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ABSTRACT: We present an expected polynomial time algorithm to generate an unlabeled connected
cubic planar graph uniformly at random. We first consider rooted connected cubic planar graphs, i.e.,
we count connected cubic planar graphs up to isomorphisms that fix a certain directed edge. Based
on decompositions along the connectivity structure, we derive recurrence formulas for the exact
number of rooted cubic planar graphs. This leads to rooted 3-connected cubic planar graphs, which
have a unique embedding on the sphere. Special care has to be taken for rooted graphs that have
a sense-reversing automorphism. Therefore we introduce the concept of colored networks, which
stand in bijective correspondence to rooted 3-connected cubic planar graphs with given symmetries.
Colored networks can again be decomposed along the connectivity structure. For rooted 3-connected
cubic planar graphs embedded in the plane, we switch to the dual and count rooted triangulations.
Since all these numbers can be evaluated in polynomial time using dynamic programming, rooted
connected cubic planar graphs can be generated uniformly at random in polynomial time by inverting
the decomposition along the connectivity structure. To generate connected cubic planar graphs without
a root uniformly at random, we apply rejection sampling and obtain an expected polynomial time
algorithm. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 32, 157–180, 2008
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1. INTRODUCTION

The number of planar graphs (and planar maps, i.e. planar graphs embedded in the plane),
and various subclasses thereof, has been investigated for a long time (see [1–14,18–20,25,
27–34,37–42,46,52–55]). Significant progress has been achieved recently, but the picture is
still far from complete. When the graphs are counted up to isomorphisms, i. e., we consider
unlabeled planar graphs, the situation is even more complex.

However, for unlabeled planar graphs where every vertex has exactly three neighbors,
i.e., for cubic planar graphs, several results have been obtained. Brinkmann and McKay
[15] developed an algorithm that produces a list of nonisomorphic planar cubic graphs
as well as other classes of planar graphs. Using generating functions Gao and Wormald
[29] determined the asymptotic growth of the number of cubic planar maps. Whitney’s
Theorem asserts that every three-connected planar graph has a unique embedding on
the sphere (see e.g., [21]). Hence, there is a one-to-one correspondence between three-
connected cubic planar graphs and triangulations, i.e., graphs embedded in the plane where
every face is a triangle. Equivalently, a triangulation is a maximal planar graph in the
sense that we cannot add an edge without destroying planarity. Tutte gave an exact for-
mula for the number of labeled triangulations [51]. Since almost all triangulations do
not have a nontrivial automorphism, this also yields the asymptotic number of unlabeled
triangulations [50].

In this article, we study unlabeled connected cubic planar graphs. We design an algo-
rithm that generates unlabeled connected cubic planar graphs uniformly at random and has
polynomial expected running time.

A well-known technique for random sampling is based on Markov chains. If a Markov
chain on a set of combinatorial objects has the uniform stationary distribution, it can be
used for Monte Carlo algorithms to sample random instances approximately uniformly at
random. These algorithms are efficient if the Markov chain is rapidly mixing, that is, the
number of steps until the Markov chain is “close” to the uniform distribution (which is called
the mixing time) is polynomial [36]. There are such efficient algorithms for the generation of
certain random structures, for instance, triangulations of convex polygons [43,44]. However,
it is not known whether the Markov chain in [18] for the uniform generation of planar graphs
is rapidly mixing. This crucial question is open even for the analogous Markov chain for
outerplanar graphs.

Another powerful strategy for random sampling is the so-called recursive method. Early
references for this method are Nijenhuis and Wilf [45] and Wilf [56]. The approach was
systematized by Flajolet, Zimmerman, and Van Cutsem in [26]. In this approach, we need
a decomposition strategy for the objects that we want to sample. From the decompo-
sition strategy, we obtain recursive counting formulas, and these formulas can be used
to sample such objects for instance from the uniform distribution, that is, to generate
them uniformly at random. The idea is that the sampling procedure is branching recur-
sively into subroutines with the right probabilities that are evaluated with the help of the
counting formulas. One advantage of the recursive method for random sampling is that it
can be used to sample the objects exactly uniformly at random. Often, the counting for-
mulas are interesting in their own right. The running time for the generation improves

Random Structures and Algorithms DOI 10.1002/rsa



GENERATING UNLABELED CONNECTED CUBIC PLANAR GRAPHS 159

considerably if we allow a precomputation step for the values of the dynamic programming
arrays.

In this article, we use the recursive method for sampling unlabeled connected cubic
planar graphs uniformly at random, based on the decomposition of the graphs along the
connectivity structure. Our approach here is motivated by Liskovets and Walsh [39], and
in principle similar to the one for labeled planar graphs described in [8]; but for unlabeled
structures we need several new techniques.

The main difficulties with unlabeled cubic planar graphs originate from several kinds of
potential symmetries. One way to handle such symmetries in graphs is to specify a small
(constant) number of vertices or edges of the graph, in order to break a certain degree
of symmetry. This is called rooting the graph. In the present case, we first consider rooted
unlabeled connected cubic planar graphs where the root is a distinguished oriented edge. The
two end vertices of the root are called poles. We recursively decompose rooted unlabeled
connected cubic planar graphs into smaller parts along the connectivity structure. The
decomposition leads to a set of recursive counting formulas. In this way rooted connected
cubic planar graphs are counted up to isomorphisms that fix the vertices of the root edge.
Given all the necessary recursive counting formulas, we can then generate a rooted unlabeled
connected cubic planar graph by the reverse operation of decomposition, with the correct
probabilities given by the countings.

Clearly, generating a random rooted unlabeled connected cubic planar graph and then
simply ignoring the root edge does not yield the uniform distribution, since unlabeled
graphs generally correspond to different numbers of rooted graphs. But this imbalance can
be compensated by rejection sampling, i.e., the generation algorithm is restarted with a
probability that is inverse proportional to the size of the orbit of the root (which is linear).
In this way we can generate unlabeled connected cubic planar graphs uniformly at random
in expected polynomial time.

Next, we sketch how to decompose unlabeled rooted connected cubic planar graphs
along the connectivity structure.

1.1. Sketch of the Decomposition

First, we classify rooted connected cubic planar graphs according to their connectivity
types (Theorem 1). According to this classification, a rooted connected cubic planar graph
is then decomposed into smaller graphs of different types. For this decomposition, we
need two more types of auxiliary graphs as building blocks. The first type is rooted 3-
connected cubic planar graphs, from which one type of graphs in Theorem 1 is built
up. The second type is rooted connected cubic planar graphs with automorphisms that
exchange the poles, which we call pole-symmetric connected cubic planar graphs. These
are used as building blocks when the orientation of the root does not matter. To complete
the decomposition we further decompose these two types of graphs, again following the
connectivity structure.

To decompose rooted 3-connected cubic planar graphs, we use a classical theorem of
Whitney (see e.g., [21]) saying that a rooted 3-connected planar graph can have either
one or two embeddings in the plane where the root edge is embedded on the outer
face. In the first case we say that the graph has a sense-reversing automorphism, or it
is symmetric.

