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Connectedness of Binomial Random Graph

Binomial random graph G(n, p)

vertex set [ n ] := {1, . . . , n}

each pair of vertices is present as an edge with probability p
independently

Theorem [ ERDŐS–RÉNYI 59 ]

Let
p =

log n + c(n)

n
.

Then

P
(

G(n, p) is connected
)

n→∞−−−→


0 if c(n) → −∞
e−e−c

if c(n) → c ∈ R
1 if c(n) → ∞



Heuristic for Threshold

Property of having no isolated vertices undergoes a phase transition at

p =
log n

n

E
(

# isolated vertices in G(n, p)
)

= n (1− p)n−1

∼ exp(log n − pn)

∼ Θ(1)

if log n − pn = 0

v
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Part II

High dimensional analogues



Hypergraphs vs. Simplicial Complexes

(1)

Random

(k + 1)-uniform hypergraph H

p

= ( [ n ],E

p

)

vertex set [ n ] := {1, . . . , n}
edge set E

p

= set of (k + 1)-element subsets of [ n ], i.e. E

p

⊂
(

[n]
k+1

)

P
(

each (k + 1)-element subset of [ n ] is present in Ep

)
= p

(2) k -dimensional simplicial complex

A family X of subsets of [ n ] is called a simplicial complex if

{v} ∈ X , ∀v ∈ [ n ]

X is downward-closed, i.e. if A ∈ X , ∅ 6= B ⊂ A, then B ∈ X

A simplicial complex X is k -dimensional if |A| ≤ k + 1, ∀A ∈ X , and
A ∈ X is called k -simplex if |A| = k + 1
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Hypergraphs vs. Simplicial Complexes

(3) Random k -dimensional simplicial complexes

arising from random (k + 1)-uniform hypergraph Hp = ( [ n ],Ep )

the 0-simplices are the singletons of [ n ]

the k -simplices are the edges in Ep

(i) ∀j ∈ [ k − 1 ], the j-simplices are the (j + 1)-subsets of hyperedges in Ep

Gp =
(
[ n ]
1

)
∪ . . . ∪ ∂(∂Ep) ∪ ∂Ep ∪ Ep

[ COOLEY–DEL GIUDICE–K.–SPRÜSSEL 18 ]

(ii) the full (k − 1)-skeleton on [ n ] is included

∆p =
(
[ n ]
1

)
∪
(
[ n ]
2

)
∪ . . . ∪

(
[ n ]
k

)
∪ Ep

[ LINIAL–MESHULAM 06; MESHULAM–WALLACH 09: KAHLE–PITTEL 16 ]
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Cohomology Groups

Let X be a k -dimensional simplicial complex. For each j ∈ [ k − 1 ]

C j (X ) denotes the set of {0, 1}-functions on the j-simplices

coboundary operator δ j : C j (X )→ C j+1(X ), f 7→ δ j f , is such that
for each (j + 1)-simplex σ

δ j f (σ) :=
∑

τ⊂σ, |τ |= j+1

f (τ) (mod 2)

C0(X )
δ0
−→ . . .→ C j−1(X )

δ j−1
−−−→ C j (X )

δ j
−→ C j+1(X ) → . . .→ C k (X )

j-th cohomology group of X with coefficients in F2 is the quotient group

H j (X ; F2) :=
Ker (δ j )

Im (δ j−1)

We say X is F2-cohomologically j-connected if H i (X ; F2) = 0, ∀ i ∈ [ j ]
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Part III

Main result



Random k -dimensional simplical complex

Gp =
(
[ n ]
1

)
∪ . . . ∪ ∂(∂Ep) ∪ ∂Ep ∪ Ep

the 0-simplices are the singletons of [ n ] := {1, . . . , n}

each (k + 1)-element subset of [ n ] is present as a k -simplex

with probability p independently

∀ j ∈ [ k − 1 ]

every (j + 1)-element subset of k -simplices forms a j-simplex



F2-Cohomologically j-Connectedness

Let k ≥ 2 and j ∈ [ k − 1 ].

Recall Gp is F2-cohomologically j-connected if H i (Gp; F2) = 0, ∀ i ∈ [ j ].

Theorem [ COOLEY–DEL GIUDICE–K.–SPRÜSSEL 18 ]

Let
p =

(j + 1) log n + log log n + c(n)

(k − j + 1)
( n

k−j

) .

Then

P
(
Gp is F2-cohomologically j-connected

)
n→∞−−−→


0 if c(n) → −∞
e−λj if c(n) → c ∈ R
1 if c(n) → ∞

where λj := (j+1)e−c

(k−j+1)2 j!
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Non-Vanishing of Cohomology Group

Recall C j (Gp) is the set of {0, 1}-functions on the j-simplices in Gp and

the coboundary operators

. . .→ C j−1(Gp)
δ j−1
−−−→ C j (Gp)

δ j
−→ C j+1(Gp) → . . .

are such that for f ∈ C j (Gp) and (j + 1)-simplex σ

δ j f (σ) :=
∑

τ⊂σ, |τ |= j+1

f (τ) (mod 2).

Observe

H j (Gp; F2) :=
Ker (δ j )

Im (δ j−1)
6= 0 ⇐⇒ ∃ f ∈ Ker (δ j ) \ Im (δ j−1) ⊂ C j (Gp)

e.g.

a bad

function in C j (Gp) that assigns

even number of 1’s on the j-simplices contained in each (j + 1)-simplex

odd number of 1’s on a set J of j-simplices such that

every (j − 1)-simplex is contained in even number of j-simplices in J
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Minimal Obstruction for k = 2, j = 1

M1 = triple (K ,C, J) where K is a 2-simplex in Gp and

C = 0-simplex in K such that for each w ∈ K \ C,
1-simplex C ∪ {w} is contained in no other 2-simplex of Gp

J = set of 1-simplices such that
every 0-simplex is contained in even number of 1-simplices in J

(J is called a 1-cycle)

it contains exactly one C ∪ {w0}, w0 ∈ K \ C

cw1

w0

J
K
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Minimal Obstruction for k ≥ 2, j ≥ 1

M j = triple (K ,C, J) where K is a k -simplex in Gp and

C = (j − 1)-simplex in K such that for each w ∈ K \ C,
j-simplex C ∪ {w} is contained in no other k -simplex of Gp

J = set of j-simplices such that
every (j − 1)-simplex is in even number of j-simplices in J

(J is called a j-cycle)

it contains exactly one C ∪ {w0}, w0 ∈ K \ C
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w2

w3

c1

c2
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Heuristic for Threshold

Property of having no M−j undergoes a phase transition at

p =
(j + 1) log n + log log n

(k − j + 1)
( n

k−j

)

E
(

# M−j
)

=

(
n

k + 1

) (
k + 1

j

)
p (1− p)

(k+1−j)( n
k−j)

= Θ(1) exp
(

(k + 1) log n + log p −(k + 1− j)

(
n

k − j

)
p
)

c1

c2

w0

w1

w2

w3

k -simplex K

M−j



Part IV

Proof ideas



Proof Ideas

hitting time approach, relating vanishing of cohomology groups to
disappearance of last minimal obstruction

cf. disappearance of last isolated vertex [ Bollobás–Thomason 85 ]

subcritical: # of minimal obstruction via second moment method

inside window: method of moments for Poisson distribution

supercritical: # of bad functions via traversability

via breadth-first search: Algorithm for Analysis �
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