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Abstract

Given a triangular array a = {a,, 1 <k<k,,n>1} of positive reals, we study the complete convergence property
of T, = Zi";lan,an,k for triangular arrays % = {X,x, 1<k<k,,n>1} of independent random variables. In the
Gaussian case we obtain a simple characterization of density type. Using Skorohod representation and Gaussian
randomization, we then derive sufficient criteria for the case when X, ; are in L”, and establish a link between the L”-case
and L*-case in terms of densities. We finally obtain a density type condition in the case of uniformly bounded random
variables.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and results

Throughout this paper, we let & = {X,x, | <k<k,,n>1} denote a triangular array of real centered
independent random variables, and a = {a, 4, 1 <k<k,,n>1} with {k,,n>1} non-decreasing, a triangular
array of positive reals. When the random variables are symmetric (resp. identically distributed), we will say
that the triangular array 2 is symmetric (resp. iid). Set, for every n>1,

ko ko ko

2 2

T,= § an,an,k> A, = § Ak, Bn = § Ay fes C, = An/Bn~ (1)
k=1 k=1 k=1

Let (Q, o7, P) be the basic probability space on which % is defined. Noctg: that C,>1. We investigate under
what conditions the sequence T,/A4, converges completely to 0: 7,,/A4, — 0, which means, as is well-known,
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that for any ¢>0
> P(IT,|/Ay> e} <oo.

The study of this property originates from a well-known paper by Hsu and Robbins (1947) who proved in the
case of a single iid sequence &= (&, &,,n>1} with partial sums S, =5 ;_, &, n=1,2,... that E£ =0,
E& <oo imply S,/ ns0. Shortly afterward, Erdos (1949) proved the validity of the converse implication.
Since then, the study of various possible generalizations of this result (subsequence case, the theorems of Baum
and Katz (1965), extensions to triangular arrays of independent random variables, Banach space valued
random variables) have received a lot of attention. See, for example, the works of Pruitt (1966), Rohatgi
(1971), Fazekas (1985, 1992), Hu et al. (1989), Kuczmaszewska and Szynal (1988, 1990, 1994), Gut (1992), Li
et al. (1992), Rao et al. (1993), Sung (1997), Adler et al. (1999), Hu et al. (1999), Ahmed et al. (2002). The
purpose of the present paper is to present new necessary as well as sufficient criteria for the complete
convergence of triangular arrays of independent random variables, and discuss their relations with known
results in the literature.

We start our investigations with the Gaussian case, because of the classical Gaussian randomization
procedure for sums of independent random variables, and also because this case is in general very informative.
If & is Gaussian, the problem can be simply settled. Put

log#{n: C,<
Z(a) = lim sup w.

X—>00 x2

Then we have the following characterization.
Theorem 1. Assume that the X, are iid standard Gaussian variables. Then we have
To/An—50 < Z(a)=0.

In view of this complete result, it is natural to attack the general iid case using invariance principles.
Applying Skorohod embedding for the row sums of the triangular array 2 leads, under natural conditions on
the stopping times in the Skorohod representation, to a necessary and sufficient criterion for 7, /A4, 5 0, see
Proposition 10. This condition, in turn, leads to sufficient criteria under the existence of higher moments. In
particular, we will prove:

Theorem 2. Assume that EX ik =1 and X, € L* for some p=2. Then the relation
k”
ok ai,k)p/z
Do e <
n (Zk:] an,k)p
implies T,/ A, =50.

To compare this result with the Gaussian case, note that #(a) = 0 is equivalent to

f 2
( k’lzlan,k)
E exp| —0——— | <oo forall 6>0.
k’l 2
n k=1 %)

In the case when % is also symmetric, the condition in Theorem 2 can be weakened.
Theorem 3. Assume that X is symmetric, EX ﬁ’k =1 and X, € L* for some p=2. Then the relation
ky 2
Z (ks ai,k)p/
(i ane)” loghn

implies T/ Ay £,

Recall that the array 4 is stochastically bounded by a random variable X if there is a constant D such that
P{| X, x| >x}<DP{|DX|>x} for all x>0 and for all n>1, 1 <k<k,. We will prove the following result.
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Theorem 4. Let & be a symmetric triangular array stochastically bounded by a square integrable random
variable X. Assume that for any £¢>0:

(a) Zl<k<l<oo P{|X] >8Al/ak} < 0.
Further assume that for some integer r=2 and any £¢>0,
(b) > =1 P{IT,|>ed,) <oco.
Then
(©) Ty/A, 0.
Conversely, if the triangular array ' is iid symmetric, then (c) implies (a).