For the decomposition of symmetric 3-connected cubic planar graphs, we need a well-
known concept of networks: A network is a graph equipped with an oriented edge (which
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may or may not be in the graph, and whose two end vertices are again called poles) such
that if we insert a directed edge between the poles into the network, then the resulting graph
is a rooted 2-connected graph. We introduce a new concept, a colored network, which is
a network where some vertices are colored so that they can store and recover the informa-
tion on the symmetry due to a sense-reversing automorphism. We then derive a bijection
between symmetric 3-connected cubic planar graphs and colored networks (Theorem 2),
and a decomposition for colored networks.

Next, we study embedded 3-connected cubic planar graphs, i.e., rooted 3-connected
cubic maps. For rooted 3-connected cubic maps we study the dual objects [50], namely,
planar triangulations. We decompose a slightly more general class of objects, rooted near-
triangulations, i.e., embedded graphs where every face except the outer face is a triangle.
For these objects an exact formula was given by Brown [16]. In our case, we need to
control the number of vertices at the outer face as well as the degree of one of the
poles. Therefore, we present the decomposition of near-triangulations with this additional
parameter.

Finally, we decompose pole-symmetric connected cubic planar graphs until we end up
with pole-symmetric 3-connected graphs. Since a pole-symmetric 3-connected graph might
additionally have a sense-reversing automorphism, we decompose also pole-symmetric
3-connected graphs with sense-reversing automorphism again using colored networks.
Planar graphs with various symmetries also attracted much attention in graph drawing
[22–24].

1.2. Plan of the Paper

Figure 1 shows the dependencies between the concepts in the decomposition and the count-
ing formulas, and also gives an overview of the dependencies of the remaining sections in
this article.

Note that a cubic planar graph has an even number of vertices n and 3n/2 edges.
Thus, we assume that the number of vertices in the counting formulas, except those for
the triangulations and colored networks, is even.

Fig. 1. Dependencies of the sections and concepts in this article.
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2. PRELIMINARIES

In this section, we introduce concepts that we need for the decomposition of cubic planar
graphs. First, we recall some classical graph-theoretical concepts. A graph is simple if it
does not contain multiple-edges or self-loops. A graph is planar if it can be embedded in
the plane without crossing edges, and it is cubic if every vertex has degree three. A graph G
is called k-connected if |G| > 2 and G − K is connected for every set K ⊂ G with |K| < k.
A k-point set K of a graph G is called a k-cut of G if G − K is disconnected. A single point
that forms a 1-cut is called a cut-vertex. A 2-cut is also called a split pair. Two adjacent
cut-vertices form a cut-edge.

2.1. Rooted Graphs

Now we introduce some new concepts for convenient and exhaustive decomposition of
cubic planar graphs. Let G be a simple graph with distinguished vertices s, t and let e = st
be a directed edge from s to t such that if we insert the edge e into G the resulting multi-
graph G∗ is connected. We call the edge e the root-edge of G∗ and call G∗ = (G; st) a
rooted graph and G the unrooted graph of G∗. For technical reasons, we allow the situations
that the root-edge of G∗ might be a self-loop or a multi-edge, and we say that an unrooted
graph G is planar, cubic, or k-connected if G∗ has the corresponding property – but we
will always use the term unrooted for G to distinguish from the standard/classical case.
We say that a cut-edge separates two vertices u, v if u, v are contained in two different
connected (in a classical sense) components after deleting the cut-edge (but not its ends)
from G.

During the process of decomposing graphs we often make use of the following replace-
ment operation: Let H∗ and I∗ be rooted graphs. Let uv be a non-root edge of H∗ and st be the
root-edge of I∗ – thus we allow the case s = t (by the definition of a root-edge), but u �= v.
Replacing an edge uv of H∗ with I∗ results in a new rooted graph G∗ := H∗ ∪ I ∪ {us, vt}
obtained from H∗ and I (without the root edge st) by connecting edges us and vt, where
the root-edge of G∗ is the same for H∗. If H∗ and I∗ are cubic, the resulting graph G∗ is
again cubic. Then we have the following structure theorem for rooted connected cubic pla-
nar graphs, which may be compared with the characterization of networks by Trakhtenbrot
[48, 54]:

Theorem 1. Let G∗ = (G; st) be a rooted connected cubic planar graph and G be its
unrooted graph. Then G∗ is of precisely one of the following types:

d: The root edge st is a cut-edge in G∗.
s: The unrooted graph G has a cut-edge that separates s and t.
p: The unrooted graph G has no cut-edge separating s and t. In addition, either s and

t are adjacent by a non-cut-edge in G, or they are not adjacent in G but form a split
pair of G.

h: The rooted graph G∗ is built from a uniquely determined 3-connected rooted cubic
planar graph H∗, where the root is not a self-loop or a multi-edge in H∗, by replacing
some non-root edges of H∗ (in the above sense) with s-, p-, h-, or g-graphs.

g: The root is a self-loop, i.e., s = t.
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Fig. 2. Types of rooted connected cubic planar graphs. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

The types of rooted connected cubic planar graphs G∗ according to Theorem 1 are called
d- (for “disconnected”), s- (for “serial”), p- (for “parallel”), h-, or g-graphs, respectively
(see Fig. 2).

Proof. The cases that G∗ is a g- or d-graph are obviously disjoint from the other cases. If
G∗ is an s-graph it cannot be a p-graph, and vice versa. If G∗ contains a split pair, one of the
corresponding components does not contain a root vertex. We replace this component by an
edge if we can preserve three-regularity. If we iterate this process, the graph will eventually
be 3-connected, or an s- or p-graph. Since the replacement operations are confluent and
always terminating, the resulting 3-connected cubic graph H is unique.

From now on, we use the terms graphs and rooted graphs meaning (connected) cubic
planar graphs and rooted (connected) cubic planar graphs, respectively, unless explicitly
stated otherwise.

For technical reasons (indeed for exhaustive decomposition later on), we allow in The-
orem 1 the cases that the root of a rooted graph might be a self-loop (for g-graphs) or a
multi-edge (for s-, and p-graphs). However, what we really want to count is rooted simple
graphs, which correspond to “standard” rooted graphs that have neither a multi-edge nor a
self-loop, but a distinguished directed edge. It is easy to see that the only nonsimple rooted
graphs among the above d-, s-, p-, h-, or g-graphs are the following: g-graphs; s-graphs that
can be split into two g-graphs; p-graphs that can be split into a single edge and an s-, p-,
h-, or g-graph. Thus by using only simple d-, s-, p-, or h-graphs, we will enumerate rooted
simple graphs at the end of Section 3.

