ε
100

vol(A)vol(B)
vol(G)

, then return “yes”.
3. Otherwise, pick an arbitrary set X ′ ⊂ A \X of volume 3ε

100
vol(A) ≤ vol(X ′).

– If vol(X) ≥ 3ε
100

vol(A), then let X∗ = X.
– If vol(X) < 3ε

100
vol(A) and |e(X ′, Y )− %(A, B)vol(X ′)vol(Y )| > εvol(A)vol(B)

100vol(V )
, set X∗ =

X ′.
– Otherwise, set X∗ = X ∪X ′.

4. Pick a further set Y ′ ⊂ B \ Y of volume ε
200

vol(B) ≤ vol(Y ′).

– If vol(Y ) ≥ ε
200

vol(B), then let Y ∗ = Y .
– If vol(Y ) < ε

200
vol(B) and |e(X∗, Y ′)− %(A, B)vol(X∗)vol(Y ′)| > εvol(A)vol(B)

200vol(V )
, let Y ∗ =

Y ′.
– Otherwise, set Y ∗ = Y ∪ Y ′.

5. Answer “no” and output (X∗, Y ∗) as an ε/200-witness.

Proof of Lemma 15. Note that for any two subsets S ⊂ A and T ⊂ B we have

〈M1S ,1T 〉 = e(S, T )− %(A,B)vol(S)vol(T ).

Therefore, if the sets X ⊂ A and Y ⊂ B computed by ApxCutNorm are such that

| 〈M1X ,1Y 〉 | <
3ε
100

vol(A)vol(B)
vol(G)

then by Theorem 6 we have

|e(S, T )− %(A,B)vol(S)vol(T )| ≤ ‖M‖cut ≤
100
3
|〈M1X ,1Y 〉| < ε

vol(A)vol(B)
vol(G)

for all S ⊂ A and T ⊂ B. Thus, if Witness answers “yes” then the pair (A,B) is ε-volume regular.
One the other hand, if ApxCutNorm yields sets X , Y such that 〈M1X ,1Y 〉 ≥ 3ε

100
vol(A)vol(B)

vol(G) then Witness
has to guarantee that the output pair (X∗, Y ∗) is an ε/200-witness.

Indeed, if vol(X) ≥ 3ε
100vol(A) and vol(Y ) ≥ ε

200vol(B) then (X,Y ) actually is an ε/200-witness. However, as
ApxCutNorm does not guarantee any lower bound on vol(X) and vol(Y ) let assume first that vol(X) < 3ε

100vol(A)
and vol(Y ) ≥ ε

200vol(B). Then according to step 3. Witness picks a set X ′ ⊂ A \ X of volume vol(X ′) ≥
3

100vol(A). If X ′ itself satisfies |e(X ′, Y )− %(A,B)vol(X ′)vol(Y )| > εvol(A)vol(B)
100vol(V ) then (X ′, Y ) obviously is an

ε/200-witness. Otherwise, by triangle inequality, we deduce∣∣∣∣e(X ∪X ′, Y )− e(A,B)
vol(X ∪X ′)vol(Y )

vol(A)vol(B)

∣∣∣∣ ≥ 2ε
100

vol(A)vol(B)
vol(G)

and thus, (X ∪X ′, Y ) is an ε/200-witness.
In the case vol(X) < 3ε

100vol(A) and vol(Y ) < ε
200vol(B) we simply repeat the argument for Y , and hence

Witness outputs an ε/200-witness for (A,B). ut

6 An Application: MAX CUT

As an application of Theorem 2 and, in particular, the polynomial time algorithm Regularize for computing a
regular partition, we obtain the following algorithm for approximating the max cut of a graph G = (V,E) that
satisfies the assumptions of Theorem 3.

Algorithm 22. ApxMaxCut(G)
Input: A (C, η)-bounded graph G = (V,E) and δ > 0.
Output: A cut (S, S̄) of G that approximates the maximum cut of G within a factor of 1− δ.
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1. Use Regularize to compute an ε = δ
400C

-volume regular partition P = {Vi : 0 ≤ i ≤ t} of G.
2. Determine an optimal solution (c∗1, . . . , c

∗
t ) to the optimization problem

max
X
i 6=j

εci(1− εcj)e(Vi, Vj) s.t. ∀1 ≤ j ≤ t : 0 ≤ cj ≤ ε−1, cj ∈ ZZ.

3. For each 1 ≤ i ≤ t let Si ⊂ Vi be a subset such that |vol(Si) − c∗i εvol(Vi)| ≤ 2εvol(Vi). Output
S =

St
i=1 Si and S̄ = V \ S.

The basic insight behind ApxMaxCut is the following. If (Vi, Vj) is an ε-volume regular pair of P , then for any
subsets X,X ′ ⊂ Vi and Y, Y ′ ⊂ Vj such that vol(X) = vol(X ′) and vol(Y ) = vol(Y ′) the condition REG2 ensures
that |e(X,Y )− e(X ′, Y ′)| ≤ 2εvol(Vi)vol(Vj)

vol(V ) . That is, the difference between e(X,Y ) and e(X ′, Y ′) is negligible. In
other words, as far as the number of edges is concerned, subsets that have the same volume are “interchangeable”.

