Asymptotic properties of graphs on orientable surfaces

Mihyun Kang

Doctoral School Discrete Mathematics

Outline

I. Erdős-Rényi Random Graphs

II. Random Graphs on Surfaces

III. Proof Ideas

Part I. Erdős–Rényi Random Graph *G*(*n*, *m*)

chosen uniformly at random among all graphs with n vertices and m edges

Emergence of "Giant" Component

L(d) = # vertices in the largest component in G(n, m), where $m = d \cdot \frac{n}{2}$

Theorem		[ERDŐS-RÉNYI 60]
● If <i>d</i> < 1, whp	$L(d) = O(\log n)$	
• If <i>d</i> = 1, whp	$L(d) = \Theta(n^{2/3})$	
• If <i>d</i> > 1, whp	$L(d) = \Theta(n)$	
•••		
•••		
•		
• •	••	

 $\Theta(n^{2/3})$

 $O(\log n)$

Θ(n)

Emergence of "Giant" Component

L(d) = # vertices in the largest component in G(n, m), where $m = d \cdot \frac{n}{2}$

Theorem

[ERDŐS-RÉNYI 60]

• If d < 1, whp $L(d) = O(\log n)$

and the largest component is a tree and all other components are either trees or unicyclic components.

• If d = 1, whp $L(d) = \Theta(n^{2/3})$

Emergence of "Giant" Component

L(d) = # vertices in the largest component in G(n, m), where $m = d \cdot \frac{n}{2}$

Theorem

[ERDŐS-RÉNYI 60]

• If d < 1, whp $L(d) = O(\log n)$

and the largest component is a tree and all other components are either trees or unicyclic components.

- If d = 1, whp $L(d) = \Theta(n^{2/3})$
- If d > 1, whp $L(d) = (1 + o(1)) \rho n$

where $\rho = \rho(d) \in (0, 1)$ is the unique positive solution of $1 - \rho = e^{-d\rho}$,

and the largest component contains more than two cycles, while all but the largest component are trees or unicyclic components of order $O(\log n)$.

Critical Phenomenon

Let $d = 1 + \epsilon$ for $\epsilon = o(1)$.

Theorem

[BOLLOBÁS 84; ŁUCZAK 90]

- If $\epsilon n^{1/3} \to -\infty$, whp
- If $\epsilon n^{1/3} \rightarrow \lambda$, a constant, whp
- If $\epsilon n^{1/3} \to +\infty$, whp

$$L(1 + \epsilon) = 2\epsilon^{-2} \log |\epsilon|^3 n \ll n^{2/3}$$
$$L(1 + \epsilon) = \Theta(n^{2/3})$$
$$L(1 + \epsilon) = (1 + o(1)) 2\epsilon n \gg n^{2/3}$$

Part II. Random Graphs on Surfaces

Mihyun Kang (TU Graz, Austria) Graphs on orientable surfaces

Embeddability on \mathbb{S}_g

Let \mathbb{S}_g be the orientable surface of genus g > 0.

Embeddability on \mathbb{S}_g

Let \mathbb{S}_g be the orientable surface of genus g > 0.

A connected graph is embeddable on S_g, if it has an embedding on S_g such that every face is homeomorphic to a disc.

Embeddability on \mathbb{S}_g

Let \mathbb{S}_g be the orientable surface of genus g > 0.

- A connected graph is embeddable on S_g, if it has an embedding on S_g such that every face is homeomorphic to a disc.
- A graph is embeddable on S_g, if each of its connected components is embeddable on a surface S_{gi} and ∑_i g_i ≤ g.

Embeddability on \mathbb{S}_g

Let \mathbb{S}_g be the orientable surface of genus g > 0.

- A connected graph is embeddable on S_g, if it has an embedding on S_g such that every face is homeomorphic to a disc.
- A graph is embeddable on S_g, if each of its connected components is embeddable on a surface S_{gi} and ∑_i g_i ≤ g.
- A connected graph embedded on S_g is called a map on S_g.

Embeddability on \mathbb{S}_g

Let \mathbb{S}_g be the orientable surface of genus g > 0.