2.2. Networks

For dealing with at least 2-connected graphs, we sometimes make use of the following well-
known concept of networks (see e.g., [1,8]). A network N is a graph with two distinguished
vertices s, t, so-called poles, such that the corresponding rooted graph N∗ (obtained from
N by inserting a directed edge from s to t, where s is called the south-pole and t the
north-pole) is 2-connected. The unique network with 2 vertices only is called the trivial
network. Note that for a network N , the rooted graph N∗ cannot be a d- or a g-graph. The
networks corresponding to the remaining cases we call s-, p-, or h-networks, respectively.
Every split pair {k1, k2} in N induces a partition of the edge set, and each of these parts is
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again a network, where k1k2 are the poles. These networks are called subnetworks of N . If
k1, k2 /∈ {s, t} the split pair {k1, k2} induces two other networks N1 and N2 with the poles st
and k1k2, respectively. Then N∗ can be considered to be obtained by replacing an edge uv
of N∗

1 with N∗
2 .

2.3. Symmetries

A rooted connected cubic planar graph G∗ = (G; st) might have two kinds of symmetries.
It might have a sense-reversing automorphism ϕ, i. e., ϕ �= id, but ϕ(s) = s and ϕ(t) = t, in
which case we call G∗ symmetric; or it might have a pole-exchanging automorphism ψ , i.e.,
ψ(s) = t and ψ(t) = s, in which case we call G∗ pole-symmetric. For the decomposition of
G∗, we use the maximal sense-reversing automorphism ϕ in the sense that it has the largest
number of vertices u, v, and, w where u is fixed by ϕ, but v and w are exchanged by ϕ, i.e.,
ϕ(u) = u, ϕ(v) = w and ϕ(w) = v. Note that such ϕ exists. Similarly we use the maximal
pole-exchanging automorphism.

For later decomposition it is useful to color the edges and vertices of G∗ according to
the symmetry. If G∗ is symmetric, we let ϕ be its maximal sense-reversing automorphism.
We color the edge uv and the vertices u, v, ϕ-blue if its end vertices u, v, are fixed by
ϕ, that is, ϕ(u) = u, ϕ(v) = v, and ϕ-red if u, v are exchanged by ϕ, that is, ϕ(u) =
v, ϕ(v) = u. Otherwise edges are not colored. Edges and their ϕ-images are called ϕ-
corresponding edges. If G∗ is pole-symmetric, we let ψ be its maximal pole-exchanging
automorphism. We color the edge uv and the vertices u, v, ψ-blue if u, v are fixed by ψ , and
ψ-red if u, v are exchanged by ψ . Edges and their ψ-images are called ψ-corresponding
edges.

If G∗ is both symmetric and pole-symmetric, then we first color the edges with ψ-blue
and ψ-red, and next color the rest edges with ϕ-blue and ϕ-red as earlier. There are two
cases where we should make this coloring more clear: The first case is that there is one
(indeed only one if any) edge uv such that u, v are fixed by ψ , but in addition are exchanged
by ϕ. In this case, we color uv by ψ-blue, not by ϕ-red. The second case is that there is
one (and only one if any) edge uv such that u, v are exchanged by ψ , but are fixed by ϕ. In
this case, we color uv by ψ-red, not by ϕ-blue. In other words, the ψ-colors always come
first.

Whenever a graph is symmetric or pole-symmetric, we always equip it with the colors of
its edges and vertices attained as earlier using maximal automorphisms. We will sometimes
use only blue or red colors instead of having the name of the maximal automorphism in
front of them, when only one type of the two symmetries is involved.

3. COUNTING ROOTED CUBIC GRAPHS

In this section, we present a decomposition of rooted cubic graphs, and derive recurrence
formulas for counting them. Let r(n) be the number of rooted cubic graphs on n vertices.
According to Theorem 1 we have r(n) = d(n)+s(n)+p(n)+h(n)+g(n), for n ≥ 0, where
the functions d(n), s(n), p(n), h(n), g(n) count the number of d-, s-, p-, h- and g-graphs on
n vertices, respectively. It will be convenient to use the numbers c(n) = r(n)−d(n), n ≥ 1,
c(0) = 1, and call the corresponding rooted graphs c-graphs (c for “connected”). Since
there is no rooted cubic graph with odd number of vertices these functions take values zero
for odd n.
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Fig. 3. Decomposition of a d-graph. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

3.1. Counting d -Graphs

Since a d-graph without the root edge is disconnected, we can decompose a d-graph G∗

uniquely into two g-graphs (see Fig. 3): To obtain the first g-graph, we shrink the connected
component containing t in G into the vertex t, connect s and t, and think of a self-loop at t
as a root-edge. To obtain the second g-graph, we do the same for the connected component
containing s. For 0 ≤ n ≤ 9, we have d(n) = 0, and for n ≥ 10,

d(n) =
n−4∑
i=6

g(i)g(n + 2 − i).

3.2. Counting s-Graphs

Note that every s-graph G∗ has a unique cut-edge uv separating s, t such that u is closest to
the vertex s (in this article, closest is meant with respect to the length of a shortest connecting
path). It could be the case that u = s, or v = t. An s-graph can be split into a p-, h-, or
g-graph rooted at su, and an s-, p-, h-, or g-graph (i.e., a c-graph) rooted at vt (see Fig. 4).

Fig. 4. Decomposition of an s-graph. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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Fig. 5. Decomposition of a p-graph. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

For 0 ≤ n ≤ 7, we have s(n) = 0, and for n ≥ 8,

s(n) =
n−4∑
i=4

(p(i) + h(i) + g(i))c(n − i).

3.3. Counting p-Graphs

A p-graph G∗ could contain a nonroot edge between s and t. If this is the case (see Fig. 5,
left part), then due to the three-regularity of G∗, there are unique nonpole neighbors u
and v for s and t, respectively, and {u, v} induces a smaller graph rooted at uv that is a
c-graph. These graphs are counted by c(n − 2). If the poles are not adjacent (see Fig. 5,
right part), a p-graph can be split into two c-graphs, of size i and n − i −2. These subgraphs
are counted by c(i) and c(n − i − 2). We must not count twice the case where the two
subgraphs are isomorphic. We obtain the following formula: For 0 ≤ n ≤ 3, p(n) = 0, and
for n ≥ 4,

p(n) = c(n − 2) +
(n−4)/2∑

i=4

c(i)c(n − i − 2) +
(

c((n − 2)/2) + 1

2

)
.

3.4. Counting g -Graphs

A g-graph G∗ has a unique neighbor u of the pole s = t, which in turn is adjacent to two
other distinct vertices w1 and w2 in G∗ (see Fig. 6). Note that the orientation of the root of
the remainder does not matter. Thus, we obtain the same g-graph in two ways, unless there
is an automorphism mapping w1 to w2 and w2 to w1. The number of rooted graphs that have
such a pole-exchanging automorphism will be counted by r̃(n) in Section 7. Therefore, for
0 ≤ n ≤ 5, g(n) = 0, and for n ≥ 6,

g(n) = (r(n − 2) − g(n − 2) + r̃(n − 2))/2.

