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• how big is the largest component in γ? (phase transition)

• what is the chromatic number?

How many objects are there (exactly or asymptotically) in C?

E.g. # triangle-free graphs, # planar graphs, # triangulations of a

point set in the plane?

How to efficiently sample a random object γ in C?

E.g. a random planar graph
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Phase transition

• PHASE TRANSITION IN STATISTICAL PHYSICS

Ising model

Given temperature T , (up or down) spins live on a lattice which interact

with nearest neighbours

complex com.

Baeume

unicyc. Kom.

– Ordered phase at low temperatures

– Disordered phase at high temperatures
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• PHASE TRANSITION IN COMPUTER SCIENCE

Random k-SAT problem

To determine whether or not a random k-CNF (conjunctive normal

formula) Fk(n, m) with n variables and m clauses is satisfiable

E.g. a 3-CNF instance with 7 variables and 4 clauses

(x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x5 ∨ x7)
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• PHASE TRANSITION IN COMPUTER SCIENCE

Random k-SAT problem

To determine whether or not a random k-CNF (conjunctive normal

formula) Fk(n, m) with n variables and m clauses is satisfiable

E.g. a 3-CNF instance with 7 variables and 4 clauses

(x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x5 ∨ x7)

– Phase transition from satisfiability to unsatisfiability of Fk(n, m)

around m
n ∼ 2k

ln 2

– Computational time required to find a satisfying truth assignment or

determine it to be unsatisfiable increases drastically around m
n ∼ 2k

k



Phase transition

• PHASE TRANSITION IN RANDOM GRAPH

It describes a dramatic change in the number of vertices in the largest

component in a random graph by addition of a small number of edges

around the critical value [ ERDŐS–RÉNYI 60; BOLLOBÁS; ŁUCZAK; PERES; SPENCER, · · · ]
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• PHASE TRANSITION IN RANDOM GRAPH

It describes a dramatic change in the number of vertices in the largest

component in a random graph by addition of a small number of edges

around the critical value [ ERDŐS–RÉNYI 60; BOLLOBÁS; ŁUCZAK; PERES; SPENCER, · · · ]

Cf. percolation theory.
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Binomial random graph
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PHASE TRANSITION [ ERDŐS–RÉNYI 60 ]

• When c < 1, with probability tending to 1 as n → ∞ (whp)

all the components have O(log n) vertices.

• When c > 1, whp there is a unique largest component of order Θ(n),

while every other component has O(log n) vertices.
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Phase transition

Suppose the edge probability p = c
n−1 for a constant c > 0.

The expected degree of a random vertex: E(X) = (n − 1)p = c.

PHASE TRANSITION [ ERDŐS–RÉNYI 60 ]

• When c < 1, with probability tending to 1 as n → ∞ (whp)

all the components have O(log n) vertices.

• When c > 1, whp there is a unique largest component of order Θ(n),

while every other component has O(log n) vertices.

komplexe Kom.

Baeume

unicyc. Kom.

c = 0.99

c > 1



Exposing a component
[ BREATH-FIRST-SEARCH: KARP 90 ]

v

For a given vertex v we want to determine the order of the component

C(v) that contains v.

• First we expose the neighbours ( „children”) of v

• Then we expose the neighbours of each neighbour of v

• We continue this procedure, until there are no more vertices

contained in C(v).
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Exposing a component
[ BREATH-FIRST-SEARCH: KARP 90 ]

k

∼ Po(c)

Bi(n − k, p)

When k ≪ n vertices are exposed,

• the number of new neighbours (“children”) of a vertex: Bi(n − k, p)

• the expected number of children: (n − k)p = (n − k) c
n−1 ∼ c.

lim
n→∞

P(Bi(n − k, p) = i) = lim
n→∞

(

n − k

i

)

pi(1 − p)n−k−i

=
ci

i!
e−c = P(Po(c) = i)



Branching process

• It starts with a unisexual individual

• The number of children: i.i.d. random variable Y ∼ Po(c).

• If c < 1, the process dies out with probability 1.

• If c > 1, with positive probability the process continues forever.

It corresponds to a „small” component in G(n, p)
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Branching process

• It starts with a unisexual individual

• The number of children: i.i.d. random variable Y ∼ Po(c).

• If c < 1, the process dies out with probability 1.

• If c > 1, with positive probability the process continues forever.

Survival probability ρ:
1 − ρ = e−cρ

It corresponds to the „giant” component of order Θ(n) in G(n, p)
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• The number of children: i.i.d. random variable Y ∼ Po(c).

• If c < 1, the process dies out with probability 1.

• If c > 1, with positive probability the process continues forever.
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Branching process

• It starts with a unisexual individual

• The number of children: i.i.d. random variable Y ∼ Po(c).