- A connected graph is embeddable on S_g, if it has an embedding on S_g such that every face is homeomorphic to a disc.
- A graph is embeddable on S_g, if each of its connected components is embeddable on a surface S_{gi} and ∑_i g_i ≤ g.
- A connected graph embedded on S_g is called a map on S_g.

Facewidth

- The facewidth of a map is the minimum number of intersections that a non-contractible circle has with the map.
- The facewidth of a graph is the maximal facewidth of all its embeddings.

Random Planar Graphs

Let P(n, m) be a uniform random planar graph with *n* vertices and *m* edges and L(d) denote the number of vertices in the largest component in

 $P(n, d \cdot \frac{n}{2})$. Let $d = 1 + \epsilon$ for $\epsilon = o(1)$.

Random Planar Graphs

Let P(n, m) be a uniform random planar graph with *n* vertices and *m* edges and L(d) denote the number of vertices in the largest component in $P(n, d \cdot \frac{n}{2})$. Let $d = 1 + \epsilon$ for $\epsilon = o(1)$.

Theorem	[K Łuczak 12]
• If $\epsilon n^{1/3} \to -\infty$, whp If $\epsilon n^{1/3} \to \infty$, whp	$L(1+\epsilon) = 2\epsilon^{-2} \log \epsilon ^3 n \ll n^{2/3}$ $L(1+\epsilon) = (1+o(1))\epsilon n \gg n^{2/3}$

 $n - 1 \ll n^{3/5}$

Mihyun Kang (TU Graz, Austria) Graphs on orientable surfaces

 $l >> n^{2/3}$

Random Planar Graphs

Let P(n, m) be a uniform random planar graph with *n* vertices and *m* edges and L(d) denote the number of vertices in the largest component in $P(n, d \cdot \frac{n}{2})$. Let $d = 1 + \epsilon$ for $\epsilon = o(1)$.

Theorem	[K Łuczak 12]
• If $\epsilon n^{1/3} \to -\infty$, whp If $\epsilon n^{1/3} \to \infty$, whp	$L(1+\epsilon) = 2\epsilon^{-2} \log \epsilon ^3 n \ll n^{2/3}$ $L(1+\epsilon) = (1+o(1)) \epsilon n \gg n^{2/3}$
• If $\epsilon n^{2/5} \to -\infty$, whp If $\epsilon n^{2/5} \to \infty$, whp	$n - L(2 + \epsilon) = \epsilon n \gg n^{3/5}$ $n - L(2 + \epsilon) = \Theta(\epsilon^{-3/2}) \ll n^{3/5}$

 $1 >> n^{2/3}$

 $n - 1 \ll n^{3/5}$

Random Graphs with Genus g > 0

Let $S_g(n, m)$ be a uniform random graph on a surface of genus g > 0with *n* vertices and *m* edges and L(d) denote the number of vertices in the largest component in $S_g(n, d \cdot \frac{n}{2})$. Let $d = 1 + \epsilon$ for $\epsilon = o(1)$.

Theorem	[K Mosshammer-Sprüssel 15+]
• If $\epsilon n^{1/3} \to -\infty$, whp If $\epsilon n^{1/3} \to \infty$, whp	$L(1+\epsilon) = 2\epsilon^{-2} \log \epsilon ^3 n \ll n^{2/3}$ $L(1+\epsilon) = (1+o(1)) \epsilon n \gg n^{2/3}$
• If $\epsilon n^{2/5} \to -\infty$, whp If $\epsilon n^{2/5} \to \infty$, whp	$n - L(2 + \epsilon) = \epsilon n \gg n^{3/5}$ $n - L(2 + \epsilon) = \Theta(\epsilon^{-3/2}) \ll n^{3/5}$

Mihyun Kang (TU Graz, Austria) Graphs on orientable surfaces

 $1 >> n^{2/3}$

 $n - L << n^{3/5}$

Part III. Proof Ideas

- Internal structure: Core-Kernel
- Constructive decomposition along connectivity
- Singularity analysis of generating functions
- Probabilistic analysis

complex com. unicyc. com. trees

 \Rightarrow Core of G: maximal subgraph of G with minimum degree two

complex com. unicyc. com. trees

 \Rightarrow Core of G: maximal subgraph of G with minimum degree two

complex com. unicyc. com. trees

 \Rightarrow Core of G: maximal subgraph of G with minimum degree two

- \Rightarrow Core of G: maximal subgraph of G with minimum degree two
- \Rightarrow Kernel of G: obtained from core of G by replacing each path by an edge