3.5. Counting h-Graphs

Let G∗ be an h-graph. Theorem 1 asserts that there is a unique 3-connected rooted cubic
graph H∗, such that we can derive G∗ from H∗ by replacing edges in H∗ with rooted c-graphs
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Fig. 6. Decomposition of a g-graph. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

(see Fig. 7). We call H∗ the core of G∗ and denote H∗ = core(G∗). Note that core(G∗) might
have a sense-reversing automorphism.

We describe how to construct an h-graph G∗ from symmetric and from asymmetric
3-connected networks. We first uniquely order the edges of the core of G∗. For that, we
define two sequences, for each of the two possible embeddings of the core in the plane
that have the root at the outer face. To define the sequence for one of these embeddings,
we do a depth-first search traversal of the core, beginning with the root edge and visiting
the neighbors of a vertex in clockwise order with respect to the embedding. We label the
vertices with numbers according to the order of their occurrence in the traversal. We can
now denote edges by pairs of such vertex labels. The sequence we are interested in is the
sequence of edges represented in that way, in the order as we traversed them in the depth-first
search.

If the core is asymmetric, the two sequences are distinct. Thus we can now order the
edges of the core uniquely according to the lexicographically smaller sequence. If the graph
has a symmetric core, clearly both edge sequences are the same. In this case, we first
specify a face incident to the root edge so that core(G∗) is (uniquely) embedded in the
plane in such a way that this selected face becomes the outer face. Then we can uniquely
order the edges of core(G∗) in the following way. Let ϕ be a maximal sense-reversing
automorphism of core(G∗). We start with the (ϕ-)blue edges according to the traversal.
Then we list the (ϕ-)red edges. We continue with the uncolored edges, and order them
according to the traversal. Edges and their (ϕ-)corresponding edges, are consecutive but

Fig. 7. Decomposition of an h-graph. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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arbitrarily ordered, and each pair of corresponding edges attain unique order according to the
traversal.

Let bb,r,l(n) denote the number of symmetric h-graphs B∗ on n vertices, where core(B∗)
has b blue and r red edges, and the first l edges of core(B∗) are edges of B∗. To generate such
a symmetric h-graph B∗, we have to start from a symmetric core. We look at the (l + 1)-th
edge uv of core(B∗). It is either blue (when l + 1 ≤ b), red (when b < l + 1 ≤ b + r), or
uncolored (when l + 1 > b + r). If it is blue we can replace it by an edge or an arbitrary s-,
p-, h-, or g-graph (i.e., c-graph). If it is red we can replace it by an edge or a graph with a
pole-exchanging automorphism (counted by c̃(n), again see Section 7). If it is not colored,
we should tell if l is even or odd. If l is odd, then uv is the corresponding edge of lth edge
and thus it should also be an edge. If l is even, then we can replace uv and its corresponding
uncolored edges in pairs (i.e., the l + 1-st and l + 2-nd core edges) by the same copy of
an edge or a c-graph. When l equals the number of edges of B∗, i.e., l = 3n/2 − 1, we
have a 3-connected symmetric network with b blue and r red edges, which will be counted
in Section 5. Thus for 0 ≤ n ≤ 3, bb,r,l(n) = 0, and for n ≥ 4 and b, r ≥ 0 satisfying
1 ≤ b + r ≤ n, 3n/2 − 1 − b − r = 0(mod 2) we have

bb,r,l(n) =




bb,r,l+1(n) + ∑
i≥4 c(i)bb,r,l+1(n − i), when l + 1 ≤ b

bb,r,l+1(n) + ∑
i≥4 c̃(i)bb,r,l+1(n − i), when b < l + 1 ≤ b + r

bb,r,l+1(n), when l + 1 > b + r, l = 1(mod 2)

bb,r,l+2(n) + ∑
i≥4 c(i)bb,r,l+2(n − 2i), when l + 1 > b + r, l = 0(mod 2).

Let al(n) denote the number of asymmetric h-graphs A∗ on n vertices, where the first l
edges of core(A∗) are edges of A∗. To generate such an asymmetric h-graph A∗, we could
first take an h-graph which is already asymmetric (counted by al+1) and might replace the
l + 1-st core edge by a c-graph or not. Or we could take a symmetric h-graph whose core
has b blue and r red edges, for any b, r ≥ 0 satisfying b+ r ≥ 1, and the l +1-st edge is red,
and replace this edge by a c-graph that has no automorphism exchanging the poles, which
will be counted by c(i) − c̃(i). Finally, we could take such a symmetric h-graph, where the
l + 1-st edge is not fixed by the automorphism. If l is odd, then the l + 1-st edge can be
replaced by any c-graph. If l is even, then we can substitute two different c-graphs for the
corresponding l + 1-st and l + 2-nd core edges. Again when l equals the number of edges
of A∗, we have to count the number of 3-connected asymmetric networks; for that we refer
to Section 5. Hence for 0 ≤ n ≤ 5, al(n) = 0, and for n ≥ 6,

al(n) = al+1(n) +
∑
i≥4

c(i)al+1(n − i) +
∑

b+r≥1,b<l+1≤b+r,i≥4

(c(i) − c̃(i))bb,r,l+1(n − i)

+




∑
1≤b+r<l+1

∑
i≥4

c(i)bb,r,l+1(n − i)),

when l = 1(mod 2)

∑
1≤b+r<l+1

(∑
i,j≥4

c(i)c(j)bb,r,l+2(n − i − j) − ∑
i≥4 c(i)bb,r,l+2(n − 2i)

)
/2,

when l = 0(mod 2).

With these numbers we can compute h(n) = a0(n) + ∑
b,r bb,r,0(n), where the summation

is over all pairs of b, r ≥ 0 satisfying 1 ≤ b + r ≤ n, 3n/2 − 1 − b − r = 0(mod 2).
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3.6. Counting Simple Graphs

We can also compute the number of rooted simple cubic planar graphs. Note that a g-graph
together with the root edge is not simple, since the root edge creates a self-loop. Every d-,
or h-graph together with the root edge is simple. But some s-graphs and some p-graphs
together with the root edge are not simple: An s-graph that can be split into two g-graphs,
together with the root edge, is not simple, because the root edge forms a multi-edge between
the poles (see Fig. 4, right most part). A p-graph that can be split into a single edge and a
c-graph is not simple, because the root edge again forms a multi-edge (see Fig. 5, left part).
Thus the number of rooted simple cubic planar graphs on n vertices is

d(n) + h(n) + s(n) −
∑

i

g(i)g(n − i) + p(n) − c(n − 2).

4. ROOTED 3-CONNECTED GRAPHS

In this section, we study (edge)-rooted 3-connected graphs. If we additionally specify a
face incident to the root edge (there are one or two ways to do so), then there is a unique
embedding in the plane where this face is the outer face. We call the resulting graph a face-
rooted 3-connected graph, which is also called a 3-connected map. Then we can instead
make use of the dual objects, i.e., face-rooted triangulations.

