1 Symbolliste

Mengenoperationen:

- \in Element von; $x \in M$ bedeutet, x ist ein Element von M
- \subset Teilmenge; $A \subset B$ heißt, jedes Element von A ist auch Element von B
- \cup Vereinigung; $M_1 \cup M_2 := \{x \mid x \in M_1 \text{ oder } x \in M_2\}$
- $\cap \qquad \text{Durchschnitt; } M_1 \cap M_2 := \{x \, | \, x \in M_1 \text{ und } x \in M_2\}$
- $\land \quad \text{Mengendifferenz; } M_1 \setminus M_2 := \{x \mid x \in M_1 \text{ und } x \notin M_2\}$

Zahlenmengen:

- \mathbb{N} Menge der natürlichen Zahlen: $\mathbb{N} = \{1, 2, 3, \ldots\}; \mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$
- \mathbb{Z} Menge der ganze Zahlen: $\mathbb{Z} = \{..., -3, -2 1, 0, 1, 2, 3, ...\}$
- \mathbb{Q} Menge der rationalen Zahlen: $\mathbb{Z} = \{x | x = \frac{a}{b}, \ a \in \mathbb{Z}, \ b \in \mathbb{N}\}$
- \mathbb{R} Menge der reellen Zahlen (rationale und irrationale Zahlen)
- \mathbb{C} Menge der komplexen Zahlen $\mathbb{Z} = \{z | z = x + iy, \ a, b \in \mathbb{R}\}\$
- (a,b) offenes Intervall; $(a,b) := \{x \in \mathbb{R} \mid a < x < b\}$
- [a, b] abgeschlossenes Intervall; $[a, b] := \{x \in \mathbb{R} \mid a \le x \le b\}$

Logik:

- \land und; $A \land B$ ist nur dann wahr, wenn A und B beide wahr sind
- \vee oder; $A \vee B$ ist nur dann falsch, wenn A und B beide falsch sind
- \Rightarrow wenn dann; $A \Rightarrow B$ ist nur dann falsch, wenn A wahr und B falsch ist
- \Leftrightarrow genau dann, wenn; $A \Leftrightarrow B$ ist genau dann wahr, wenn A und B entweder beide wahr oder beide falsch sind
- \neg $\neg A$ ist wahr, wenn A falsch ist und umgekehrt

2 Einige wichtige Formeln

3 STANDARDINTEGRALE

Eine Integraltabelle der elementaren Funktionen ergibt sich unmittelbar als Umkehrung der Ableitungstabelle. Dabei erhält man die folgenden wichtigen Beziehungen:

f(x)	F(x)	f(x)	F(x)
$x^{\alpha} ; \alpha \neq -1$	$\frac{x^{\alpha+1}}{\alpha+1} + C$	$\frac{1}{x}$	$\ln x + C$
e^x	$e^x + C$	a^x	$\frac{a^x}{\ln a} + C$
$\sin x$	$-\cos x + C$	$\sinh x$	$ \cosh x + C $
$\cos x$	$\sin x + C$	$\cosh x$	$\sinh x + C$
$\frac{1}{\sqrt{1-x^2}}$	$\begin{cases} \arcsin x + C \\ -\arccos x + C \end{cases}$	$\frac{1}{1+x^2}$	$\begin{cases} \arctan x + C \\ -\operatorname{arccot} x + C \end{cases}$

Eine wichtige Rolle bei der Integration von Wurzelausdrücken spielen auch die Areafunktionen (bei denen es nötig sein kann, den Wertebreich zu beachten):

$$\int \frac{dx}{\sqrt{1+x^2}} = \ln(x+\sqrt{x^2+1}) = \operatorname{Arsinh} x + C$$

$$\int \frac{dx}{1-x^2} = \frac{1}{2} \left| \frac{1+x}{1-x} \right| + C = \begin{cases} \operatorname{Artanh} x + C & \text{für } x \in (-1,1) \\ \operatorname{Arcoth} x + C & \text{für } x \in \mathbb{R} \setminus [-1,1] \end{cases}$$

$$\int \frac{dx}{\sqrt{x^2-1}} = \ln\left| x + \sqrt{x^2-1} \right| + C = \begin{cases} \operatorname{Arcosh} x + C & \text{für } x \in (1,+\infty) \\ -\operatorname{Arcosh} (-x) + C & \text{für } x \in (-\infty,-1) \end{cases}$$

Weitere Integrale, die des öfteren auftreten und die man sich zwar nicht zu merken braucht, aber doch entsprechend griffbereit haben sollte, sind beispielsweise (in den entsprechenden Gültigkeitsintervallen):

f(x)	F(x)	f(x)	F(x)
$\frac{1}{\cos^2 x}$	$\tan x + C$	$\frac{1}{\cosh^2 x}$	$\tanh x + C$
$-\frac{1}{\sin^2 x}$	$\cot x + C$	$\frac{1}{\sinh^2 x}$	$-\coth x + C$
$\tan x$	$-\ln \cos x + C$	$\cot x$	$\ln \sin x + C$
$\tanh x$	$\ln \cosh x + C$	$\coth x$	$\ln \sinh x + C$

Aus der Kettenregel des Differenzierens folgt sofort eine äußerst praktische Integrationsbeziehung: Ist nämlich F(x) eine Stammfunktion von f(x), so ist $\frac{1}{a}F(ax+b)$ eine Stammfunktin von f(ax+b), also kurz:

$$\int f(x) dx = F(x) + C \longrightarrow \int f(ax+b) dx = \frac{1}{a}F(ax+b) + C$$