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Asymptotic Normality of Giant Component

Assumed = p-(n—1) > 1and0 < p < 1 satisfies 1 — p = e 97,
N 2. p(l=p) .
Letp:=p - nand o° := edioz " N

Central limit theorem

Let N(0, 1) denote the standard normal distribution. Then

Lld =n 4 neo, 1)
g
for d constant [ STEPANOV 70; BEHRISCH-COJA-OGHLAN—K. 09]
for (d—1)°n - = [ PITTEL-WORMALD 05; BOLLOBAS—RIORDAN 12|
Proof techniques
@ Counting connected graphs inside-out [PWO05]
@ Stein’s method [ BC-OK 09 ]

@ Random walk [BR12]
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Local Limit Theorem for Giant Component

Assumed = p-(n—1) > 1and0 < p < 1 satisfies 1 — p = e 9.

— . 2. _pl=p) |
Letp:=p-nand o° := aaa g N
Theorem [ STEPANOV 70; PITTEL-WORMALD 05; BEHRISCH—COJA-OGHLAN-K. 09 ]

Let d > 1 be constant and / C R compact. For any k € N with o' (k — ) € /

LLT for joint distribution of # vertices and # edges

@ Recurrence formulas for # connected graphs [S70]
@ Counting connected graphs inside-out [PWO05]
@ Two round exposure and smoothing (for L¢(d)) [BC-OK 09 ]

@ Fourier analysis (for joint distribution) [BC-OK 14]



Part i
Random k-uniform Hypergraph Hi(n,p), k > 2



Standard Notion of Components

Vertex connectivity

@ A vertex v is said to be reachable from a vertex w
if there is a sequence Eq, ..., E; of hyperedges such that

ve Esj,we E;and |[EiN Ejyq| > 1foreachi=1,...,¢—1.

T G

E1 E> E|

@ The reachability is an equivalence relation, and
the equivalence classes are called components
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Phase Transition in Hi(n, p)

Li(d) = # vertices in the largest component, where d = p-(k —1)- (/")

Emergence of giant component [ SCHMIDT-PRUZAN—-SHAMIR 85
@ Ifd <1, whp Lyi(d) = O(log n)
@ Ifd>1, whp Li(d) = ©(n)

Local limit theorem for (# vertices, # edges) in the giant component

@ (d—1)0°n—o00, (d—1)°n=o0( |°gJ|%gn) [ KARONSKI-£UCZAK 02 ]

@ d > 1 constant [ BEHRISCH-COJA-OGHLAN—K. 14 ]

@ (d- 1)3 n— oo,d-1-0 [ BOLLOBAS—RIORDAN 14+ ]



Counting Connected k-uniform Hypergraphs

.. with n vertices and m edges

o m- X« Iogﬁ)gn [ KARONISKI—£UCZAK 02 |
O m-— ﬁ = @(n) [ BEHRISCH-COJA-OGHLAN-K. 14 ]
@ m-— ﬁ = o(n) [ BOLLOBAS—RIORDAN 14+ ]
(*] n1/3logz n<«m-— g < n fork=3 [ SATO-WORMALD 14+ ]

Proof techniques
@ Combinatorial enumeration [ KLo2 ]

@ Local limit theorem for the giant in Hi(n, p) [BC-OK 14; BR 14+]

@ Counting connected graphs inside-out (cores and kernels) [ SW 14+ ]



Higher Order Connectivity
[ BOLLOBAS—RIORDAN 12 ]
Let1 <j<k—1.
@ A j-element subset J; is said to be reachable from another j-set J»
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Higher Order Connectivity
[ BOLLOBAS—RIORDAN 12 ]
Let1 <j<k—1.
@ A j-element subset J; is said to be reachable from another j-set J»
if there is a sequence E;, ..., E; of hyperedges such that

JCE,hbCEand|ENEi| >jforeachi=1,...,0—1.

eg. k=3, j=2

Et Ei Eirt E

@ The reachability is an equivalence relation on j-sets, and
the equivalence classes are called j-connected component.
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Emergence of Giant ;-Component

Li(d) = # j-sets in the largest j-component, where d = p- ((’;) - 1) ()

Theorem [ COOLEY-PERSON—K. 13+ ]
@ Ifd <1, whp Li(d) = O(log n)
@ Ifd>1, whp Li(d) = ©(n’)