If a 3-connected cubic planar map has n vertices in total and k vertices on the outer face,
the face-rooted triangulation has n

2 + 2 vertices in total (due to Euler’s formula) and its s-pole
has degree k. Let t(n) be the number of face-rooted triangulations on n vertices. Let a(n)

and b(n) be the numbers of asymmetric and symmetric (edge)-rooted 3-connected cubic
planar graphs, respectively. There are either one or two ways to obtain a face-rooted graph
from a (edge)-rooted one: If the graph is symmetric, then there is only one corresponding
face-rooted graph. Otherwise there are two. Thus, we get t(n/2 + 2) = 2a(n) + b(n), and
thus h3n/2−1(n) = a(n) + b(n) = (t(n/2 + 2) + b(n))/2.

Since it is not easy to deal with the asymmetric case explicitly, we provide a decom-
position, counting formulas, and a generation procedure for rooted symmetric 3-connected
cubic planar graphs (Section 4, 5) and for rooted 3-connected cubic planar graphs embedded
in the plane, i.e., rooted 3-connected cubic maps (Section 6).

Having these, we can also count the asymmetric case: The number of asymmetric 3-
connected cubic planar graphs are the half of the number of rooted 3-connected cubic
maps t(n/2 + 2) minus the number of symmetric 3-connected cubic planar graphs b(n),
i.e., a3n/2−1(n) = (t(n/2 + 2) − b(n))/2. Furthermore, we can generate asymmetric 3-
connected cubic planar graphs, using rejection sampling: First we generate a face-rooted
3-connected graph. Then we check whether it is symmetric or not. This can be done in
linear time using known techniques for planar graph isomorphism [35]. If the graph is
symmetric, we reject it and restart the procedure. The procedure will terminate after a con-
stant number of rounds in expectation, since there are more asymmetric than symmetric
graphs. For 3-connected graphs there are even asymptotically more asymmetric than sym-
metric graphs and one round will suffice in most cases, which we know from the result of
Tutte [50].

In the rest of this section we will focus on the symmetric rooted 3-connected graphs.
Note that there is a unique symmetric rooted 3-connected graph on four vertices, i.e., K4,
and thus b(4) = 1.
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Fig. 8. Decomposition of a symmetric rooted 3-connected graph. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

Let H∗ be a symmetric rooted 3-connected graph on at least six vertices, and ϕ be its
maximal sense-reversing automorphism. Recall that each vertex is colored either red, blue,
or uncolored, induced by ϕ (see Section 2), and that the poles are blue. Note that due to the
3-regularity of H∗, the number of blue vertices must be even, but the number of red vertices
can be even or odd. We can think of H∗ as being embedded in the plane in such a way that
ϕ corresponds to a reflection, the blue vertices are aligned on the reflection axis, and the red
vertices are connected by an edge crossing this axis perpendicularly (see Fig. 8, left part).
Our arguments do not rely on such a representation, however.

If we remove from H∗ the blue vertices and the edges between red vertices (i. e., we
cut the unrooted graph H along the symmetry axis), then the resulting graph has exactly
two connected components. The graphs induced by these components and the blue vertices
are isomorphic and will be called H1 and H2 (see Fig. 8, right part). Recall that a network
N is a graph with two distinguished vertices, such that the rooted graph N∗ obtained by
inserting a directed edge between the poles is 2-connected. We claim that H1 is a network
and hence H∗

1 is 2-connected: Suppose there was a cut-vertex v in H∗
1 . Then this cut-vertex

together with the cut-vertex ϕ(v) in H∗
2 forms a 2-cut in H∗, contradicting the 3-connectivity

of H∗.
Now we extract some more properties of the networks H1 and H2 and define the cor-

responding colored networks in such a way that we can recursively decompose them, and
that we can establish a bijection between symmetric rooted 3-connected graphs and colored
networks.

Definition 1. A colored network is a network N in which some vertices are colored red
and blue such that:

(P1) The colored vertices have degree 2 in N∗, and all other vertices have degree 3.
(P2) N∗ has an embedding in the plane in such a way that all colored vertices and the

poles lie on the outer face.
(P3) N and all subnetworks of N contain at least one colored vertex.
(P4) No nontrivial subnetwork of N has two blue poles.

The bijection to symmetric rooted 3-connected graphs is as follows.
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Theorem 2. For n ≥ 6, b, r, 1 ≤ b + r ≤ n with n, b even, there is a bijection between
the following two sets of objects:

i. colored networks with b blue vertices, r red vertices, and a total of (n + b)/2 vertices
that have no blue cut-vertex and whose both poles are blue, and

ii. face-rooted 3-connected graphs on n vertices that have a nontrivial automorphism
that fixes b vertices and exchanges r pairs of adjacent vertices.

Proof. Given a symmetric rooted 3-connected graph H∗, we first check that both H1 and
H2, constructed as described earlier, are networks that have blue poles and no blue cut-
vertex, and satisfy properties (P1) − (P4): First H∗

1 and H∗
2 are 2-connected, since if there

was a nonblue cut-vertex in H∗
1 , we would also have a corresponding cut-vertex in H∗

2 , and
together they would form a 2-cut in H∗. If H1 had a blue cut-vertex, then this vertex together
with a pole of H1 would form a 2-cut in H∗. These contradict the assumption that H∗ is
3-connected. (P1) and (P2) are immediate from the definition of H1 and H2. (P3): Every
subnetwork contains a colored vertex, since otherwise its poles would be a 2-cut in H∗.
(P4): No subnetwork has two blue pole vertices, since these blue pole vertices would be a
2-cut in H∗.

Conversely, we have to (re-)construct for every colored network H1 with blue poles, but
without a blue cut-vertex, the corresponding symmetric rooted 3-connected graph H∗. First
we make an isomorphic copy H2 of H1. Then we identify corresponding blue vertices in
H1 and H2, and connect by edges corresponding red vertices in H1 and H2. Finally, we add
the root edge between the poles. The constructed graph H∗ is clearly a symmetric, planar
(by (P2)), and cubic (by (P1)) network. Suppose H∗ was not 3-connected. Then there
is a split pair {k1, k2} in H∗ that determines two subnetworks N1 and N2. We distinguish
four cases:

1. Both of k1, k2 are blue. – This is impossible because then H1 or H2 would contain a
subnetwork with two blue poles k1, k2, contradicting (P4).

2. Exactly one of k1, k2 is blue. – Then wlog. k2 is blue, and k1 is in H1 \H2. Let N ′
1 and N ′

2

be those (nonempty) parts of N1 and N2 that also lie in H1. By (P3) there are colored
vertices v1 ∈ N ′

1 and v2 ∈ N ′
2. Since H∗

2 is 2-connected, there is a path from v1 to v2

passing through H∗
2 and avoiding k2 (and k1), which contradicts the assumption that

k1, k2 is a split pair in H∗.
3. None of k1, k2 is blue, and either both lie in H1 or both lie in H2. – Suppose wlog. both

vertices lie in H1. Then k1 and k2 define a nontrivial subnetwork in H1. But since every
such subnetwork contains a colored vertex, this contradicts that k1, k2 is a 2-cut in H∗.

