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ABSTRACT. In a paper of Thuswaldner and Tichy, a version of Waring’s prob-

lem with restrictions on the sum of digits was considered. This paper is devoted

to a generalization of their result to arbitrary completely q-additive functions.
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1. Notation and introduction

Throughout this paper, the same notation as in [6] will be used. A set A ⊆ N

is said to be a basis (asymptotic basis) of order s if every positive integer (suffi-
ciently large positive integer) n can be represented as

n = x1 + · · · + xs with x1, . . . , xs ∈ A.

The classical problem of Waring corresponds to the question whether the set Ak

of kth powers is a basis (resp. asymptotic basis). There is a vast amount of
literature on this topic, we refer to [4], [7] for instance; [8] gives a comprehensive
survey on Waring’s problem. In [6], the authors discuss a generalization of
Waring’s problem with restrictions on the sum of digits. In particular, they
show that the set

Ak,h,m :=
{
nk : sq(n) ≡ h mod m

}
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forms an asymptotic basis of order 2k + 1, where sq(n) denotes the q-adic sum
of digits. The sum of digits is the classical example of a q-additive function, i.e.

sq(aqh + b) = sq(aqh) + sq(b)

whenever b < qh. In fact, it is even completely q-additive, which means that

sq(aqh + b) = sq(a) + sq(b)

whenever b < qh. Thus it is natural to consider the analogous problem for general
(completely) q-additive functions. The current note is devoted to this general-
ization. Let w be some integer-valued weight function on the set {0, . . . , q − 1}
of q-adic digits, and define v(n) by

v(n) =
l∑

j=0

w(dj), where n =
l∑

j=0

djq
j . (1)

All integer-valued completely q-additive functions are of this form with w(0) = 0.
The sum of digits corresponds to w(d) = d, the q-adic length to w(d) = 1.

2. Main result

������� 2.1� Let s, k ∈ N, s > k2(log k+log log k+O(1)), hi, mi, qi ∈ N (1 ≤
i ≤ s) with mi, qi ≥ 2, and let vi(n) be defined by some weight function wi(d)
on the qi-adic digits for all i. Suppose that for all i the following holds true:

There is no prime P | mi such that wi(0), . . . , wi(qi − 1) is an arith-
metic progression modulo P and wi(0) ≡ wi(qi − 1) mod P .

Then if r(N) is the number of representations of N in the form

N = xk
1 + · · · + xk

s (vi(xi) ≡ hi mod mi),

there is a positive constant δ such that

r(N) =
1

m1 . . .ms
S(N)Γ

(
1 +

1
k

)s

Γ
( s

k

)−1

N s/k−1 + O(N s/k−1−δ). (2)

The implied constant depends only on s, k and mi. S(N) is the singular series
for the classical Waring problem — it is an arithmetic function for which there
exist positive constants 0 < c1 < c2 depending only on k and s such that c1 <

S(N) < c2.
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The proof will be essentially the same as in the paper of T h u s w a l d n e r
and T i c h y , apart from some minor changes. It is based on the following
correlational result generalizing [6, Theorem 3.3]:

������� 2.2� Let k, m, h, q and N be positive integers with m ≥ 2, q ≥ 2, and
let v(n) be a function defined by (1) for some weight w. Suppose that there is a
prime P in the factorization of the denominator of h

m (in its lowest terms) such
that either

• P � (w(q − 1) − w(0))

or

• w(0), . . . , w(q − 1) is not an arithmetic progression modulo P (which is
equivalent to the fact that s is a linear combination of the q-adic digit sum
and the q-adic length modulo P ).

Now let I1, . . . , Ik, J be intervals of integers with
√

N ≤ |Ij |, |J | ≤ N (1≤j≤k).
Set

Y (I1, . . . , Ik, J) :=
∑

h1∈I1

. . .
∑

hk∈Ik

∣
∣∣∣
∑

n∈J

e
( h

m
∆hk,...,h1(v)(n)

) ∣
∣∣∣

2

.

Then
Y (I1, . . . , Ik, J) � |I1| · · · |Ik||J |2N−η (3)

holds with η > 0 depending on m, k and q.

The proof will be given in Section 3. Having proved this theorem, one can
obtain the following result in literally the same way as in [6] and finally prove
Theorem 2.1 by means of the circle method. The original version of the proof
given in [6] was modified by P f e i f f e r and T h u s w a l d n e r in [5] — they
used the results of F o r d [2] to improve the bound for s from 2k to k2(log k +
log log k+O(1)). Their proof can easily be adapted to the current problem. Note
also that the results of this paper can be generalized to systems of congruences
in just the same way as in the paper of P f e i f f e r and T h u s w a l d n e r .