The next result concerns the uniformly bounded case. We show that a condition similar to that assumed in
the Gaussian case suffices for complete convergence. Put, for any positive integer 7,

k!‘l
2 § : 2 2
Vn - an,an,k'
k=1

Theorem 5. Let X be a triangular array of real centered, uniformly bounded independent random variables.
Assume that for any ¢>0

t{n: An V< 1
E sup tn:m<A/ m+ 1) <00
m=1 eXp{sz}

Then T,/ A, £0.

Our final result establishes a link between the complete convergence of arrays in the I and L*-case.
Remarkably, the link is provided by the density condition in the Gaussian case in Theorem 1. We need a
preliminary definition.

Definition. Let p>2. We say that a is p-regular if any triangular array Z of real centered iid random variables

with finite pth moments satisfies 7,,/4, =o.
Let a be a triangular array of positive reals. Define
a’=(a ., | <k<k,n>1}.
Then we have:

Theorem 6. Let p>2 and assume that a° is p-regular. Then a is 2p-regular iff £ (a) = 0.

2. Proofs

Proof of Theorem 1. Before giving the proof, recall for the reader’s convenience an elementary estimate for
Gaussian random variables due to Komatsu—Pollak (see Mitrinovi¢, 1970, p. 178).

Lemma 7. The Mills’s ratio R(x) = e*'/? [ e~/ d¢ satisfies
2 2
— <RX) S —————< \/E for all x>0.
x2+4+x /2484y V2
Note that

1
P{| Tl /Ay > e} = P{LA(0, 1) >eC,} = me*@@ﬂz/z as n — oo,
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where the symbol < means that the ratio of the two sides is between positive constants. Thus it follows that
T,./A, =% 0 if and only if the series

Z efacﬁ
n

converges for any 6>0. And this is equivalent to #(a) =0 (for a proof, see e.g. Weber, 1995, pp.
402-403). O

Proof of Theorem 6. The proof relies upon several intermediate results. Let & = {&;,k>1} be a sequence of
real centered independent square integrable random variables defined on the probability space (22, .7, P), and
let w = {wy, k>=1} be a sequence of positive reals. Put, for any positive integer m,

m
sz § Wkék, m— § Wi, Mm— § Wk
k=1

k=1

Recall the Skorohod embedding scheme (see e.g. Breiman, 1968): there exists, after suitably enlarging the
probability space, a linear Brownian motion 4 = {B(#),0<t<oo} starting at 0, and a sequence ty,7s,... of
independent non-negative random variables with Et; = wiEé,zc, k>1 such that, with 7o = 0 a.s.,

k k—1 \
{B<Z Tf) - B(Zf]),k?l} Ziwelrk=1).
Jj=0 =0

Put, for any real x,

1 o 7/2
Y(x) =— e "/~ du.
) A/ 27[/x
Lemma 8. Let ¢,h,d be positive numbers with ¢ >h> /25, and put

>5Mm}.

Then, for any positive integer m, we have

lp<(g+h)\/%> —4?’(\/}12?/_) — AmgP{|Sm|>sz}<T<(e—h)JW;}L) +4T(J%> + A4,

Proof. We observe that
m
B (Z Tj) >eW,, }
=0

<P{|B(Mm)|>(8_h)Wm}+P{
(e—hmW,,
( Vi, >+P{
(e—hW,

(e )“’{

() 8

m

ij - M,,

J=0

Ay = Am(é) = P{

P{|Si|>eW,,} = P{

)