4. Again none of k1, k2 is blue, but this time k1 is in H1 \ H2, and k2 is in H2 \ H1. – It
cannot be that H1 contains vertices from both N1 and N2 because of 2-connectivity;
the same for H2. Thus H1 either equals N1 or N2, which is impossible by (P3), since
a colored vertex in H1 again contradicts that k1, k2 is a 2-cut in H∗.

Because we only consider cubic networks, a colored network with blue poles s and t (see
Fig. 9, middle part) has a unique colored subnetwork with poles u, v where u is adjacent to
s and v is adjacent to t, and both u and v are not blue (see Fig. 9, right-most part). On the
other hand, given a colored network N whose both poles u, v are not blue, we can obtain a
unique colored network from N by adding new blue poles s and t and new edges su and tv.
Given a colored network whose both poles are not blue and that have no blue cut-vertex, we
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Fig. 9. Rooted symmetric 3-connected graph and colored networks. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

can thus construct its unique corresponding rooted symmetric 3-connected graph by first
constructing a colored network with blue poles as above, and then making its isomorphic
copy, identifying corresponding blue vertices, connecting corresponding red vertices, and
adding the root edge (see Fig. 9, left-most part), and vice versa. Thus we obtained the
following one-to-one correspondence.

Corollary 1. For n ≥ 6, b, r, 1 ≤ b + r ≤ n with n, b even, there is a bijection between
the following two sets of objects:

i. Colored networks with b blue vertices, r red vertices, and (n + b)/2 − 2 vertices in
total, that have no blue cut-vertex and whose both poles are not blue, and

ii. Face-rooted 3-connected graphs on n vertices that have a nontrivial automorphism
that fixes b vertices and exchanges r pairs of adjacent vertices.

Using Corollary 1, we reduce the problem of decomposing and counting symmetric
rooted 3-connected graphs to the problem of decomposing and counting colored networks
that have no blue cut-vertex and whose both poles s, t are not blue, which will be done in
Section 5.

5. COLORED NETWORKS

Let n′
b,r(n) denote the number of colored networks with b blue vertices, r red vertices, and

n the total number of vertices, that have no blue cut-vertex and whose both poles s, t are not
blue. From Corollary 1, we have b(n) = ∑

b+r≥1 n′
b,r((n + b)/2 − 2) for n ≥ 6.

When we in addition require that the first colored vertex has distance k to the s-pole
(which we will use in Theorem 3 in Section 8), we use n′

b,r,k(n) instead. To recursively
decompose such colored networks we need auxiliary objects, colored s-networks such
that both poles are not blue, but that might have a blue cut-vertex. The exact formulas
require rather tedious case studies and thus we only sketch how to decompose colored
networks.
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5.1. Colored s-Networks

The cut-edge uv in a colored s-network which is closest to s induces a split colored p- or
h-network with non-blue poles s, u, and a remaining part with nonblue poles v, t, which is
again an arbitrary colored network that has no blue cut-vertex.

5.2. Colored p-Networks

The colored vertices of a colored p-network must all lie in one of its two parts, by property
(P2). Since every subnetwork has to contain at least one colored vertex (P3), the other part
of the p-network must be a single edge. Moreover the poles s, t are not colored. One (but
not both) of the unique neighbors of s and t in this subnetwork might be blue (P4).

5.3. Colored h-Networks

The core of a colored h-network G∗ has a unique embedding in the plane where the root
edge and the core edges that are replaced by colored networks lie on the outer face. Hence,
the edges of core(G∗) (on the outer face, in particular) have a unique ordering. Along the
edges of core(G∗) on the outer face, we split off a subnetwork N∗ from G∗. The remaining
graph H∗ after splitting off N∗ from G∗ is again an h-network. However, it might be the
case that all colored vertices lie in N∗ and if in addition the replaced edge is the k-th edge
of core(G∗), then H∗ is a 3-connected network with at least k vertices on the outer face. In
this case the dual of H∗ is a rooted triangulation, one of whose poles has degree at least k,
which will be studied in Section 6.

6. CUBIC PLANAR MAPS AND TRIANGULATIONS

The dual of a face-rooted 3-connected cubic planar graph, i.e., a 3-connected cubic planar
map, is a face-rooted triangulation. The root-face (incident to the root-edge) becomes the
s-pole and the other face incident to the root-edge becomes the t-pole in the dual. In our
drawings, the root-face incident to the root will always be the outer face.

To derive a recursion, we generalize the notion of a triangulation, as Tutte did [49]: We
consider 3-connected planar maps where all the faces except the outer face are triangles,
i.e., we do not require that the outer face is a triangle. Then we distinguish between external
and internal vertices and edges, where the external vertices and edges are defined to be
the vertices and edges on the outer face. We call such objects near-triangulations. By
3-connectivity, in a near-triangulation there is no internal edge connecting two external
vertices.

If a 3-connected cubic planar map has n vertices in total and k vertices on the outer face,
then the face-rooted triangulation has n

2 + 2 vertices in total and its s-pole has degree k.
To count the number of such triangulations, we use the function tk,l(n) which denotes the
number of rooted near-triangulations with n vertices, where the s-pole has degree k and
there are l vertices on the outer face.

If the unique internal vertex adjacent to the two poles has no internal edge connecting it to
an external vertex except the poles, then we remove the pole edge and move the t-pole to the
unique internal vertex adjacent to the two former poles. This results in a near triangulation
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Fig. 10. Decomposition of a rooted near-triangulation. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

with l + 1 vertices on the outer face such that the s-pole has degree k − 1. Otherwise, we
remove the edge between the poles and decompose such triangulations along the edge, say
uv, connecting to the first such external vertex, say v, according to a traversal of the outer
face starting from the s-pole ending at the t-pole. Then one of the two split triangulations
has the new t-pole at the vertex u, and the other one has the new s-pole at v (see Fig. 10,
left part), but it has the new s-pole at u when the number of edges on the outer face is 3 (see
Fig. 10, right part). All these cases can be computed inductively using the value of tk,l(n)

for lexicographically smaller arguments.
Initially, t2,3(3) = 1 and tk,l(n) = 0 if k = 2 and l > 3 or n > 3, or if l + k − 2 > n.

Otherwise

tk,l(n) = tk−1,l+1(n) +
∑

k′+1,i≥3

tk−1,l(i)tk′ ,3(n − i + 2) +
∑

k′ ,l′ ,i≥3

tk−1,l−l′+2(i)tk′ ,l′(n − i + 2).

The number t(n) of face-rooted triangulations on n vertices is then t(n) = ∑
k≥2

tk,3(n).

7. POLE-SYMMETRIC GRAPHS

In this section, we consider the decomposition of rooted graphs with a pole-symmetry
and derive recurrence formulas to count them. We needed them in Section 3 for decom-
position.