• If c < 1, the process dies out with probability 1.

• If c > 1, with positive probability the process continues forever.

Let T be the total number of organisms. The prob. generating function

q(z) :=
∑

i<∞
P [T = i] zi

satisfies q(z) = z
∑

k P [Po(c) = k] q(z)k = z
∑

k e−c ck

k! q(z)k = zec(q(z)−1).

The extinction probability 1 − ρ :=
∑

i<∞ P [T = i] = q(1) satisfies

1 − ρ = q(1) = ec(q(1)−1) = ec(1−ρ−1) = e−cρ.
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Let Np be the order of the giant component after the phase transition.

Then E(Np) = ρn and Np = ρn + o(n) whp where 1 − ρ = e−cρ, ρ 6= 0.

Central Limit Theorem [ PITTEL 90; BARREZ–BOUCHERON–DE LA VEGA 00 ]

The variance Np satisfies σ2 := Var(Np) = ρ−ρ2

(1−c(1−ρ))2
n.

For any fixed numbers a < b

P [ρn + a ≤ Np ≤ ρn + b] ∼ 1

σ
√

2π

∫ b

a
exp

[

− x2

2σ2

]

dx.
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Giant component

Let Np be the order of the giant component after the phase transition.

Then E(Np) = ρn and Np = ρn + o(n) whp where 1 − ρ = e−cρ, ρ 6= 0.

Central Limit Theorem [ PITTEL 90; BARREZ–BOUCHERON–DE LA VEGA 00 ]

The variance Np satisfies σ2 := Var(Np) = ρ−ρ2

(1−c(1−ρ))2
n.

For any fixed numbers a < b

P [ρn + a ≤ Np ≤ ρn + b] ∼ 1

σ
√

2π

∫ b

a
exp

[

− x2

2σ2

]

dx.

Local Limit Theorem [ BEHRISCH–COJA-OGHLAN–K. 07+ ]

For any integer k with k = ρn + x and x = O(
√

n ) = O(σ),

P [Np = k] ∼ 1

σ
√

2π
exp

[

− x2

2σ2

]

.



Joint distribution

• Let Mp denote # edges in the giant component in G(n, p).
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2πσσM

√

1 − σ2

NM

σ2σ2

M

exp



−
x2

σ2 − 2σNMxy

σ2σ2

M

+ y2

σ2

M

2
(

1 − σ2

NM

σ2σ2

M

)







Joint distribution

• Let Mp denote # edges in the giant component in G(n, p).

P [Np = k ∧Mp = l] ∼ 1

2πσσM

√

1 − σ2

NM

σ2σ2

M

exp



−
x2

σ2 − 2σNMxy

σ2σ2

M

+ y2

σ2

M

2
(

1 − σ2

NM

σ2σ2

M

)





• # C(k, l) of connected graphs with k vertices and l edges satisfies

C(k, l) ∼ P [Np = k ∧Mp = l]
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• # C(k, l) of connected graphs with k vertices and l edges satisfies

C(k, l) ∼ P [Np = k ∧Mp = l]

(

n

k

)−1

p−l(1 − p)−(n

2)+(n−k

2 )+l

=⇒ its asymptotic formula via probabilistic analysis [ BEHRISCH–COJA-OGHLAN–K. 07+ ]

Cf. asymptotic formula for C(k, l) via

– – enumerative method [ BENDER–CANFIELD–MCKAY 90 ]

– – saddle-point method [ FLAJOLET–SALVY–SCHAEFFER 04 ]
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when the expected degree cn → 1, in the so-called critical phase?

[ BOLLOBÁS 84; ŁUCZAK 90; ŁUCZAK–PITTEL–WIERMAN 94 ]

Let cn = 1 + λnn−1/3log n where λnn−1/3log n → 0 as n → ∞.

• If λn → −∞, whp all components have ≪ n2/3 vertices.

• If λn → λ, whp the largest component has Θ(n2/3) vertices.

• If λn → +∞, whp there is exactly one component with ≫ n2/3 ver-

tices, while all other components have ≪ n2/3 vertices.
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Degree distribution

G(n, p) as a stochastic model for large complex systems?

• In G(n, p), degree of each vertex ∼ (n − 1)p: homogeneous

• In some complex systems/networks, e.g. www, epidemic networks,

• some vertices are of high degree, while most vertices are of low

• degree: non-homogeneous
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• To model and analyse dynamic nature of complex systems/networks

arising from the real world
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Random graph models

Random graph processes

• To model and analyse dynamic nature of complex systems/networks

arising from the real world

• Random „internet” graph [ BOLLOBÁS–RIORDAN; COOPER–FRIEZE 03 ]

• Degree constraints [ WORMALD; K.–SEIERSTAD 07; COJA-OGHLAN–K. 08+ ]

Inhomogenous random graphs [ BOLLOBÁS–JANSON–RIORDAN 07 ]

• Vertices come in different types

Random graphs with given degree sequence

[ MOLLOY–REED 95, 98; JANSON–M. LUCZACK 07+; K.–SEIERSTAD 08 ]
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Let Gn(d0(n), d1(n), . . .) be a uniform random graph on n vertices, di(n)

of which are of degree i.