Jj=0

B(i Tj) - B(Mm)
=0

Z T — My,

m

Z T — My

>eW,,, |B(Mm)| <(e— h) Wm}

i |

>5Mm}+P{ sup IB(HMm)—B(Mm)|>th}

[0-1]<0

N

Wi
>0M,, ; +P< sup |B(O)— B(1)|=h .
} { oS, PO~ 5 JM_}
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Conversel Yy,
((8 ) /;Mm) {l ( m) | (B ) m}

SP{ B(ir_;) >£Wm} +P{|B(Mm)|>(8+h)Wm, B(i”) SEWW,}
=0 =0
<P{ B(iq) >an} +P{ B(iq) — B(M,,) >th}
Jj=0 Jj=0

3

m

ZT/'—Mm

Jj=0

N

p{ B< ) >8Wm} + P{

+P{ sup IB(HMm)_B(Mm)lthm}
[0-1]<0

el o550 o)

Z T — Mm

Jj=0
Since B has stationary increments, we get by using scale invariance, the symmetry of the law of B and
Eq. (1.5.1) in Csorgd and Révész (1981, p. 43),

>5Mm}

>5M,,1}+P{ sup |B(6) — B(1)|=h Wi }

10—11<6 VMn1

W, hw,,
PS sup |B(O)— B(l)|=h =P< sup |Bu)|=——=
{IQ—lzé ( ) ( ) \/Mm} {ue[()gﬁ] ( ) Mm

hw,,
—p Bu)| > —lm
{OZ‘EI' @) m}

hW
= PI{max| sup B(u), sup (—B Z
{ (Oéulil (u) Oéuz 1( (u))) vV 25Mm}

<2P{ sup B(u)= ﬂ} = 4lp<ﬂ>

o<u<l \/25Mm 25Mm
Consequently,
W hw 14 hw
P((e+h)—me ) — 4% —2 ) — Ay <P{Snl>eWn} <¥( (6 — h)—n 49 (=) + A
<(a+ ) m) ( TMm) (ISl > W) ((e ) ﬁMm)ﬂL («/—zaM,,1>+

This completes the proof. [

We shall apply Lemma 8 to triangular arrays. Let again 2 = { Xk, 1 <k<k,,n>1} be a triangular array of
real centered independent random variables and a = {a,x, 1 <k <k,,n>1} a triangular array of positive reals.
By considering, if necessary, a larger probability space, we can always assume that there exists a sequence
&' g%, ... such that for each positive integer n,

gn = {én,k»k> 1}: with 5n,k = Xn,ka 1<k<kna

and & is a sequence of independent random variables. Further the sequences &', &, ... are mutually
independent. By suitably enlarging the probability space, there exists for each integer n a linear Brownian
motion #" = {B"(¢),0<t<oo} starting at 0 and a sequence t,1},... of independent non-negative random
variables with Et} = a2, E&; . k>1 such that, with § = 0 as.,

k k—1
{B" (Z}%) - B (Z(;f,> k>1} Laninpr k=1}.
J= J=

In fact, in each step, it would be enough to let k run between 1 and k,,. By applying Lemma 8 with the choice
& =¢&" m=k,, we now easily deduce the following corollary.
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Corollary 9. Let &, h,0 be positive reals with e>h>~/20. Then, with notation (1), forn =1,2,...

h h
P((e+hCp) —4Y | —=C, | — 4,(0)<P{T,|>e4,}<WP((e — h)C,) + 4V —=C,, | + 4,(9),
(641G = 47( 2= C,) = 4O <PUT,1>04,) < 7 = o) + 47 (G, ) + 4,0)
where
ky
A4,(8) = P{ > - B >5B,§}.
j=0
This result will allow us to establish the following statement.
Proposition 10. Assume that & and a satisfy
> An(d)<oo  for all 5>0. )

Then
Ty/Ay =50 & #(a)=0.

