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Part I.

Erdős–Rényi Random Graph G(n,m)

chosen uniformly at random among all graphs with n vertices and m edges

average vertex degree
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Emergence of “Giant” Component

L(d) = # vertices in the largest component in G(n,m), where m = d · n
2

Theorem [ ERDŐS–RÉNYI 60 ]

If d < 1, whp L(d) = O(log n)

If d = 1, whp L(d) = Θ(n2/3)

If d > 1, whp L(d) = Θ(n)

2/3nO(      )O(log n) nO(   )
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Emergence of “Giant” Component

L(d) = # vertices in the largest component in G(n,m), where m = d · n
2

Theorem [ ERDŐS–RÉNYI 60 ]

If d < 1, whp L(d) = O(log n)

and the largest component is a tree and all other components are
either trees or unicyclic components.

If d = 1, whp L(d) = Θ(n2/3)

If d > 1, whp

L(d) = (1 + o(1)) ρn

where ρ = ρ(d) ∈ (0, 1) is the unique positive solution of 1− ρ = e−d ρ,

and the largest component contains more than two cycles,
while all but the largest component are trees or unicyclic components
of order O(log n).
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Theorem [ ERDŐS–RÉNYI 60 ]

If d < 1, whp L(d) = O(log n)

and the largest component is a tree and all other components are
either trees or unicyclic components.

If d = 1, whp L(d) = Θ(n2/3)

If d > 1, whp L(d) = (1 + o(1)) ρn

where ρ = ρ(d) ∈ (0, 1) is the unique positive solution of 1− ρ = e−d ρ,

and the largest component contains more than two cycles,
while all but the largest component are trees or unicyclic components
of order O(log n).

Mihyun Kang (TU Graz, Austria) Graphs on orientable surfaces



Critical Phenomenon

Let d = 1 + ε for ε = o(1).

Theorem [ BOLLOBÁS 84; ŁUCZAK 90 ]

If ε n1/3 → −∞, whp L(1 + ε) = 2ε−2 log |ε|3n � n2/3

If ε n1/3 → λ, a constant, whp L(1 + ε) = Θ(n2/3)

If ε n1/3 → +∞, whp L(1 + ε) = (1 + o(1)) 2 ε n � n2/3

2/3<< 2/3 2/3
>> 2/3<<

n nO(      ) n n
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Part II.

Random Graphs on Surfaces

Mihyun Kang (TU Graz, Austria) Graphs on orientable surfaces



Graphs on a Surface

Embeddability on Sg

Let Sg be the orientable surface of genus g > 0.

A connected graph is embeddable on Sg , if it has an embedding on Sg

such that every face is homeomorphic to a disc.

A graph is embeddable on Sg , if each of its connected components is
embeddable on a surface Sgi and

∑
i gi ≤ g.

A connected graph embedded on Sg is called a map on Sg .

Facewidth

The facewidth of a map is the minimum number of intersections that
a non-contractible circle has with the map.

The facewidth of a graph is the maximal facewidth of all its embeddings.
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Random Planar Graphs

Let P(n,m) be a uniform random planar graph with n vertices and m edges
and L(d) denote the number of vertices in the largest component in

P(n, d · n
2 ). Let d = 1 + ε for ε = o(1).

Theorem [ K.– ŁUCZAK 12 ]

If ε n1/3 → −∞, whp L(1 + ε) = 2ε−2 log |ε|3n � n2/3

If ε n1/3 →∞, whp L(1 + ε) = (1 + o(1)) ε n � n2/3

If ε n2/5 → −∞, whp n − L(2 + ε) = |ε n| � n3/5

If ε n2/5 →∞, whp n − L(2 + ε) = Θ(ε−3/2) � n3/5

L  2/3 3/5
nn − L>>  << n

Mihyun Kang (TU Graz, Austria) Graphs on orientable surfaces



Random Planar Graphs

Let P(n,m) be a uniform random planar graph with n vertices and m edges
and L(d) denote the number of vertices in the largest component in

P(n, d · n
2 ). Let d = 1 + ε for ε = o(1).