Let r̃(n) be the number of pole-symmetric rooted graphs on n vertices, where the poles
are distinct. According to Theorem 1 we have r̃(n) = d̃(n) + s̃(n) + p̃(n) + h̃(n), where
the functions d̃(n), s̃(n), p̃(n), h̃(n) count the number of d-, s-, p-, and h-graphs with a
pole symmetry on n vertices, respectively. Note that in r̃(n) we did not count the rooted
graphs where the poles are not distinct. By definition, a g-graph is pole-symmetric, g̃(n) =
g(n). Finally, let c̃(n) = s̃(n) + p̃(n) + h̃(n) + g̃(n), and call the corresponding graphs
pole-symmetric c-graphs.

If a d-graph G∗ has a pole symmetry, then (its unrooted graph) G must have two identical
components. This component together with the old root edge st and the self-loop ss, forms
a g-graph rooted at the self-loop ss (see Fig. 3). Thus there is a bijection between g-graphs
on n/2 + 1 vertices and pole-symmetric d-graphs on n vertices: For 0 ≤ n ≤ 9, d̃(n) = 0,
and for n ≥ 10, d̃(n) = g(n/2 + 1).
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Fig. 11. Pole symmetric s-graphs. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

7.1. Pole-Symmetric s-Graphs

Here, we split off a p-, h- or g-graph at both poles simultaneously. The remaining graph is
either a pole-symmetric c-graph, or an edge (see Fig. 11). For 0 ≤ n ≤ 7, s̃(n) = 0. For
n ≥ 8,

s̃(n) =
(n−4)/2∑

i=4

(c(i) − s(i))c̃(n − 2i) + p(n/2) + h(n/2).

7.2. Pole-Symmetric p-Graphs

The root edge st induces two components. One of them might be a single edge. Otherwise
the two components, rooted at the corresponding neighbors of s and t, are pole-symmetric
c-graphs. The two components are not ordered and we should not count such a pair of
c-graphs twice, when they are isomorphic. Thus for 0 ≤ n ≤ 5, p̃(n) = 0, and for n ≥ 6,

p̃(n) = c̃(n − 2) + 1

2

(n−4)/2∑
i=4

c̃(i)c̃(n − i − 2) + 1

2

(
c̃((n − 2)/2)

2

)
+ c̃((n − 2)/2)

= c̃(n − 2) + 1

2

(n−4)/2∑
i=4

c̃(i)c̃(n − i − 2) +
(

c̃((n − 2)/2) + 1

2

)
.

7.3. Pole-Symmetric h-Graphs

Let G∗ be a pole-symmetric h-graph rooted at st. Since G∗ is built up from its core(G∗)
(Theorem 1), we will decompose G∗ recursively into core(G∗) and c-graphs.

To recursively decompose G∗, we uniquely order the edges of core(G∗) using the coloring
of core(G∗) attained by its symmetry type. Note that core(G∗) must be pole-symmetric, and
in addition it might be symmetric. Let ψ be the maximal pole-symmetric automorphism of
core(G∗) and ϕ be the maximal sense-reversing automorphism of core(G∗) if in addition
core(G∗) is symmetric.

In the case when core(G∗) does not have a sense-reversing automorphism, we order
the edges of core(G∗) in such a way that ψ-blue edges come first, which are followed by
ψ-red edges, and next the uncolored ψ-corresponding edges are consecutively ordered (a
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vertex closer to s attains a smaller order). In the case when core(G∗) has a sense-reversing
automorphism, we order the edges of core(G∗) in such a way that we start with ψ-blue
edges followed by ϕ-blue edges, and next we list ψ-red edges and then ϕ-red edges, where
each of ψ-and ϕ-corresponding pairs are consecutive, but ordered arbitrarily. Finally we
list each pair of ϕ-corresponding edges, followed by its ψ-corresponding pair, consecu-
tively in groups of four, in such a way that between the two ψ-corresponding edges a
vertex closer to s attains a smaller order and the two ϕ-corresponding edges are ordered
arbitrarily.

Having the unique ordering of the edges of core(G∗), we can obtain a pole-symmetric
h-graph G∗ from core(G∗) by replacing edges of core(G∗) according to this order. In other
words, we can decompose the pole-symmetric h-graphs G∗, until we obtain core(G∗).
In addition, recursive counting formulas can be directly derived from the decomposi-
tion. We will further decompose core(G∗), a rooted 3-connected pole-symmetric graph, in
Section 8.

8. POLE-SYMMETRIC 3-CONNECTED GRAPHS

In this section, we consider rooted 3-connected pole-symmetric graphs. We again want to
use colored networks. A (edge)-rooted 3-connected pole-symmetric graph G∗ has either
one embedding in the plane (if it has a sense-reversing automorphism), or two embedding
in the plane (if it has not). In other words, by specifying an face incident to the edge-root,
we can make either two face-rooted graphs or one face-rooted graph corresponding to G∗. If
we can deal with over-all face-rooted 3-connected pole-symmetric graphs, and face-rooted
3-connected pole-symmetric graphs with sense-reversing automorphisms, then we know
about those graphs without sense-reversing automorphisms. Especially for counting, let
t̃(n) be the number of face-rooted 3-connected pole-symmetric graphs and let h̃3n/2−1(n),
ã(n), and b̃(n) be the number of (edge)-rooted 3-connected pole-symmetric graphs, those
without symmetry, and those with symmetry, respectively. Then t̃(n) = 2ã(n) + b̃(n) and
h̃3n/2−1(n) = ã(n) + b̃(n) = (t̃(n) + b̃(n))/2.

We will thus first study face-rooted 3-connected pole-symmetric graphs using again
colored networks. This time the colors correspond to the vertices and edges that are fixed
by the pole-exchanging automorphism.

Given a face-rooted 3-connected pole-symmetric graphs H∗ rooted at s, t, with the pole-
exchanging automorphism ψ , fixing b̃ vertices and exchanging r̃ pairs of adjacent vertices,
that have exactly k ≥ 3 vertices on the outer face. Note first that both neighbors x, y of s
and t can not be colored blue, i.e., the inner and outer faces of H∗ can not be both triangles.
If then, the other neighbors of x, y form a 2-cut of H∗, a contradiction.