- \Rightarrow Core of G: maximal subgraph of G with minimum degree two
- \Rightarrow Kernel of G: obtained from core of G by replacing each path by an edge

- \Rightarrow Core of G: maximal subgraph of G with minimum degree two
- \Rightarrow Kernel of G: obtained from core of G by replacing each path by an edge
- \Rightarrow G is embeddable on \mathbb{S}_g if and only if kernel of G is embeddable on \mathbb{S}_g

▷ Cubic weighted multigraphs

- Cubic weighted multigraphs
- \triangleright Constructive decomposition: 1-conn. \implies 2-conn.

Theorem

[ROBERTSON-VITRAY 90]

• Every 1-connected graph *C* embeddable on S_g with facewidth $k \ge 2$ has a unique 2-conn. component embeddable on S_g with facewidth *k*, while all other 2-connected components are planar.

- Cubic weighted multigraphs
- \triangleright Constructive decomposition: 1-conn. \Longrightarrow 2-conn. \Longrightarrow 3-conn.

Theorem

[ROBERTSON-VITRAY 90]

- Every 1-connected graph *C* embeddable on S_g with facewidth $k \ge 2$ has a unique 2-conn. component embeddable on S_g with facewidth *k*, while all other 2-connected components are planar.
- Every 2-connected graph *B* embeddable on S_g with facewidth $k \ge 3$ has a unique 3-conn. component embeddable on S_g with facewidth *k*, while all other 3-conn. components are planar.

- Cubic weighted multigraphs
- $\triangleright~$ Constructive decomposition: 1-conn. $\Longrightarrow~$ 2-conn. $\implies~$ 3-conn.

Theorem

[ROBERTSON-VITRAY 90]

- Every 1-connected graph *C* embeddable on S_g with facewidth $k \ge 2$ has a unique 2-conn. component embeddable on S_g with facewidth *k*, while all other 2-connected components are planar.
- Every 2-connected graph *B* embeddable on S_g with facewidth $k \ge 3$ has a unique 3-conn. component embeddable on S_g with facewidth *k*, while all other 3-conn. components are planar.
- Every 3-connected graph embeddable on S_g has a unique embedding on S_g if its facewidth is at least 2g + 3

- Cubic weighted multigraphs
- \triangleright Constructive decomposition: 1-conn. \Longrightarrow 2-conn. \Longrightarrow 3-conn.
- \triangleright Dual of 3-connected cubic maps on \mathbb{S}_g are triangulations on \mathbb{S}_g

in which separating double edges, separating loops, and separating pair of loops are forbidden

Theorem

[ROBERTSON-VITRAY 90]

- Every 1-connected graph *C* embeddable on S_g with facewidth $k \ge 2$ has a unique 2-conn. component embeddable on S_g with facewidth *k*, while all other 2-connected components are planar.
- Every 2-connected graph *B* embeddable on S_g with facewidth $k \ge 3$ has a unique 3-conn. component embeddable on S_g with facewidth *k*, while all other 3-conn. components are planar.
- Every 3-connected graph embeddable on S_g has a unique embedding on S_g if its facewidth is at least 2g + 3

Generating Functions

Theorem

$$G_g(y) = \sum_{\sum g_i \le g} \frac{1}{k!} \prod_{i=1}^k C_{g_i}(y)$$

$$C_g(y) \sim C_g^{\text{fw} \ge 2}(y) \sim B_g^{\text{fw} \ge 2} \left(\frac{y}{1 - Q_0(y)}\right)$$