Theorem [ K.– ŁUCZAK 12 ]

If ε n1/3 → −∞, whp L(1 + ε) = 2ε−2 log |ε|3n � n2/3

If ε n1/3 →∞, whp L(1 + ε) = (1 + o(1)) ε n � n2/3

If ε n2/5 → −∞, whp n − L(2 + ε) = |ε n| � n3/5

If ε n2/5 →∞, whp n − L(2 + ε) = Θ(ε−3/2) � n3/5

L  2/3 3/5
nn − L>>  << n

Mihyun Kang (TU Graz, Austria) Graphs on orientable surfaces



Random Planar Graphs

Let P(n,m) be a uniform random planar graph with n vertices and m edges
and L(d) denote the number of vertices in the largest component in

P(n, d · n
2 ). Let d = 1 + ε for ε = o(1).

Theorem [ K.– ŁUCZAK 12 ]

If ε n1/3 → −∞, whp L(1 + ε) = 2ε−2 log |ε|3n � n2/3

If ε n1/3 →∞, whp L(1 + ε) = (1 + o(1)) ε n � n2/3

If ε n2/5 → −∞, whp n − L(2 + ε) = |ε n| � n3/5

If ε n2/5 →∞, whp n − L(2 + ε) = Θ(ε−3/2) � n3/5

L  2/3 3/5
nn − L>>  << n

Mihyun Kang (TU Graz, Austria) Graphs on orientable surfaces



Random Graphs with Genus g > 0

Let Sg(n,m) be a uniform random graph on a surface of genus g > 0
with n vertices and m edges and L(d) denote the number of vertices in the

largest component in Sg(n, d · n
2 ). Let d = 1 + ε for ε = o(1).

Theorem [ K.– MOSSHAMMER–SPRÜSSEL 15+ ]

If ε n1/3 → −∞, whp L(1 + ε) = 2ε−2 log |ε|3n � n2/3

If ε n1/3 →∞, whp L(1 + ε) = (1 + o(1)) ε n � n2/3

If ε n2/5 → −∞, whp n − L(2 + ε) = |ε n| � n3/5

If ε n2/5 →∞, whp n − L(2 + ε) = Θ(ε−3/2) � n3/5

L  2/3 3/5
nn − L>>  << n
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Part III.

Proof Ideas

Internal structure: Core-Kernel

Constructive decomposition along connectivity

Singularity analysis of generating functions

Probabilistic analysis
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Internal Structure

complex com.

unicyc. com.

trees
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Internal Structure

complex com.

unicyc. com.

trees

⇒ Core of G: maximal subgraph of G with minimum degree two

⇒ Kernel of G: obtained from core of G by replacing each path by an edge

⇒ G is embeddable on Sg if and only if kernel of G is embeddable on Sg
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Typical Kernel on Sg with g > 0

B Cubic weighted multigraphs

B Constructive decomposition: 1-conn. =⇒ 2-conn.

=⇒ 3-conn.

B Dual of 3-connected cubic maps on Sg are triangulations on Sg

B in which separating double edges, separating loops, and separating pair of loops are forbidden

Theorem [ ROBERTSON–VITRAY 90 ]

Every 1-connected graph C embeddable on Sg with facewidth k ≥ 2 has
a unique 2-conn. component embeddable on Sg with facewidth k , while
all other 2-connected components are planar.

Every 2-connected graph B embeddable on Sg with facewidth k ≥ 3 has
a unique 3-conn. component embeddable on Sg with facewidth k , while
all other 3-conn. components are planar.

Every 3-connected graph embeddable on Sg has a unique embedding
on Sg if its facewidth is at least 2g + 3
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Generating Functions

Theorem [ FANG–K.– MOSSHAMMER–SPRÜSSEL 15 ]

Gg(y) =
∑

∑
gi≤g

1
k !

k∏
i=1

Cgi (y)

Cg(y) ∼ C fw≥2
g (y) ∼ B fw≥2

g

(
y

1−Q0(y)

)

Bg(y) ∼ B fw≥3
g (y) ∼ T fw≥3

g (y(1 + N0(y)))

T fw≥3
g (y) ∼ T fw≥2g+3

g (y) ∼ Sg(y)

Gg (y): cubic multigraphs on Sg

Cg (y): 1-connected cubic multigraphs on Sg

Q0(y): 1-connected cubic multigraphs on S0 rooted at a loop

Bg (y): 2-connected cubic multigraphs on Sg

N0(y): 2-connected cubic multigraphs on S0 rooted at an edge

Tg (y): 3-connected cubic graphs on Sg

Sg (y): simple triangulations on Sg
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Cubic Multigraphs on Sg

Theorem [ FANG–K.– MOSSHAMMER–SPRÜSSEL 15 ]

Let Kg(n) denote the number of cubic weighted multigraphs embeddable
on Sg with n vertices, for n ∈ N even and g ≥ 0. Then

Kg(n) ∼ cg n5/2(g−1)−1 γn n!

where cg is a constant depending only on genus g and γ = 793/4

541/2 ≈ 3.6.

