Vanishing of cohomology groups of random simplicial complexes

Mihyun Kang

Joint work with Oliver Cooley, Nicola Del Giudice, and Philipp Sprüssel

Analysis of Algorithms 2018, Uppsala, 25-29 June 2018

Motivation: binomial random graphs

II. High dimensional analogues

III. Main result

IV. Proof ideas

Connectedness of Binomial Random Graph

Binomial random graph G(n, p)

- vertex set $[n] := \{1, ..., n\}$
- each pair of vertices is present as an edge with probability p independently

Theorem [ERDŐS–RÉNYI 59]

Let

$$p = \frac{\log n + c(n)}{n}.$$

Then

$$\mathbb{P}\Big(\,G(n,p) \text{ is connected}\,\Big) \quad \xrightarrow{n\to\infty} \quad \begin{cases} 0 & \text{if } \,c(n)\to -\infty \\ e^{-e^{-c}} & \text{if } \,c(n)\to c\in\mathbb{R} \\ 1 & \text{if } \,c(n)\to \infty \end{cases}$$

Property of having no isolated vertices undergoes a phase transition at

$$p = \frac{\log I}{n}$$

$$\mathbb{E}\left(\# \text{ isolated vertices in } G(n,p)\right) = n(1-p)^{n-1}$$

Property of having no isolated vertices undergoes a phase transition at

$$p = \frac{\log n}{n}$$

$$\mathbb{E}\left(\# \text{ isolated vertices in } G(n,p)\right) = n(1-p)^{n-1}$$

$$\sim \exp(\log n - pn)$$

Property of having no isolated vertices undergoes a phase transition at

$$p = \frac{\log n}{n}$$

$$\mathbb{E}\left(\# \text{ isolated vertices in } G(n,p)\right) = n(1-p)^{n-1}$$

$$\sim \exp(\log n - pn)$$

$$\sim \Theta(1)$$
if $\log n - pn = 0$

Part II High dimensional analogues

- (1) (k+1)-uniform hypergraph H = ([n], E)
 - vertex set $[n] := \{1, ..., n\}$
 - edge set E = set of (k+1)-element subsets of [n], i.e. $E \subset \binom{[n]}{k+1}$

- (1) Random (k + 1)-uniform hypergraph $H_p = ([n], E_p)$
 - vertex set $[n] := \{1, ..., n\}$
 - edge set E_p = set of (k+1)-element subsets of [n], i.e. $E_p \subset {[n] \choose k+1}$

$$\mathbb{P}\Big(\text{ each } (k+1) \text{-element subset of } [n] \text{ is present in } E_p \Big) = p$$

- (1) Random (k + 1)-uniform hypergraph $H_p = ([n], E_p)$
 - vertex set $[n] := \{1, ..., n\}$
 - edge set E_p = set of (k+1)-element subsets of [n], i.e. $E_p \subset {[n] \choose k+1}$

$$\mathbb{P}\Big(\text{ each } (k+1) \text{-element subset of } [n] \text{ is present in } E_p \Big) = p$$

(2) k-dimensional simplicial complex

- A family X of subsets of [n] is called a simplicial complex if
 - $\{v\} \in X$, $\forall v \in [n]$
 - X is downward-closed, i.e. if $A \in X, \emptyset \neq B \subset A$, then $B \in X$
- A simplicial complex X is k-dimensional if $|A| \le k + 1$, $\forall A \in X$, and $A \in X$ is called k-simplex if |A| = k + 1

(3) Random k-dimensional simplicial complexes

arising from random (k + 1)-uniform hypergraph $H_p = ([n], E_p)$

- the 0-simplices are the singletons of [n]
- the k-simplices are the edges in E_p

(3) Random k-dimensional simplicial complexes

arising from random (k + 1)-uniform hypergraph $H_p = ([n], E_p)$

- the 0-simplices are the singletons of [n]
- the k-simplices are the edges in E_p
- (i) $\forall j \in [k-1]$, the j-simplices are the (j+1)-subsets of hyperedges in E_p $\mathcal{G}_p = \binom{[n]}{1} \cup \ldots \cup \partial(\partial E_p) \cup \partial E_p \cup E_p$
- (ii) the full (k-1)-skeleton on [n] is included

$$\Delta_{\rho} = \binom{[n]}{1} \, \cup \, \binom{[n]}{2} \, \cup \, \ldots \, \cup \, \binom{[n]}{k} \, \cup \, E_{\rho}$$