Therefore, to compute a good cut (S, S̄) of G we just have to optimize the proportion of volume of each Vi that is
to be put into S or into S̄, but it does not matter which subset of Vi of this volume we choose. However, determining
the optimal fraction of volume is still a somewhat involved (essential continuous) optimization problem. Hence, in
order to discretize this problem, we chop each Vi into at most ε−1 chunks of volume εvol(Vi). Then, we just have to
determine the number ci of chunks of each Vi that we join to S. This is exactly the optimization problem detailed in
Step 2 of ApxMaxCut.

Observe that the time required to solve this problem is independent of n, i.e., Step 2 has a constant running
time. For the number t of classes of P is bounded by a number independent of n, and the number dε−1e + 1 of
choices for each ci does not depend on n either. In addition, Step 3 can be implemented so that it runs in linear time,
because Si ⊂ Vi can be any subset that satisfies the volume condition stated in Step 3. Thus, the total running time of
ApxMaxCut is polynomial.

To prove that ApxMaxCut does indeed guarantee an approximation ratio of 1− δ, we compare the maximum cut
of G with the optimal solution µ∗ of the optimization problem from Step 2, i.e.,

µ∗ = max
∑
i,j

εci(1− εcj)e(Vi, Vj) s.t. ∀1 ≤ j ≤ t : 0 ≤ cj ≤ ε−1, cj ∈ ZZ. (45)

To this end, we say that a cut (T, T̄ ) of G is compatible with a feasible solution (c1, . . . , ct) to the optimization
problem (45) if |vol(T ∩ Vi)− ciεvol(Vi)| ≤ 2εvol(Vi).

Lemma 23. Suppose that (T, T̄ ) is compatible with the feasible solution (c1, . . . , ct) of (45). Moreover, let

µ =
∑
i,j

εci(1− εcj)e(Vi, Vj)

be the objective function value corresponding to (c1, . . . , ct). Then |e(T, T̄ )− µ| ≤ δ
8vol(V ).

Proof. Set Ti = T ∩ Vi and T̄i = Vi \ Ti, so that e(T, T̄ ) =
∑
i 6=j e(Ti, T̄j) +

∑t
i=0 e(Ti, T̄i), and let µij =

εci(1 − εcj)e(Vi, Vj) (1 ≤ i, j ≤ t). Moreover, let L be the set of all pairs (i, j) such that the pair (Vi, Vj) is not
ε-volume-regular. Then REG 2 and the (C, η)-boundedness of G imply that∑

(i,j)∈L

µij ≤
∑

(i,j)∈L

e(Vi, Vj) ≤
∑

(i,j)∈L

Cvol(Vi)vol(Vj)
vol(V )

≤ Cεvol(V ) =
δ

400
vol(V ), (46)

∑
(i,j)∈L

e(Ti, T̄j) ≤
∑

(i,j)∈L

e(Vi, Vj) ≤
δ

400
vol(V ). (47)

Furthermore, since vol(V0) ≤ εvol(V ) and C ≥ 1 we have

e(T0, T̄ ) + e(T̄0, T ) ≤ vol(V0) ≤ εvol(V ) ≤ δ

400
vol(V ), (48)
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and as vol(Vi) ≤ εvol(V ) for all i, the (C, η)-boundedness condition yields

t∑
i=1

e(Ti, T̄i) ≤
t∑
i=1

Cvol(Vi)2

vol(V )
≤ Cεvol(V ) =

δ

400
vol(V ). (49)

In addition, let

S = {(i, j) : i, j > 0, i 6= j ∧ (i, j) 6∈ L ∧ (vol(Ti) < εvol(Vi) ∨ vol(T̄j) < εvol(Vj))}.

We shall prove below that

∣∣µij − e(Ti, T̄j)∣∣ < δ

10
e(Vi, Vj) for all (i, j) 6∈ (L ∪ S), i, j > 0, i 6= j, and (50)∑

(i,j)∈S

µij + e(Ti, T̄j) < 6εvol(V ). (51)

Combining (46)–(51), we thus obtain∣∣e(T, T̄ )− µ
∣∣

≤
∑

(i,j)6∈(L∪S)
i,j>0, i 6=j

∣∣µij − e(Ti, T̄j)∣∣+
∑

(i,j)∈(L∪S)

(µij + e(Ti, Tj)) + e(T0, T̄ ) + e(T̄0, T ) +
t∑
i=1

e(Ti, T̄i)

≤ δ

10
vol(V ) +

δ

200
vol(V ) + 6εvol(V ) +

δ

400
vol(V ) +

δ

400
vol(V ) ≤ δ

8
vol(V ),

as desired.
To establish (50), consider a pair (i, j) 6∈ (L ∪ S), i 6= j. Since vol(Ti) ≥ εvol(Vi) and vol(T̄j) ≥ εvol(Vj) and

(Vi, Vj) is ε-volume-regular, we have∣∣∣∣e(Ti, T̄j)− vol(Ti)vol(T̄j)
vol(Vi)vol(Vj)

e(Vi, Vj)
∣∣∣∣ < εvol(Vi)vol(Vj)

vol(V )
. (52)