������� 2.3� Let k, m, h, q, N be positive integers with the same properties as
in Theorem 2.2 and let v(n) be defined as before. Then the estimate

∣
∣∣∣

N∑

n=1

e
(
θnk +

h

m
v(n)

)∣
∣∣∣ � N1−γ (4)

holds uniformly in θ ∈ [0, 1) with γ := η2−(k+1) (η as in Theorem 2.2).
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3. Proof of Theorem 2.2

First, let us repeat the basic definitions and lemmas of [6]:

���	
	�	�
 3.1� Let M := {1, 2, . . . , k} and M ′ := {0, 1, . . . , k+1}, and define
the class of functions F := {f : f : 2M → M ′}. By F0 and F1, we denote the
special functions

F0(S) := 0 for all S ⊆ M

F1(S) :=

{
1 S = M

0 otherwise.

Furthermore, the operator Ξ is defined by

Ξr,i(f)(S) :=

⎢⎢⎢
⎢
⎣

i +
∑

j∈S

rj + f(S)

q

⎥⎥⎥
⎥
⎦

for each vector r = (r1, . . . , rk) ∈ {0, . . . , q − 1}k and each 0 ≤ i < q.

The following result is easy to show:

���� 3.2� For each pair r, i we have Ξr,i(F ) ⊆ F . Furthermore, let

Ξ{rl,il}1≤l≤L
:= ΞrL,iL

◦ · · · ◦ Ξr1,i1

denote the iterates of Ξ. Then for arbitrary f ∈ F ,

Ξ{0,0}1≤l≤L′ (f) = F0

if L′ :=
⌊

log(k+1)
log q

⌋
+ 1, and with L′′ :=

⌊
k−1
q−1

⌋
+ 1,

Ξ{r∗l ,i∗l }1≤l≤L′′ (F0) = F1

for certain special values {r∗l , i∗l } depending on k and q.

���	
	�	�
 3.3� Let I1, . . . , Ik, J be intervals of integers and f, f1, f2 ∈ F .
Define

Φ(h1, . . . , hk; J ; f) :=
∑

n∈J

e

(
h

m

∑

S⊆M

(−1)k−|S|v
(
n+

∑

t∈S

ht+f(S)
))

,

Ψ(h1, . . . , hk−1; Ik, J ; f1, f2) :=
∑

hk∈Ik

Φ(h1, . . . , hk; J ; f1)Φ(h1, . . . , hk; J ; f2),

X(I1, . . . , Ik, J ; f1, f2) :=
∑

h1∈I1

. . .
∑

hk−1∈Ik−1

Ψ(h1, . . . , hk−1; Ik, J ; f1, f2).

Then Y (I1, . . . , Ik, J) = X(I1, . . . , Ik, J, F0, F0).
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������	�	�
 3.4� Let f1, f2 ∈ F and let I1, . . . , Ik, J be intervals of integers.
Then

X(qI1, . . . , qIk, qJ ; f1, f2)

=
q−1∑

r1=0

. . .

q−1∑

rk=0

q−1∑

i1=0

q−1∑

i2=0

α(f1, f2, r, i1, i2)X(I1, . . . , Ik, J ; Ξr,i1(f1), Ξr,i2(f2))

+ O (|I1| · · · |Ik||J |) .

(5)
The implied constant depends only on q and k. Here,

α(f1, f2, r, i1, i2) := e

(
h

m

∑

S⊆M

(−1)k−|S|
(
w(b(f1, S, r, i1)) − w(b(f2, S, r, i2))

))
,

and b(f, S, r, i) ∈ {0, . . . , q − 1} is defined as the remainder of i +
∑

t∈S

rt + f(S)

modulo q.

P r o o f. We exploit the fact that v(qa + b) = v(a) + w(b) for a > 0, b < q, to
derive from

i +
∑

t∈S

rt + f(S) = q Ξr,i(f)(S) + b(f, S, r, i)

(which follows from the definition of Ξ) the identity

v
(
qn +

∑

t∈S

qht + i +
∑

t∈S

rt + f(S)
)

= v
(
qn +

∑

t∈S

qht + q Ξr,i(f)(S) + b(f, S, r, i)
)

= v
(
n +

∑

t∈S

ht + Ξr,i(f)(S)
)

+ w(b(f, S, r, i))

whenever n > 0. This yields

Φ(qh+r; qJ ; f) =
q−1∑

i=0

e

(
h

m

∑

S∈M

(−1)k−|S|w(b(f, S, r, i))
)

Φ(h; J ; Ξr,i(f))+O(q).