Remarks

@ Short alternative proof of [ Schmidt-Pruzan—Shamir 85 ]
@ Extension of Depth-First Search approach of [ Krivelevich—Sudakov 13 ]

@ Whend=1+¢foree (0,1),
whp 3 a loose path of length Q(¢2n)



Critical Phase in H(n, p)
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Critical Phase in H(n, p)

Lj(d) = # j-sets in the largest j-component

where d = p- <(’j‘)—1>(’k’3) andd = 1+4¢ for e = 0(1)

Theorem [ COOLEY-K.—KOCH 14+ ]
@ Ifen— —oco, whp Li(d) = O(e?log n)
@ If n— oo, whp Li(d) ~ 26(,()171(7)
-

Proof techniques
@ Extension of Breadth-First Search, Galton-Watson branching process

and second moment approach of [ Bollobas—Riordan 12+ ]

@ Smooth boundary lemma



Part Ill
Proof Ideas for Supercritical Regime in Hy(n, p)

k>2 j>1
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(1) Breadth-First Search

T, Given j-set J
construct spanning tree T,
of j-component C,

consisting of j-sets as vertices

(2) Coupling T, from above with Galton-Watson branching process
with offspring distribution ((¥) — 1)Bi((;~/),p)

:= IP(process survives)
2\ e k
% 1-0=%, P(BI((}7).p)=0)-(1 - o))
NI

2¢



Proof Sketch — cont.

(3) First moment argument
@ Let N := # j-setsin’large’ j-components with > L := ¢ n/ many j-sets

@ Using upper and lower couplings with Galton-Watson branching

process,
2¢ n
E(N) ~ 26 (7
M~ (/)
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Proof Sketch — cont.

First moment argument
Let N := +# j-sets in 'large’ j-components with > L := ¢ n/ many j-sets

Using upper and lower couplings with Galton-Watson branching

process,
2¢ n
E(N) ~ 26 (7
M~ (/)

Second moment argument

IF we could show
E(N?) ~ (E(N))?,

THEN 2¢ <n>
N~ 1|
(j) —1\J

Two round exposure

Almost all j-sets in ’large’ j-components are in a single j-component
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More on Second Moment Argument
Need to consider # pairs of j-sets in ’large’ j-components

e Fix j-set J; and grow its j-component C’4
until hit stopping conditions

S = {IC|| > L or |9C]| > eL}

Then P(S;) < 2
(5) = 5

e Delete all the vertices in C}
& fix a j-set J», grow component C;

Need to show P ( e(dCy, C5) > 1) is small

However,

p-|0Cq|-|Cj| is not the right thing to do



More on Second Moment Argument — cont.

Instead we need
@ fork=3, =2,

P(e(dCq, C3) > 1)
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a pair of 2-sets intersecting at a vertex)



More on Second Moment Argument — cont.

Instead we need
@ fork=3, =2,

P(e(dCq, C3) > 1)
< E (# 3-sets containing

a pair of 2-sets intersecting at a vertex)

@ fork>3,j>2,

P(e(dC, C) > 1)

< E(# k-sets containing
G a pair of j-sets, J, J', intersecting at an ¢-set L

forsome 0 </¢<j—1)



Boundary Is Smooth

Key lemma [ COOLEY-K.~KOCH 14+ ]

Forevery 0 < /¢ <j—1,every ¢-set L,

189G (n—e)

# j-setsin C) containing L ~ "




’Reasonably Large’ Boundary Is Smooth

Key lemma [ COOLEY-K.~KOCH 14+ ]

Let 0Cj(t) denote the collection of j-sets in C after t generations of BFS.

With probability at least 1 — exp(—©(n'/"")) the following is true.

Forevery 0 < ¢ <j—1,every ¢-set L, and every s, < t < s, + O(log n),

# j-sets in C/(t) containing L ~ "9%,)“)' (7:5)

where s, := min{ d : |3C;(t)| > n*""/1°}.



Open Problems

What about the number of j-set in the largest j-component

at the criticality, i.e. whend =1?

Is the width of critical window, (d — 1)*n = O(1), best possible?
Perhaps (d — 1Yn = 0(1)?

What about the number of j-set in the 2nd largest j-component

in the supercritical regime?

What is the actual distribution of # j-sets in the largest j-component?

Central limit theorem? Local limit theorem?