(3) Random k-dimensional simplicial complexes

arising from random (k + 1)-uniform hypergraph $H_p = ([n], E_p)$

- the 0-simplices are the singletons of [n]
- the k-simplices are the edges in E_p
- (i) $\forall j \in [k-1]$, the *j*-simplices are the (j+1)-subsets of hyperedges in E_p

$$\mathcal{G}_p = \binom{[n]}{1} \cup \ldots \cup \partial(\partial \mathcal{E}_p) \cup \frac{\partial \mathcal{E}_p}{\partial \mathcal{E}_p} \cup \mathcal{E}_p$$
 [Cooley-del Giudice-K.-Sprüssel 18]

(ii) the full (k-1)-skeleton on [n] is included

$$\Delta_{\rho} = \binom{[\, n\,]}{1} \, \cup \, \binom{[\, n\,]}{2} \, \cup \, \ldots \, \cup \, \binom{[\, n\,]}{k} \, \cup \, E_{\rho}$$

[LINIAL-MESHULAM 06; MESHULAM-WALLACH 09: KAHLE-PITTEL 16]

Let X be a k-dimensional simplicial complex. For each $j \in [k-1]$

• $C^{j}(X)$ denotes the set of $\{0,1\}$ -functions on the *j*-simplices

Let *X* be a *k*-dimensional simplicial complex. For each $j \in [k-1]$

- $C^{j}(X)$ denotes the set of $\{0,1\}$ -functions on the *j*-simplices
- coboundary operator $\delta^j \colon C^j(X) \to C^{j+1}(X), \ f \mapsto \delta^j f$, is such that for each (j+1)-simplex σ

$$\delta^j f(\sigma) := \sum_{\tau \subset \sigma, |\tau| = j+1} f(\tau) \pmod{2}$$

$$C^0(X) \xrightarrow{\delta^0} \ldots \to C^{j-1}(X) \xrightarrow{\delta^{j-1}} C^j(X) \xrightarrow{\delta^j} C^{j+1}(X) \to \ldots \to C^k(X)$$

Let *X* be a *k*-dimensional simplicial complex. For each $j \in [k-1]$

- $C^{j}(X)$ denotes the set of $\{0,1\}$ -functions on the *j*-simplices
- coboundary operator $\delta^j \colon C^j(X) \to C^{j+1}(X), \ f \mapsto \delta^j f$, is such that for each (j+1)-simplex σ

$$\delta^j f(\sigma) := \sum_{\tau \subset \sigma, \ |\tau| = j+1} f(\tau) \pmod{2}$$

$$C^0(X) \xrightarrow{\delta^0} \ldots \to C^{j-1}(X) \xrightarrow{\delta^{j-1}} C^j(X) \xrightarrow{\delta^j} C^{j+1}(X) \to \ldots \to C^k(X)$$

• j-th cohomology group of X with coefficients in \mathbb{F}_2 is the quotient group

$$H^{j}(X; \mathbb{F}_{2}) := \frac{\operatorname{Ker}(\delta^{j})}{\operatorname{Im}(\delta^{j-1})}$$

Let *X* be a *k*-dimensional simplicial complex. For each $j \in [k-1]$

- $C^{j}(X)$ denotes the set of $\{0,1\}$ -functions on the *j*-simplices
- coboundary operator $\delta^j \colon C^j(X) \to C^{j+1}(X), \ f \mapsto \delta^j f$, is such that for each (j+1)-simplex σ

$$\delta^j f(\sigma) := \sum_{\tau \subset \sigma, \ |\tau| = j+1} f(\tau) \pmod{2}$$

$$C^0(X) \xrightarrow{\delta^0} \ldots \to C^{j-1}(X) \xrightarrow{\delta^{j-1}} C^j(X) \xrightarrow{\delta^j} C^{j+1}(X) \to \ldots \to C^k(X)$$

• j-th cohomology group of X with coefficients in \mathbb{F}_2 is the quotient group

$$H^{j}(X; \mathbb{F}_{2}) := \frac{\operatorname{Ker}(\delta^{j})}{\operatorname{Im}(\delta^{j-1})}$$

We say X is \mathbb{F}_2 -cohomologically j-connected if $H^i(X; \mathbb{F}_2) = 0$, $\forall i \in [j]$

Part III

Main result

Random k-dimensional simplical complex

$$\mathcal{G}_{p} = \binom{[n]}{1} \cup \ldots \cup \partial(\partial E_{p}) \cup \partial E_{p} \cup E_{p}$$

- the 0-simplices are the singletons of $[n] := \{1, ..., n\}$
- each (k + 1)-element subset of [n] is present as a k-simplex with probability p independently
- $\forall j \in [k-1]$ every (j+1)-element subset of k-simplices forms a j-simplex

\mathbb{F}_2 -Cohomologically *j*-Connectedness

Let $k \ge 2$ and $j \in [k-1]$.

Recall \mathcal{G}_p is \mathbb{F}_2 -cohomologically j-connected if $H^i(\mathcal{G}_p; \mathbb{F}_2) = 0$, $\forall i \in [j]$.