Applying this to Ψ and X in turn gives us the desired result. �
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Next, we need some special values of α:

���� 3.5� For 0 ≤ i < q − 1, we have

α(F0, F0,0, 0, 0) = e(0) = 1, (6)

α(F1, F0,0, i, 0) = e

(
h

m

(
w(i + 1) − w(i)

)
)

, (7)

α(F1, F0,0, q − 1, 0) = e

(
h

m

(
w(0) − w(q − 1)

)
)

. (8)

The proof is the same as in [6, Lemma 5.1]. Now, iterating Proposition 3.4
gives us (using the notation Ql := {0, . . . , q − 1}l)

X(qLI1, . . . , q
LIk, qLJ ; f1, f2)

=
∑

r1,...,rL∈Qk

∑

i1,...,iL∈Q2

( L∏

l=1

α
(
Ξ(rj ,ij1)1≤j≤l−1(f1), Ξ(rj ,ij2)1≤j≤l−1(f2), rl, il1, il2

))

· X(
I1, . . . , Ik, J ; Ξ(rl,il1)1≤l≤L

(f1), Ξ(rl,il2)1≤l≤L
(f2)

)
+ O (|I1| · · · |Ik||J |) ,

where the implied constant depends on q, k and L. We select L := L′ + L′′ + 3
(L′, L′′ as in Lemma 3.2) and extract two summands from the above sum in
analogy to [6]. Let P be a prime satisfying the conditions of Theorem 1. If
w(0), . . . , w(q − 1) is not an arithmetic progression modulo P , then the se-
quence w(1) − w(0), . . . , w(q − 1) − w(q − 2) is not constant, so we may choose
0 ≤ i1, i2 < q − 1 in such a way that w(i1 + 1) − w(i1) 
≡ w(i2 + 1) − w(i2)
mod P . If on the other hand w(0), . . . , w(q − 1) is an arithmetic progression
modulo P , then w(0) 
≡ w(q − 1) mod P .

In the first case, we let the first summand V1 correspond to the selection

rl = (0, . . . , 0), il = (0, 0) (1 ≤ l ≤ L′),

rl = r∗l−L′ , il = i∗l−L′ (L′ + 1 ≤ l ≤ L − 3),

rl = (0, . . . , 0), il = (q − 1, 0) (l = L − 2),

rl = (0, . . . , 0), il = (i1, 0) (l = L − 1),

rl = (0, . . . , 0), il = (0, 0) (l = L),

and let the second summand V2 correspond to the same selection with iL−1 =
(i2, 0). Then, using the same abbreviations as in [6], we arrive at

V1 = A(f1, f2) α(F1, F0,0, i1, 0) α(F0, F0,0, 0, 0) X(I1, . . . , Ik, J ; F0, F0)

and

V2 = A(f1, f2) α(F1, F0,0, i2, 0) α(F0, F0,0, 0, 0) X(I1, . . . , Ik, J ; F0, F0).
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Now, by Lemma 3.5,

V1 = A(f1, f2)e
(

h

m

(
w(i1 + 1) − w(i1)

))
X(I1, . . . , Ik, J ; F0, F0)

and

V2 = A(f1, f2)e
(

h

m

(
w(i2 + 1) − w(i2)

))
X(I1, . . . , Ik, J ; F0, F0).

Therefore,

V1 + V2 = A(f1, f2)
(

e

(
h

m

(
w(i1 + 1) − w(i1)

))
+ e

(
h

m

(
w(i2 + 1) − w(i2)

)))
·

· X(I1, . . . , Ik, J ; F0, F0).

Since P �
(
(w(i1 + 1) − w(i1)) − (w(i2 + 1) − w(i2))

)
, we are now able to apply

the same argument as in [6] to prove a matrix inequality of the form

(|X(qLI1, . . . , q
LIk, qLJ ; f1, f2)|)(f1,f2)∈F2

≤B · (|X(I1, . . . , Ik, J ; g1, g2)|)(g1,g2)∈F2 + O (|I1| · · · |Ik||J |) ,
(9)

where B is a matrix whose row sums are ≤ qL(k+2)(1 − ε) for a certain ε > 0
depending on q, k and m. In the second case (i.e., P �

(
w(0) − w(q − 1)

)
),

we may even use the same parameters as in [6], and the argument stays the
same. Iterating this matrix inequality and specializing f1 = f2 = F0 then gives
the estimate of Theorem 2.2. The O-term in (9) is of no harm since it can be
included in the estimate (note also that it appears only if w(0) 
= 0).