. . . . . . . a.s.
This proposition can be viewed as an extension of Theorem 1, since in the Gaussian case 7} = a>

ny

Proof. The key lies in the comparison between Y({(e+ h)C,) and Y (—= JZZ—C ), which is achieved by using
Lemma 7. The implication #(a) =0 = T,/A4, Zois easy. Indeed, if #(a) = 0, then for any p>0 the series
>o.€ -G, converges, or equivalently,

> ¥(pCyp)<oo for all p>0. 3)

Let >0, and choose £, § in Corollary 9 such that 1 = ¢/2>+/26. By Corollary 9 and the assumption made, the
series Y P{|T,|>¢A,} converges provided

h
; ¥Y((s — h)C,) < o0, Z tp(m c,,) <00.

And this holds true if Y ¥((¢/2)C,) < oo, which is satisfied by assumption. Hence the first part of Proposition
10 is proved.

Conversely, if T,,/A4, =% 0, then the series >, P{|T,|>¢A4,} converges for any ¢>0. We shall prove that (3)
holds true. We distinguish two cases.

Case 1: lim inf,_, o, C, = c0. Let p>0 be fixed, we choose ¢,/,0 such as e=h=p/2, 6 =1/8, so that
h/26 = 2p. Then ¥((¢ + h)C,) = Y(pC,) and ¥((h//20)C,) = ¥(2pC,). By Lemma 7,

1 _ 2 1 _ 5
Y(pCp) < WC PC/2, Y2pCy) < me ApCu)
n n

so that, for any p<p, <p,<2p, if n is sufficiently large
Y(pCp)=e G2, 4P(2pC,)< e (h2C/2.
Therefore,
P(pCy) — 4?’(2an)>€_(”1€”)2/2(1 — e—(/’i—/’?)(cn)z/z)2(1/2)6—(/)1&1)2/2

for n sufficiently large. In view of Corollary 9, and assumption (2) this implies that the series Y, e~
converges. This being true for any p>0 and any p, > p, it follows that (3) is satisfied, as claimed.

Case 2: lim inf,_, o, C, <00. In this case there exist a sequence of indices {n;,j>1} and a real ¢ such that
lim;_, .o C,, = ¢. Choose p>0 such that ¥(p1)>4¥(2pt), and let again ¢,h,6 such as e=h=p/2, 6 =1/8.
Applying Corollary 9 for n =n;, j =1,2,... gives

'{/(anj_) - 4'1’(2,0Cn])<P{|Tn]| >8An,-} + An,(é)

C)’/2
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Letting now j tend to infinity implies

0<P(pt) — 4PQ2p1)< lim inf(P{| T, | > &4, } + 4,,(5)),
J—>00 ; ;

which contradicts the fact that both series ) P{|T,|>¢4,}, >_,4,(0) converge. The proof is now complete. [

We can now pass to the proof of Theorem 6. Let p=2 and let a = {a,x, | <k <k,,n>1} be a triangular
array of positive reals such that b = a? is p-regular. Let 2 = {X,x, 1 <k<k,,n>1} be a triangular array of
real centered iid random variables with finite 2p-th moment. We shall make use of the fact (Fisher (1992),
Theorem 2.1) that for each n, we can assume that {1}, | <k <k,} é{aik()z, 1<k<k,}, and {07,1<k<k,} is an
iid sequence with finite pth moments. As b is p-regular, (2) is satisfied. Using Proposition 10, we get the desired
conclusion. [

Remark. Although the characterization given in Theorem 6 is simple, it is rather abstract. Usually condition
(2) is as difficult to check as the fact that a is 2p-regular. Thus the interest in a statement like Theorem 6 is the
link established between p-regularity and 2p-regularity, via the arrays a and b.

It is possible to check directly condition (2), by imposing conditions on the weights, which, however, appear
to be stronger than the condition #(a) = 0. To see this, we shall use some arguments from Weber (2006). In
order to avoid unnecessarily heavy notation, we simply return to the setting considered in Lemma 8, and will
bound the quantity

m

Z’Ej — Mm
=0

Using inequality (1.2) in Davis (1976) we see that if E|¢;|>™ < oo for some &> 0, the sequence of stopping times
7; satisfies

Ay = Am(é) = P{ >5Mm}

E‘c;+8/2< Cw g1, 4

where the constant C depends on ¢ only. Let p>2. Assume that for any positive integer j, &; € L?, and
moreover

Qp(é):z Suli) ”él”p <00.
j=z

Put for any positive integer /,
x=1—FEty=1— w?.