\mathbb{F}_2 -Cohomologically *j*-Connectedness

Let k > 2 and $i \in [k-1]$.

Recall \mathcal{G}_p is \mathbb{F}_2 -cohomologically j-connected if $H^i(\mathcal{G}_p; \mathbb{F}_2) = 0$, $\forall i \in [j]$.

Theorem
$$p = \frac{(j+1)\log n + \log\log n + c(n)}{(k-j+1)\binom{n}{k-j}}.$$
 Then
$$\mathbb{P}\Big(\mathcal{G}_{\rho} \text{ is } \mathbb{F}_2\text{-cohomologically } j\text{-connected}\Big)$$

$$\xrightarrow{n\to\infty} \begin{cases} 0 & \text{if } c(n)\to -\infty\\ e^{-\lambda_j} & \text{if } c(n)\to c\in\mathbb{R}\\ 1 & \text{if } c(n)\to\infty \end{cases}$$
 where $\lambda_j:=\frac{(j+1)e^{-c}}{(k-j+1)^2!}$

Recall $C^j(\mathcal{G}_p)$ is the set of $\{0,1\}$ -functions on the j-simplices in \mathcal{G}_p and the coboundary operators

$$\ldots \rightarrow \quad C^{j-1}(\mathcal{G}_p) \stackrel{\delta^{j-1}}{\longrightarrow} \quad C^{j}(\mathcal{G}_p) \stackrel{\delta^{j}}{\longrightarrow} \quad C^{j+1}(\mathcal{G}_p) \rightarrow \ldots$$

are such that for $f \in C^j(\mathcal{G}_p)$ and (j+1)-simplex σ

$$\delta^j f(\sigma) := \sum_{\substack{ au \subset \sigma, \ | au| = j+1}} f(au) \pmod{2}.$$

Recall $C^j(\mathcal{G}_p)$ is the set of $\{0,1\}$ -functions on the j-simplices in \mathcal{G}_p and the coboundary operators

$$\ldots \rightarrow \quad C^{j-1}(\mathcal{G}_p) \stackrel{\delta^{j-1}}{\longrightarrow} \quad C^j(\mathcal{G}_p) \stackrel{\delta^j}{\longrightarrow} \quad C^{j+1}(\mathcal{G}_p) \rightarrow \ldots$$

are such that for $f \in C^j(\mathcal{G}_p)$ and (j+1)-simplex σ

$$\delta^j f(\sigma) := \sum_{\tau \subset \sigma, |\tau| = j+1} f(\tau) \pmod{2}.$$

Observe

$$H^{j}(\mathcal{G}_{p}; \mathbb{F}_{2}) := \frac{\operatorname{Ker}(\delta^{j})}{\operatorname{Im}(\delta^{j-1})} \neq 0 \iff \exists f \in \operatorname{Ker}(\delta^{j}) \setminus \operatorname{Im}(\delta^{j-1}) \subset C^{j}(\mathcal{G}_{p})$$

Recall $C^j(\mathcal{G}_p)$ is the set of $\{0,1\}$ -functions on the j-simplices in \mathcal{G}_p and the coboundary operators

$$\ldots \to \quad C^{j-1}(\mathcal{G}_p) \quad \xrightarrow{\delta^{j-1}} \quad C^{j}(\mathcal{G}_p) \quad \xrightarrow{\delta^{j}} \quad C^{j+1}(\mathcal{G}_p) \quad \to \ldots$$

are such that for $f \in C^j(\mathcal{G}_p)$ and (j+1)-simplex σ

$$\delta^j f(\sigma) := \sum_{\tau \subset \sigma, \ |\tau| = j+1} f(\tau) \pmod{2}.$$

Observe

$$H^{j}(\mathcal{G}_{p}; \mathbb{F}_{2}) := \frac{\operatorname{Ker}(\delta^{j})}{\operatorname{Im}(\delta^{j-1})} \neq 0 \iff \exists f \in \operatorname{Ker}(\delta^{j}) \setminus \operatorname{Im}(\delta^{j-1}) \subset C^{j}(\mathcal{G}_{p})$$

- e.g. function in $C^{j}(\mathcal{G}_{p})$ that assigns
 - even number of 1's on the j-simplices contained in each (j + 1)-simplex
 - odd number of 1's on a set J of j-simplices such that
 every (j 1)-simplex is contained in even number of j-simplices in J

Recall $C^j(\mathcal{G}_p)$ is the set of $\{0,1\}$ -functions on the j-simplices in \mathcal{G}_p and the coboundary operators

$$\ldots \to \quad C^{j-1}(\mathcal{G}_p) \quad \xrightarrow{\delta^{j-1}} \quad C^{j}(\mathcal{G}_p) \quad \xrightarrow{\delta^{j}} \quad C^{j+1}(\mathcal{G}_p) \quad \to \ldots$$

are such that for $f \in C^j(\mathcal{G}_p)$ and (j+1)-simplex σ

$$\delta^j f(\sigma) := \sum_{\tau \subset \sigma, \ |\tau| = j+1} f(\tau) \pmod{2}.$$