Remark 1� The crucial tool in the proof of T h u s w a l d n e r and T i c h y
is the fact that the application of inequality (9) saves a factor of (1 − ε) from
the trivial estimate. Now, let us consider arbitrary (not completely) q-additive
functions, which can be written as

v(n) =
l∑

j=0

w(j)(dj), where n =
l∑

j=0

djq
j , (10)

i.e. the weight depends on the position of a digit, too. Then, it is necessary that
a “positive percentage” of the weights satisfies the condition of Theorem 2.2 so
that the argument can still be applied. Formally, if ω(l) denotes the number
of weights w(i) with i ≤ l which satisfy the condition, the proof still works
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(with some technical and notational inconveniences) if

lim inf
l→∞

ω(l)
l

> 0.

4. Final remarks and conclusion

Remark 2� First, we are going to explain why the condition posed on mi is
also necessary. Suppose there is a P | mi such that wi(0), . . . , wi(qi − 1) is an
arithmetic progression modulo P and wi(0) ≡ wi(qi − 1) mod P . Then either
wi(0), . . . , wi(q − 1) is constant modulo P , which means that the congruence
condition for vi is in fact a condition on the length of the qi-adic expansion, or
wi(d) ≡ A · d + B mod P for some A 
≡ 0 mod P .

In that case, the condition wi(0) ≡ wi(qi−1) mod P turns into P | (qi−1), so
vi(n) is a linear combination of the digit sum and length of n modulo P , and since
also sqi

(n) ≡ n mod P for all P | (qi − 1), it is in fact a linear combination of n

and its length, so the restriction is actually equivalent to congruence restrictions
on intervals of the form [qk

i , qk+1
i ).

In both cases, the asymptotics cannot hold any longer.

Remark 3� Second, we discuss the size of the asymptotic order in the case
k = 1 shortly. Theorem 2.1 (with the weaker estimate s > 2k) tells us that it
must be either 2 or 3 in the case that the conditions of the theorem are satisfied.
It seems to be a nontrivial problem to determine whether it is 2 or 3 given some
function v. Note, however, that it must be 3 for the q-adic sum of digits in view
of the integers of the form

nK := qK − 1 =
K−1∑

i=0

(q − 1)qi.

If we write nK as the sum of two integers n1, n2 with sq(n1) ≡ sq(n2) ≡ h

mod m, there cannot be any carry, so we would have sq(nK) = K(q − 1) ≡ 2h

mod m, which is impossible for infinitely many values of K.

Note also that the set defined by v(n) ≡ h mod m can still be an asymptotic
basis of N even if the conditions are violated. However, if we consider the q-adic
length modulo m for instance, the order as an asymptotic basis might be as large
as qm.
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Remark 4� It is very difficult to give information about the order of the set
A =

{
nk : v(n) ≡ h mod m

}∪{0, 1} as a basis of N (0 and 1 have to be added
to the set so that it is really a basis). In fact, the order depends highly on the
parameters even in the very special case that k = 1 and v = sq is the q-adic sum
of digits:

• If we take q = 2 and h = 0, 2m −1 =
m−1∑

i=0

2i is the smallest positive integer

whose sum of digits is ≥ m. Therefore, it is also the smallest element of the
set

{
nk : v(n) ≡ h mod m

}
. All smaller integers can only be represented

as the sum of 0’s and 1’s, thus at least 2m − 2 summands are needed.

• On the other hand, let r ≥ 2 be arbitrary, h = r and q sufficiently large,
e.g. q = 3m + r. Then the distance between two subsequent elements
of the set

{
nk : v(n) ≡ h mod m

}
is at most 2m − 1 (which is easy to

verify). Such a gap can be filled with ≤ �m
r
 + r − 1 summands from the

set {1, r, m + r}; so a total of �m
r  + r summands is sufficient. Taking

r = �√m thus gives an order ≤ 2
√

m + O(1).

These two examples show that the order of the studied set as a basis of N may
grow exponentially in terms of the modulus as well as sublinearly. So there is
probably not much hope that one can give any precise information on the order
in general.
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