The asymptotic degree sequence D = {d0(n), d1(n), . . .} satisfies:

• ∑

i≥0 di(n) = n and di(n) = 0 for i ≥ n

• δi(n) = di(n)
n → δ∗i as n → ∞

• "well behaves" and di(n) = 0 whenever i > n
1

4
−ε for some ε > 0

The phase transition in Gn(D) occurs when

Q(D) :=
∑

i

(i − 2)iδi(n) = 0.

(We will come back to this later)



Phase transition
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If Q(D) < 0, whp all components have O(log n) vertices.

If Q(D) > 0, whp there is a unique component of order Θ(n), while all

other components have O(log n) vertices.

To study the critical phase Q(D) =
∑

i(i − 2)iδi(n)→ 0

let τn be s.t.
∑

i(i − 2)iδi(n)τ i
n = 0 and τn → 1
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n = 0 and τn → 1.

[ K.–SEIERSTAD 08; JANSON–M. LUCZAK 07+ ]

Let λn = (1 − τn)n1/3.
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1 − τn plays the same role as λnn−1/3 for G(n, p) with p = 1+λnn−1/3

n−1 .
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Why does the phase transition in Gn(D) occur when

∑

i(i − 2)iδi(n) = 0?

RANDOM CONFIGURATION [ BENDER–CANFIELD; BOLLOBÁS; WORMALD ]

Given a degree sequence Dn = {a1, . . . , an} of V = {v1, . . . , vn} s.t.

ai = deg(vi) for 1 ≤ i ≤ n,

• Ln = {ai distinct copies of vi, called half-edges, for 1 ≤ i ≤ n}
• Mn = perfect matching of Ln, chosen uniformly at random.

Then a random configuration Cn = Ln + Mn.

v1 v2 v3
vnvn−1. . .
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Random configuration

Given a configuration Cn, let G∗
n be the multigraph obtained by

• identifying all ai copies of vi for every i = 1, . . . , n, and

• letting the pairs of the perfect matching in Cn become edges.
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Let X be the number of children of the vertex v to which the edge e

belongs. Its distribution is given by
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Branching process

e

v

· · · · · ·

Let X be the number of children of the vertex v to which the edge e

belongs. Its distribution is given by

P[X = i − 1] =
iδi(n)

∑

i iδi(n)
, δi(n) =

di(n)

n
=

|{k : deg(vk) = i}|
n

.

E[X] =
∑

i

(i − 1) P[X = i − 1] =
∑

i

(i − 1)
iδi(n)

∑

i iδi(n)
.

The critical point of the branching process is when E[X] = 1, that is,

Q(D) :=
∑

i
(i − 2)iδi(n) = 0.



Outline

I. Phase transition

• Introduction to phase transition

• Erdős–Rényi random graph

– Phase transition

– Limit theorems for the giant component

– Critical phase

• Random graphs with given degree sequence

II. Enumeration and random sampling
• Recursive decomposition

• Singularity analysis, Boltzmann sampler, probabilistic analysis

• Planar structures, minors and genus
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An alternative method?

“A nonstandard method of counting trees: Put a cat into each tree, walk your dog, and

count how often he barks.” [ Proofs from THE BOOK, M. AIGNER AND G. ZIEGLER ]
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Labeled trees

For illustration of recursive decomposition method let us consider the set
of labeled trees.

How many labeled trees are there on vertex set [n] := {1, · · · , n}?

2

1

t(i)
t(n−i)
n−i

Let t(n) be the number of rooted trees on [n].
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Recursive method
[ NIJENHUIS–WILF 79; FLAJOLET–ZIMMERMAN–VAN CUTSEM 94 ]

This yields a polynomial time algorithm to compute the exact number of trees.