Observe

$$H^{j}(\mathcal{G}_{p}; \mathbb{F}_{2}) := \frac{\operatorname{Ker}(\delta^{j})}{\operatorname{Im}(\delta^{j-1})} \neq 0 \iff \exists f \in \operatorname{Ker}(\delta^{j}) \setminus \operatorname{Im}(\delta^{j-1}) \subset C^{j}(\mathcal{G}_{p})$$

- e.g. a **bad** function in $C^{j}(\mathcal{G}_{p})$ that assigns
 - even number of 1's on the j-simplices contained in each (j + 1)-simplex
 - odd number of 1's on a set J of j-simplices such that every (j - 1)-simplex is contained in even number of j-simplices in J

 $M_1 = \text{triple } (K, C, J) \text{ where } K \text{ is a 2-simplex in } \mathcal{G}_p \text{ and }$

 M_1 = triple (K, C, J) where K is a 2-simplex in \mathcal{G}_p and

• C = 0-simplex in K such that for each $w \in K \setminus C$, 1-simplex $C \cup \{w\}$ is contained in no other 2-simplex of \mathcal{G}_p

 M_1 = triple (K, C, J) where K is a 2-simplex in \mathcal{G}_p and

- C = 0-simplex in K such that for each $w \in K \setminus C$, 1-simplex $C \cup \{w\}$ is contained in no other 2-simplex of \mathcal{G}_p
- \bullet J = set of 1-simplices such that
 - every 0-simplex is contained in even number of 1-simplices in J
 (J is called a 1-cycle)

 M_1 = triple (K, C, J) where K is a 2-simplex in \mathcal{G}_p and

- C = 0-simplex in K such that for each $w \in K \setminus C$, 1-simplex $C \cup \{w\}$ is contained in no other 2-simplex of \mathcal{G}_p
- - every 0-simplex is contained in even number of 1-simplices in J
 (J is called a 1-cycle)
 - it contains exactly one $C \cup \{w_0\}$, $w_0 \in K \setminus C$

Minimal Obstruction for $k \ge 2$, $j \ge 1$

 M_j = triple (K, C, J) where K is a k-simplex in \mathcal{G}_p and

- C = (j-1)-simplex in K such that for each $w \in K \setminus C$, j-simplex $C \cup \{w\}$ is contained in no other k-simplex of \mathcal{G}_p
- \bigcirc J = set of *j*-simplices such that
 - every (j-1)-simplex is in even number of j-simplices in J (J is called a j-cycle)

Minimal Obstruction for $k \ge 2$, $j \ge 1$

 M_j = triple (K, C, J) where K is a k-simplex in \mathcal{G}_p and

- C = (j-1)-simplex in K such that for each $w \in K \setminus C$, j-simplex $C \cup \{w\}$ is contained in no other k-simplex of \mathcal{G}_p
- - every (j-1)-simplex is in even number of j-simplices in J (J is called a j-cycle)
 - it contains exactly one $C \cup \{w_0\}$, $w_0 \in K \setminus C$

Property of having no M_i^- undergoes a phase transition at

$$p = \frac{(j+1)\log n + \log\log n}{(k-j+1)\binom{n}{k-j}}$$

$$\mathbb{E}\left(\# M_{j}^{-}\right) = \binom{n}{k+1} \binom{k+1}{j} p \left(1-p\right)^{(k+1-j)\binom{n}{k-j}}$$
$$= \Theta(1) \exp\left((k+1) \log n + \log p - (k+1-j)\binom{n}{k-j}p\right)$$

Part IV

Proof ideas

Proof Ideas

 hitting time approach, relating vanishing of cohomology groups to disappearance of last minimal obstruction

cf. disappearance of last isolated vertex

[Bollobás-Thomason 85]

Proof Ideas

 hitting time approach, relating vanishing of cohomology groups to disappearance of last minimal obstruction

cf. disappearance of last isolated vertex

[Bollobás-Thomason 85]

subcritical: # of minimal obstruction via second moment method

inside window: method of moments for Poisson distribution

supercritical: # of bad functions via traversability

Proof Ideas

 hitting time approach, relating vanishing of cohomology groups to disappearance of last minimal obstruction

cf. disappearance of last isolated vertex

[Bollobás-Thomason 85]

subcritical: # of minimal obstruction via second moment method

inside window: method of moments for Poisson distribution

supercritical: # of bad functions via traversability

via breadth-first search: Algorithm for Analysis 🙂