$$B_g(y) \sim B_g^{fw \ge 3}(y) \sim T_g^{fw \ge 3}(y(1 + N_0(y)))$$

$$T_g^{\text{fw}\geq 3}(y) \sim T_g^{\text{fw}\geq 2g+3}(y) \sim S_g(y)$$

- $G_g(y)$: cubic multigraphs on \mathbb{S}_g
- $C_q(y)$: 1-connected cubic multigraphs on \mathbb{S}_q
- $Q_0(y)$: 1-connected cubic multigraphs on S_0 rooted at a loop
- $B_g(y)$: 2-connected cubic multigraphs on \mathbb{S}_g
- $N_0(y)$: 2-connected cubic multigraphs on \mathbb{S}_0 rooted at an edge
- $T_q(y)$: 3-connected cubic graphs on \mathbb{S}_q
- $S_g(y)$: simple triangulations on \mathbb{S}_g

Theorem

[FANG-K.- MOSSHAMMER-SPRÜSSEL 15]

Let $K_g(n)$ denote the number of cubic weighted multigraphs embeddable on \mathbb{S}_g with *n* vertices, for $n \in \mathbb{N}$ even and $g \ge 0$. Then

$$K_g(n) \sim c_g n^{5/2(g-1)-1} \gamma^n n!$$

where c_g is a constant depending only on genus g and $\gamma = \frac{79^{3/4}}{54^{1/2}} \approx 3.6$.

Theorem

[FANG-K.- MOSSHAMMER-SPRÜSSEL 15]

Let $K_g(n)$ denote the number of cubic weighted multigraphs embeddable on \mathbb{S}_g with *n* vertices, for $n \in \mathbb{N}$ even and $g \ge 0$. Then

$$K_g(n) \sim c_g n^{5/2(g-1)-1} \gamma^n n!$$

where c_g is a constant depending only on genus g and $\gamma = \frac{79^{3/4}}{54^{1/2}} \approx 3.6$.

Theorem

[K.- MOSSHAMMER-SPRÜSSEL 15+]

Let \mathcal{G} be a graph chosen uniformly at random among all cubic weighted multigraphs embeddable on \mathbb{S}_g with *n* vertices, for $n \in \mathbb{N}$ even and $g \ge 1$. Then with probability tending to one as $n \to \infty$

Theorem

[FANG-K.- MOSSHAMMER-SPRÜSSEL 15]

Let $K_g(n)$ denote the number of cubic weighted multigraphs embeddable on \mathbb{S}_g with *n* vertices, for $n \in \mathbb{N}$ even and $g \ge 0$. Then

$$K_g(n) \sim c_g n^{5/2(g-1)-1} \gamma^n n!$$

where c_g is a constant depending only on genus g and $\gamma = \frac{79^{3/4}}{54^{1/2}} \approx 3.6$.

Theorem

[K.- MOSSHAMMER-SPRÜSSEL 15+]

Let \mathcal{G} be a graph chosen uniformly at random among all cubic weighted multigraphs embeddable on \mathbb{S}_g with *n* vertices, for $n \in \mathbb{N}$ even and $g \ge 1$. Then with probability tending to one as $n \to \infty$

• \mathcal{G} is not embeddable on \mathbb{S}_{g-1} ;

Theorem

[FANG-K.- MOSSHAMMER-SPRÜSSEL 15]

Let $K_g(n)$ denote the number of cubic weighted multigraphs embeddable on \mathbb{S}_g with *n* vertices, for $n \in \mathbb{N}$ even and $g \ge 0$. Then

$$K_g(n) \sim c_g n^{5/2(g-1)-1} \gamma^n n!$$

where c_g is a constant depending only on genus g and $\gamma = \frac{79^{3/4}}{54^{1/2}} \approx 3.6$.

Theorem

[K.- MOSSHAMMER-SPRÜSSEL 15+]

Let \mathcal{G} be a graph chosen uniformly at random among all cubic weighted multigraphs embeddable on \mathbb{S}_g with *n* vertices, for $n \in \mathbb{N}$ even and $g \ge 1$. Then with probability tending to one as $n \to \infty$

- \mathcal{G} is not embeddable on \mathbb{S}_{g-1} ;
- the largest component in *G* is a unique non-planar component and is of order *n* − *O*(1).