Uniform Sampling
[ NIJENHUIS–WILF 79; FLAJOLET–ZIMMERMAN–VAN CUTSEM 94 ]

Uniform sampling procedure as a reverse procedure of the decomposition.
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• calling ΓB(z) independently k times and let γ = {ΓB(z), . . . ,ΓB(z)}
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Labeled cubic planar graphs
[ BODIRSKY–K.–LÖFFLER–MCDIARMID 07 ]
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The number of cubic planar graphs on n vertices is asymptotically

∼ αn−7/2ρ−nn! , where ρ−1 .
= 3.1325



Labeled cubic planar graphs
[ BODIRSKY–K.–LÖFFLER–MCDIARMID 07 ]
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The number of cubic planar graphs on n vertices is asymptotically

∼ αn−7/2ρ−nn! , where ρ−1 .
= 3.1325

What is the chromatic number of a random cubic planar graph G that is

chosen uniformly at random among labeled cubic planar graphs on [n]?
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• χ(G) ≤ 4 [ Four colour theorem ]

• If G is connected and is neither a complete graph nor an odd cycle,

χ(G) ≤ ∆(G) = 3 [ Brooks’ theorem ]
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Let G be a cubic planar graph.

• χ(G) ≤ 4 [ Four colour theorem ]

• If G is connected and is neither a complete graph nor an odd cycle,

χ(G) ≤ ∆(G) = 3 [ Brooks’ theorem ]

• If G contains a component isomorphic to K4, χ(G) = 4.

• If G contains no isolated K4, but at least one triangle, χ(G) = 3.
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Random cubic planar graphs
[ BODIRSKY–K.–LÖFFLER–MCDIARMID 07 ]

Let G
(k)
n be a random k vertex-connected cubic planar graph on n

vertices.

SUBGRAPH CONTAINMENTS

Let Xn be # isolated K4’s in G
(0)
n and Yn # triangles in G

(k)
n , k > 0. Then

lim
n→∞

Pr(Xn > 0) = 1 − e−
ρ4

4! , lim
n→∞

Pr(Yn > 0) = 1.

CHROMATIC NUMBER

lim
n→∞

Pr(χ(G(0)
n ) = 4) = lim

n→∞
Pr(Xn > 0) = 1 − e−

ρ4

4!

lim
n→∞

Pr(χ(G(0)
n ) = 3) = lim

n→∞
Pr(Xn = 0, Yn > 0) = e−

ρ4

4!
.
= 0.9995 .

For k = 1, 2, 3, limn→∞ Pr(χ(G
(k)
n ) = 3) = limn→∞ Pr(Yn > 0) = 1 .



Outline

I. Phase transition

• Introduction to phase transition

• Erdős–Rényi random graph

– Phase transition

– Limit theorems for the giant component

– Critical phase

• Random graphs with given degree sequence

II. Enumeration and random sampling

• Recursive decomposition

• Singularity analysis, Boltzmann sampler, probabilistic analysis

• Planar structures, minors and genus



Labeled planar structures
[ GIMÉNEZ–NOY; BODIRSKY–GRÖPL–K.; MCDIARMID–STEGER–WELSH; OSTHUS–PRÖMEL–TARAZ; · · · ]

The number of planar structures on n vertices is asymp. ∼ α n−β γnn!.

Let Gn be a random planar structure on n vertices. Then as n → ∞,

• Gn is connected with probability tending to a constant pcon, and

• χ(Gn) is three with probability tending to a constant pχ.

Running time of uniform sampler: Õ(nk) recursive method (O(nk) best)

Classes β γ pcon pχ k

Forests 5/2† 2.71† 1/
√

e† 0† 3 (1)†

Outerplanar graphs 5/2† 7.32† 0.861† 1† 4†

Planar graphs 7/2† 27.2† 0.963† ?† 7 (2‡)

Cubic planar graphs 7/2† 3.13† ≥ 0.998† 0.999† 6†

† GIMÉNEZ–NOY 05 ; ‡ FUSY 05
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Difficulty with unlabeled planar structures is symmetry:

• Recursive method: decomposition along symmetry

• Pólya theory: symmetry vs orbits of automorphism group of a graph
• Boltzmann sampler: composition operation, cycle-pointing

Classes Asymptotic number Uniform sampling

Outerplanar graphs cn−5/27.5n [ BODIRSKY–K. 06 ]

[ BODIRSKY–FUSY–K.–VIGERSKE 05 ] [ BODIRSKY–FUSY–K.–VIGERSKE 07 ]

2-con. planar graphs ? [ BODIRSKY–GRÖPL–K. 05 ]

• Dissimilarity theorem [ CHAPUY–FUSY–K.–SHOILEKOVA 08 +]

−→ Analytic expression for the series counting labeled planar graphs
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Concluding remarks

• Phase transition

– a small change of parameters of a system near the critical value

can significantly affect its globally observed behaviour

– in statistical physics, computer science, percolation, · · ·

• Enumeration

– essential tool in random discrete structures

– analytic combinatorics combined with probabilistic analysis

• Random sampling

– empirical/theoretical properties of a large system

– Recursive method vs Boltzmann sampler



Thank you very much!
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