Theorem [ K.– MOSSHAMMER–SPRÜSSEL 15+ ]

Let G be a graph chosen uniformly at random among all cubic weighted
multigraphs embeddable on Sg with n vertices, for n ∈ N even and g ≥ 1.
Then with probability tending to one as n→∞

G is not embeddable on Sg−1;

the largest component in G is a unique non-planar component and
is of order n −O(1).
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Complex Graphs on Sg

⇒ Core of G: maximal subgraph of G with minimum degree two

⇒ Kernel of G: graph obtained from the core of G by replacing each path
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Complex Graphs on Sg

Construct complex graph G embeddable on Sg by

choosing the kernel of G from the set of possible candidates

putting on its edges vertices of degree two to obtain the core of G

adding a forest rooted at vertices of the core of G

Cg(k , k + `) = # complex graphs on Sg with k vertices and k + ` edges

=
∑
i,d

Kg(2`− d)
(k)i

(2`− d)!

(
i − a `− 1
3`− d − 1

)
i k k−i−1

in which main contribution comes from the terms

i =(1 + O(
√
`/k) + O(1/

√
`))
√

3k` and d = Θ(
√
`3/k)
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√
`))
√

3k` and d = Θ(
√
`3/k)
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Graphs on Sg

Cg(k , k + `) = # complex graphs on Sg with k vertices and k + ` edges

U(n − k ,m − k − `) = # graphs without complex components

with n − k vertices and m − k − ` edges

Sg(n,m) = # graphs on Sg with n vertices and m edges

=
∑

k,`

(
n
k

)
Cg(k , k + `) U(n − k ,m − k − `)

When m = (1 + ε) n
2 , n−1/3 � ε� 1, the main contribution comes from

k = (1 + o(1)) ε n and ` = (α + o(1)) ε n1/3.

When m = (2 + ε) n
2 , n−2/5 � ε� 1, the main contribution comes from

k = n − (β + o(1)) ε−3/2 and ` = t + (2β + o(1)) ε−3/2.
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Two Critical Periods

Let Sg(n,m) be a graph chosen uniformly at random among all graphs
embeddable on Sg of genus g ≥ 1 with n vertices and m edges.

Let C1 denote the largest component in Sg(n,m).

Theorem [ K.– MOSSHAMMER–SPRÜSSEL 15+ ]

When m = (1 + ε) n
2 , n−1/3 � ε� 1,

C1 is not embeddable on Sg−1 and the unique non-planar component.

Furthermore, whp

|C1| = (1 + o(1)) ε n, � n2/3

When m = (2 + ε) n
2 , n−2/5 � ε� 1, whp

n − |C1| = Θ(ε−3/2) � n3/5
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Overview

G(n,m) Erdős–Rényi random graph [ ERDŐS–RÉNYI 60 ]

Phase transition and critical phenomenon

Emergence of giant component when # edges m = n
2 + O(n3/2)

Sg(n,m) with genus g ≥ 0 [ K.– ŁUCZAK 12; K.– MOSSHAMMER–SPRÜSSEL 15+ ]

Two critical periods

Emergence of giant component when # edges m = n
2 + O(n2/3)

# vertices outside giant component when # edges m = n + O(n3/5)
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Outlook

Let Sg(n,m) be a graph chosen uniformly at random among all graphs

embeddable on Sg of genus g = g(n) with n vertices and m edges.

Conjecture

There exist α = α(n), β = β(n) satisfying α(n) ≤ β(n) such that

– if g � α,

Sg(n,m) exhibits the second critical phase
analogous to P(n,m), but with different critical exponent

– if g � β,

Sg(n,m) does not exhibit the second critical phase

analogous to G(n,m)
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