If k = 3, then it implies that the unique neighbor u of s and t on the outer face must
be blue. Then take u and its unique neighbor v (which must be blue) as new south- and
north-poles, respectively. And we take as the outer face a face containing u and s, make
the original root edge st undirected. Then the resulting graph is a face-rooted 3-connected
symmetric graphs, where ψ is interpreted as a sense-reversing automorphism. Thus we can
apply Theorem 2 immediately. This case is counted by n′

b̃,r̃
((n + b̃)/2 − 2) for n ≥ 6,

1 ≤ b̃ + r̃ ≤ n.
If k ≥ 4 and the inner face of H∗ is a triangle, i.e., there is a unique neighbor u of s and

t on the inner face. Then it must be blue, and thus we can do the same as above. This case
is also counted by n′

b̃,r̃
((n + b̃)/2 − 2) for n ≥ 6, 1 ≤ b̃ + r̃ ≤ n.
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Now we assume that k ≥ 4 and that the inner face of H∗ is not a triangle. Consider the
pair uv of the two other neighbors of s. Then clearly both u and v are not blue. Remove s and
t together with their incident edges. Remove all vertices that are fixed – the ψ-blue vertices
– and edges that are exchanged by the pole-exchanging automorphism – the ψ-red vertices.
Call the two graphs induced by the vertices in the two resulting connected components
together with the blue vertices H1 and H2 – notice that the pair uv is uniquely ordered
because of the face-rooting, say u is on the outer face, and thus we take them as poles of
H1. Thus H1 is a colored network H1 on (n + b̃)/2 − 1 vertices. Moreover the 	k/2
 − 2-th
vertex of H1 from u must be colored (either red or blue). Conversely, given a colored network
we can construct the corresponding face-rooted pole-symmetric 3-connected network by
reversing the above procedure. Thus we have the following bijection:

Theorem 3. For n ≥ 6, k ≥ 4, 1 ≤ b̃ + r̃ ≤ n, there is a bijection between the following
two sets of objects:

Colored networks with b̃ blue, r̃ red, and (n + b̃)/2 − 1 total vertices, such that the
south-pole or north-pole are not blue. Moreover between s and the first (with respect to
s) colored vertex there are 	k/2
 − 2 edges on the outer face.
Face-rooted 3-connected graphs on n vertices with a pole-exchanging automorphism
fixing b̃ vertices and exchanging r̃ pairs of adjacent vertices. Moreover there are k
vertices on the outer face and the inner face is not a triangle.

Let t̃b̃,r̃(n) be the number of face-rooted 3-connected graphs on n vertices with a pole-

exchanging automorphism and b̃ blue vertices and r̃ pairs of red vertices, and t̃b̃,r̃,k(n) be
those such that there are k vertices on the outer face and the inner face is not a triangle,
respectively. Then we get t̃b̃,r̃(n) = 2n′

b̃,r̃
((n + b̃)/2 − 2) + ∑

k≥4 t̃b̃,r̃,k(n) and

t̃b̃,r̃,k(n) = n′
b̃,r̃,	k/2
−2

((n + b̃)/2 − 1).

Next we have to compute the number of pole-symmetric 3-connected graphs with a
sense-reversing automorphism. Again we use colored networks, but impose the additional
constraint that the colored network has a pole-exchanging automorphism. Along the lines
of Theorem 2 we have a bijection between these pole-symmetric colored networks and
pole-symmetric networks with a sense-reversing automorphism.

Corollary 2. For n ≥ 6, 1 ≤ b + r ≤ n with n, b even, there is a bijection between the
following two sets of objects:

i. pole-symmetric colored networks with b blue vertices, r red vertices, and (n + b)/2
vertices in total that have blue poles and no blue cut-vertex, and

ii. face-rooted pole-symmetric 3-connected graphs on n vertices that have a nontrivial
sense-reversing automorphism that fixes b vertices and exchanges r pairs of adjacent
vertices.

In addition to Corollary 2, there is a one-to-one correspondence between pole-symmetric
colored networks without a blue cut-vertex whose poles are not blue that have b blue vertices,
r red vertices, and (n + b)/2 − 2 vertices in total, and rooted pole-symmetric 3-connected
graphs on n vertices that have a nontrivial sense-reversing automorphism that fixes b vertices
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and exchanges r pairs of adjacent vertices, as in Corollary 1. The decomposition of pole-
symmetric colored networks is a straightforward combination of the ideas in Section 5
and 7.

9. CONCLUSION

We presented a decomposition strategy for unlabeled connected cubic planar graphs along
the connectivity structure. In order to count these objects we need a unique decomposition,
and thus we used the well-known concept of rooting by an edge. For 3-connected rooted
cubic planar graphs, however, we also had to control whether or not there is a sense-reversing
automorphism, which in turn required to control networks that have a pole-exchanging
automorphism, and finally networks with both a sense-reversing and a pole-exchanging
automorphism. To count these objects we introduced the concept of colored networks,
and proved several bijections. The decomposition together with the counting formulas
immediately gives a polynomial time generation procedure for rooted unlabeled connected
cubic planar graphs. Using rejection-sampling we obtain our result:

Theorem 4. There is an algorithm that generates an unlabeled connected cubic planar
graph on n vertices uniformly at random, and whose expected running time is in Õ(n10). If
we allow for a preprocessing, the algorithm can generate such an object in O(n3).

Proof. The algorithm first generates a rooted unlabeled cubic planar graph G with n
vertices, using the recursive decomposition along the connectivity structure (Section 2–
Section 6), and the values of the counting formulas that can be computed efficiently using
dynamic programming. Note that the representation size of all the values in this paper is
linear, since the logarithm of the number of unlabeled planar graphs is linear.

The longest computation time is due to the five-dimensional tables for colored h-networks
in Section 5, where the summation runs over at most three parameters, and where we have
to perform multiplications with large numbers.

Assuming an O(n log n log log n) multiplication algorithm (see e.g. [17]), the number
of computation steps needed to fill the five-dimensional table is within Õ(n9), where Õ(·)
denotes growth up to logarithmic factors.

If we do not charge for the costs of a precomputation step, the actual generation of
a rooted cubic planar graph can be done in quadratic time: The decomposition tree is of
linear size; computing the probabilistic decisions at each branch also takes linear time, if we
assume that we have access to the values in the table and the partial sums of the formulas.

To obtain unrooted cubic planar graphs, the algorithm computes the size o of the orbit of
the root in the automorphism group of the graph G, which can be done in linear time using
accordingly adapted graph isomorphism algorithms for planar graphs [35], and outputs the
graph G with probability 1/o. Since the size o of the orbit of the root is at most linear,
the expected number of restarts is also linear. Thus the overall expected running time is in
Õ(n10), and in O(n3) with precomputation.

It is easy to see that we can count and generate random cubic planar multi-graphs by only
changing the initial values. Another by-product is the enumeration and uniform generation
of rooted near-triangulations with a given number of vertices on the outer face, and a given
number of vertices on the outer face of the dual. For the special case of rooted triangulations
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a linear-time generation procedure was known [47]. The present article also contains a series
of new enumeration results and generation procedures of rooted cubic graphs with various
sorts of symmetries and degrees of connectivity.

Many techniques presented in this paper also work for planar graphs. However, it is
more difficult to count not-necessarily-cubic g-graphs, since there is no canonical way to
decompose them into smaller rooted graphs. Another complication would be that we cannot
decompose colored networks via networks where both poles are non-blue. The recurrences
derived in this paper could serve as a starting point to compute the generating functions and
the asymptotic behavior of the counting functions for the objects considered here.
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