- \Rightarrow Core of G: maximal subgraph of G with minimum degree two
- \Rightarrow Kernel of G: graph obtained from the core of G by replacing each path

- \Rightarrow Core of G: maximal subgraph of G with minimum degree two
- \Rightarrow Kernel of G: graph obtained from the core of G by replacing each path

- \Rightarrow Core of G: maximal subgraph of G with minimum degree two
- \Rightarrow Kernel of G: graph obtained from the core of G by replacing each path

- \Rightarrow Core of G: maximal subgraph of G with minimum degree two
- \Rightarrow Kernel of G: graph obtained from the core of G by replacing each path

- \Rightarrow Core of G: maximal subgraph of G with minimum degree two
- \Rightarrow Kernel of G: graph obtained from the core of G by replacing each path

- \Rightarrow Core of G: maximal subgraph of G with minimum degree two
- \Rightarrow Kernel of G: graph obtained from the core of G by replacing each path

- \Rightarrow Core of G: maximal subgraph of G with minimum degree two
- \Rightarrow Kernel of G: graph obtained from the core of G by replacing each path

Construct complex graph *G* embeddable on S_g by

• choosing the kernel of G from the set of possible candidates

$$=\sum_{i,d} K_g(2\ell-d)$$

Construct complex graph *G* embeddable on S_g by

- choosing the kernel of G from the set of possible candidates
- putting on its edges vertices of degree two to obtain the core of G

$$=\sum_{i,d} \mathcal{K}_g(2\ell-d) \frac{(k)_i}{(2\ell-d)!} \begin{pmatrix} i-a\ell-1\\ 3\ell-d-1 \end{pmatrix}$$

Construct complex graph G embeddable on \mathbb{S}_g by

- choosing the kernel of G from the set of possible candidates
- putting on its edges vertices of degree two to obtain the core of G
- adding a forest rooted at vertices of the core of G

$$= \sum_{i,d} K_g(2\ell - d) \frac{(k)_i}{(2\ell - d)!} \binom{i - a \ell - 1}{3\ell - d - 1} i k^{k-i-1}$$

Construct complex graph *G* embeddable on S_g by

- choosing the kernel of G from the set of possible candidates
- putting on its edges vertices of degree two to obtain the core of G
- adding a forest rooted at vertices of the core of G

 $C_g(k, k + \ell) = \#$ complex graphs on \mathbb{S}_g with k vertices and $k + \ell$ edges

$$= \sum_{i,d} \kappa_g(2\ell - d) \frac{(k)_i}{(2\ell - d)!} \begin{pmatrix} i - a \ell - 1 \\ 3\ell - d - 1 \end{pmatrix} i k^{k-i-1}$$

in which main contribution comes from the terms

$$i = (1 + O(\sqrt{\ell/k}) + O(1/\sqrt{\ell}))\sqrt{3k\ell}$$
 and $d = \Theta(\sqrt{\ell^3/k})$

 $S_g(n,m) = \#$ graphs on \mathbb{S}_g with *n* vertices and *m* edges

 $C_g(k, k + \ell) = \#$ complex graphs on \mathbb{S}_g with k vertices and $k + \ell$ edges $U(n - k, m - k - \ell) = \#$ graphs without complex components with n - k vertices and $m - k - \ell$ edges

 $S_g(n,m) = \#$ graphs on \mathbb{S}_g with *n* vertices and *m* edges

$$=\sum_{k,\ell}\binom{n}{k}C_g(k,k+\ell)U(n-k,m-k-\ell)$$

 $C_g(k, k + \ell) = \#$ complex graphs on \mathbb{S}_g with k vertices and $k + \ell$ edges $U(n - k, m - k - \ell) = \#$ graphs without complex components with n - k vertices and $m - k - \ell$ edges

 $S_g(n,m) = \#$ graphs on \mathbb{S}_g with *n* vertices and *m* edges

$$=\sum_{k,\ell}\binom{n}{k}C_g(k,k+\ell)U(n-k,m-k-\ell)$$

• When $m = (1 + \varepsilon)\frac{n}{2}$, $n^{-1/3} \ll \varepsilon \ll 1$, the main contribution comes from

$$k = (1 + o(1)) \varepsilon n$$
 and $\ell = (\alpha + o(1)) \varepsilon n^{1/3}$.