Moreover, as (T, T̄ ) is compatible with (c1, . . . , ct),∣∣∣∣vol(Ti)
vol(Vi)

− εci
∣∣∣∣ < 2ε,

∣∣∣∣vol(T̄j)
vol(Vj)

− (1− εcj)
∣∣∣∣ < 2ε, (53)

and combining (52) and (53) yields (50).
Finally, to prove (51), consider an index i such that vol(Ti) < εvol(Vi). Then

∑t
j=1 e(Ti, T̄j) ≤ vol(Ti) <

εvol(Vi). Similarly, if vol(T̄j) < εvol(Vj), then
∑t
i=1 e(Ti, T̄j) < εvol(Vj). Therefore,∑

(i,j)∈S

e(Ti, T̄j) < 2εvol(V ). (54)

Further, if vol(Ti) < εvol(Vi), then ci ≤ 2, because (T, T̄ ) is compatible with (c1, . . . , ct). Thus
∑t
j=1 µij ≤

2ε
∑
j e(Vi, Vj) ≤ 2εvol(Vi). Analogously, if vol(T̄j) < εvol(Vj), then

∑t
i=1 µij ≤ 2εvol(Vj). Consequently,∑

(i,j)∈S

µij < 4εvol(V ). (55)

Hence, (51) follows from (54) and (55). ut

19



Proof of Theorem 3. Step 3 of ApxMaxCut ensures that (S, S̄) is compatible with (c∗1, . . . , c
∗
t ). Therefore, Lemma 23

yields

e(S, S̄) ≥ µ∗ − δ

8
vol(V ). (56)

Further, let (T, T̄ ) be a maximum cut of G. Then we can construct a feasible solution to (45) that is compatible with
(T, T̄ ) by letting

ci =
⌊

vol(T ∩ Vi)
εvol(Vi)

⌋
(1 ≤ i ≤ t).

Let µ =
∑
i,j εci(1− εcj)e(Vi, Vj) be the corresponding objective function value. Then Lemma 23 entails that

e(T, T̄ ) ≤ µ+
δ

8
vol(V ). (57)

As µ∗ is the optimal value of (45), we have µ∗ ≥ µ, and thus (56) and (57) yield e(S, S̄) ≥ e(T, T̄ ) − δ
4vol(V ) ≥

(1− δ)e(T, T̄ ). Consequently, ApxMaxCut provides the desired approximation guarantee. ut

7 Conclusion

1. Theorem 1 states that Disc(γε2) implies ess-Eig(ε), where γ > 0 is a constant. This statement is best possible,
up to the precise value of γ. To see this, we describe a (probabilistic) construction of a graph G = (V,E) on
n vertices that has Disc(100ε) but does not have ess-Eig(0.01

√
ε). Assume that ε > 0 is a sufficiently small

number, and choose n = n(ε) sufficiently large. Moreover, let X = {1, . . . ,
√
εn} and X̄ = {

√
εn + 1, . . . , n}.

Set x =
√
εn and x̄ = (1−

√
ε)n. Further, let d = n1/4 and set

pX =
2d
n
, pXX̄ = pX̄X =

d

n
· 1− 2

√
ε

1−
√
ε
, pX̄ =

d

n
· 1− 2

√
ε+ 2ε

(1−
√
ε)2

.

Finally, let G be the random graph with vertex set V = {1, . . . , n} obtained as follows: any two vertices in
X are connected with probability pX independently; any two vertices in X̄ are connected with probability pX̄
independently; and each possible X-X̄ edge is present with probability pXX̄ independently. Then the expected
degree of each vertex is d. Moreover, the expected number of neighbors that a vertex v ∈ X has inside of X
equals

√
εpXn = 2

√
εd. Thus, vol(X) ∼ εn2pX ∼ εvol(G). Hence, X is a fairly small but densely connected

set of vertices. It is not difficult to see that G satisfies Disc(100ε), and standard results on random matrices show
that G violates ess-Eig(0.01

√
ε).

2. In the conference version of this paper we stated erroneously that the implication “Disc(γε3) ⇒ ess-Eig(ε)” is
best possible.

3. The techniques presented in Section 4 can be adapted easily to obtain a similar result as Theorem 1 with re-
spect to the concepts of discrepancy and eigenvalue separation from [10]. More precisely, let G = (V,E) be
a graph on n vertices, let p = 2|E|n−2 be the edge density of G, and let γ > 0 denote a small enough con-
stant. If for any subset X ⊂ V we have |2e(X) − |X|2p| < γε2n2p, then there exists a set W ⊂ V of size
|W | ≥ (1 − ε)n such that the following is true. Letting A = A(G) signify the adjacency matrix of G, we have
max{−λ1(AW ), λ|W |−1(AW )} ≤ εnp. That is, all eigenvalues of the minor AW except for the largest are at
most εnp in absolute value. The same example as under 1. shows that this result is best possible up to the precise
value of γ.

4. The methods from Section 5 yield an algorithmic version of the “classical” sparse regularity lemma of Ko-
hayakawa [18] and Rödl (unpublished), which does not take into account the degree distribution.
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