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Connectedness of Binomial Random Graph

Binomial random graph G(n, p)

@ vertexset[n]:={1,...,n}
@ each pair of vertices is present as an edge with probability p
independently
Theorem [ ERDOS—RENYI 59 |
Let _ logn + ¢(n)

Then
0 if ¢(n) - —o0

e®° ife(n —»ceR
1 if ¢(n) — oo

n—oo

IP( G(n,p) is connected)
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High dimensional analogues



Hypergraphs vs. Simplicial Complexes

(1) (k + 1)-uniform hypergraph H = ([n],E )
@ vertexset [n]:={1,...,n}

@ edge set E = set of (k + 1)-element subsets of [n], i.e. E C ()
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(2) k-dimensional simplicial complex
@ A family X of subsets of [ n] is called a simplicial complex if
o {vieX, Vveln]
@ X is downward-closed, i.e.if Ac X,0 #BC A thenBec X

@ A simplicial complex X is k-dimensional if |A| < k+ 1, VA€ X, and
A € X is called k-simplex if |A| = k + 1
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(3) Random k-dimensional simplicial complexes
arising from random (k + 1)-uniform hypergraph H, = ([n], Ep)

@ the 0-simplices are the singletons of [ n]
@ the k-simplices are the edges in E,
(i) Vje[k—1],the j-simplices are the (j + 1)-subsets of hyperedges in E,

Go= (") U ...Ud0E) UIE, UE,

[ COOLEY-DEL GIUDICE—K.—SPRUSSEL 18 ]
(ii) the full (k — 1)-skeleton on [n] is included

o= u(u..u(@uE

[ LINIAL—MESHULAM 06; MESHULAM—WALLACH 09: KAHLE—PITTEL 16 ]
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si—1 : si

clx)y & (X)) —...—= CKX)

@ j-th cohomology group of X with coefficients in F» is the quotient group

Ker (67)

Hj(X; F) = m

We say X is Fo-cohomologically j-connected if H/(X; F2) =0, Vi€ [j]
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Main result



Random k-dimensional simplical complex
Go= (") U ... UABE,) UIE, U Ep
@ the 0-simplices are the singletons of [n] := {1,...,n}

@ each (k + 1)-element subset of [ n] is present as a k-simplex
with probability p independently
QO Vjel[k—-1]

every (j + 1)-element subset of k-simplices forms a j-simplex
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F,-Cohomologically j-Connectedness

Letk>2andje[k—1].
Recall G, is Fo-cohomologically j-connected if H(Gp; F2) =0, Vi€ [j].

Theorem [ COOLEY-DEL GIUDICE-K.—SPRUSSEL 18]
Let 5= (j+ 1) log n+ loglog n+ c(n)
(k _j“" 1)(;(,1/)
Then
]P( G, is Fo-cohomologically j-connected )
0 if ¢(n) - —o0
2%, Je N ifen)—ceR
1 if c(n) — oo

(1o~

where \; := T
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e.g. a bad functionin C/(G,) that assigns

@ even number of 1’s on the j-simplices contained in each (j + 1)-simplex
@ odd number of 1's on a set J of j-simplices such that
every (j — 1)-simplex is contained in even number of j-simplices in J
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Heuristic for Threshold

Property of having no M, undergoes a phase transition at

_ (j+1)logn+loglogn
(k_j+1)(krlj)

E (#MI_) = (ki1> (kj+-1) p (1 - p)1=()

:@(1)exp((k+1)Iogn+|ogp—(k+1 —j)(krlj)p)

p

k-simplex K
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Proof Ideas

hitting time approach, relating vanishing of cohomology groups to
disappearance of last minimal obstruction

cf. disappearance of last isolated vertex [ Bollobas—-Thomason 85 |
subcritical: # of minimal obstruction via second moment method
inside window: method of moments for Poisson distribution

supercritical: # of bad functions via traversability

via breadth-first search: Algorithm for Analysis @