 $C_g(k, k + \ell) = \#$ complex graphs on \mathbb{S}_g with k vertices and $k + \ell$ edges $U(n - k, m - k - \ell) = \#$ graphs without complex components with n - k vertices and $m - k - \ell$ edges

 $S_g(n,m) = \#$ graphs on \mathbb{S}_g with *n* vertices and *m* edges

$$= \sum_{k,\ell} \binom{n}{k} C_g(k,k+\ell) U(n-k,m-k-\ell)$$

• When $m = (1 + \varepsilon)\frac{n}{2}$, $n^{-1/3} \ll \varepsilon \ll 1$, the main contribution comes from

$$k = (1 + o(1)) \varepsilon n$$
 and $\ell = (\alpha + o(1)) \varepsilon n^{1/3}$.

• When $m = (2 + \varepsilon)\frac{n}{2}$, $n^{-2/5} \ll \varepsilon \ll 1$, the main contribution comes from

$$k = n - (\beta + o(1)) \varepsilon^{-3/2}$$
 and $\ell = t + (2\beta + o(1)) \varepsilon^{-3/2}$

Two Critical Periods

Let $S_g(n, m)$ be a graph chosen uniformly at random among all graphs embeddable on \mathbb{S}_g of genus $g \ge 1$ with *n* vertices and *m* edges.

Let C_1 denote the largest component in $S_g(n, m)$.

Two Critical Periods

Let $S_g(n, m)$ be a graph chosen uniformly at random among all graphs embeddable on S_g of genus $g \ge 1$ with *n* vertices and *m* edges. Let C_1 denote the largest component in $S_a(n, m)$.

Theorem

[K.- MOSSHAMMER-SPRÜSSEL 15+]

• When $m = (1 + \varepsilon) \frac{n}{2}$, $n^{-1/3} \ll \varepsilon \ll 1$,

 \mathcal{C}_1 is not embeddable on \mathbb{S}_{g-1} and the unique non-planar component. Furthermore, whp

$$|C_1| = (1 + o(1)) \varepsilon n, \gg n^{2/3}$$

Two Critical Periods

Let $S_g(n, m)$ be a graph chosen uniformly at random among all graphs embeddable on S_g of genus $g \ge 1$ with *n* vertices and *m* edges. Let C_1 denote the largest component in $S_a(n, m)$.

Theorem

[K.- MOSSHAMMER-SPRÜSSEL 15+]

• When $m = (1 + \varepsilon) \frac{n}{2}$, $n^{-1/3} \ll \varepsilon \ll 1$,

 \mathcal{C}_1 is not embeddable on \mathbb{S}_{g-1} and the unique non-planar component. Furthermore, whp

$$|C_1| = (1 + o(1)) \varepsilon n, \gg n^{2/3}$$

• When $m = (2 + \varepsilon)\frac{n}{2}$, $n^{-2/5} \ll \varepsilon \ll 1$, whp

$$|n-|\mathcal{C}_1| = \Theta(\varepsilon^{-3/2}) \ll n^{3/5}$$

Overview

G(n, m) Erdős–Rényi random graph

[ERDŐS-RÉNYI 60]

- Phase transition and critical phenomenon
- Emergence of giant component when # edges $m = \frac{n}{2} + O(n^{3/2})$

Overview

Outlook

Let $S_g(n, m)$ be a graph chosen uniformly at random among all graphs embeddable on \mathbb{S}_g of genus g = g(n) with *n* vertices and *m* edges.

Outlook

Let $S_g(n, m)$ be a graph chosen uniformly at random among all graphs embeddable on \mathbb{S}_g of genus g = g(n) with *n* vertices and *m* edges.

Conjecture

- There exist $\alpha = \alpha(n), \beta = \beta(n)$ satisfying $\alpha(n) \le \beta(n)$ such that
 - if g ≪ α,
 S_g(n, m) exhibits the second critical phase analogous to P(n, m), but with different critical exponent
 - if $g \gg \beta$,

 $S_g(n, m)$ does not exhibit the second critical phase analogous to G(n, m)