Then using (4) with 2(p — 1) = ¢ gives
Elx’ <Y Elnl +w)< C(1+ QhE)w",

where C;, depends on p only, and may vary in the next lines. Further note that in the case &, € L*, />1 we have
0<Ex; = Et} — (E1)’ <E1; < CowiE| ",

Apply now Rosenthal’s inequality (see e.g. Petrov, 1995, p. 59). In view of centering and independence of the
X/’s, we get

m

> @ —wh)
=1

E

p m m p/z
< [Swr+ (S
=1 =1

m m p/2 m
<carae (3 (3] | <o oe(30)

p/2
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Consequently, by using Chebyshev’s inequality,

1) = P S5y~ | 2601 <C’(1+QP(6)><—Z£IW?)M2
m = ] m| = m(=X%p D (5Mm)2 .

We thus see that condition (2) holds provided

12\ ?
¥ (BRI e
For triangular arrays, this means that
o yan ' !
Z ko ’2 <00,
7 Zk:lan,k
establishing Theorem 2. As we noted earlier, #(a) = 0 is equivalent to

(Zk 14n, k)
Zk” 1

<oo forall 6>0.

Zexp —0~—

Proof of Theorem 3. Since % is symmetric, it has the same law as Z' = {e, X, 1 <k <k,,n>1}, where
&= {&yk, | <k<k,n>=1} is a Rademacher sequence defined on a joint probability space (2., .., P;) (with
corresponding expectation symbol E,). Put

ke 2 y2
PRy 7. G2

kn
= E an,kgn,an,ka Qn = B
n

k=1
Let {Q,,n>1} be a sequence of positive reals. Write

T, Y,
(T L D PSR 3 LI

n n n

Further, there exists an absolute constant C such that

Y 2A2 2A2 ‘2c2
P,;{' ol >e}<exp — L —exp —c? : _exp{—Cb ”}
A S X 0,8, 2z

We deduce that

2,2
PV epio s +expd 25l
A, Qu

It follows that if

00 2c2
@ Y P{Q,>Q)<00, ( Zexp{ } 00
n=1
then 7,/ A, =% 0. Choosing in particular (with L>1)
Q, = C; /(L log n),
shows that 7',/ A4, 5 0, provided that

ZP{Qn>/1C§/log n}<oo
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for any 4>0. To connect the last sum with the sum in Theorem 3, we use Rosenthal’s inequality. Recall that
we assumed for 1<k<k,,n>1 that EXﬁ,k =1, and for some p>2, X, € L. Put

Yok =y (Xnp— 1), 1<k<k,, n>1,

then for sufficiently large n we have

kn 2 2 2 k
> i X
P{Q,>/C2/log n} = P{ itk Ay } = P{

s

ai,kXﬁ’k > A2 log n}

B, B2 log n 2
k
] A E 4
<P Zaﬁk(Xﬁk—l)>—A,21 log n |Ezk 1 Ykl
= 2 (54, log ny’
Now, by Rosenthal’s inequality
' p Y\ kn W2,
nk| < <Co ) E Z Yk n ZE| Yol .
log p T 2

where Cj is an absolute constant. But

kn kn
4 2 2 4 4
=Yl B, — 1P CIXIEY  dly
k=1 k=1

nk
so that
1. b\ K, p/2
” <(co ) CIXIZY dny +||X||2,,Z al
log p =
/2
< C, max(| X4, X113 )(Zm) :
Therefore,

ky 4 /2
P{Q,>/.C./log n}< C, max(| X3, | X3 )<(Zk:1an5k)p )

(44, log ny’

This completes the proof of Theorem 3. [

Proof of Theorem 4. Let Y,..., Y, be independent symmetric random variables, S, = Y; +---+ Y. One
part of the Hoffmann-Jorgensen (1974) inequality states that
P{|S,| >3Pt}<C,,P{lgka§n Xl >z} + CpP(S, > D) (5)
for any integer p>1, where C, is a constant depending on p. By (5) we have
P{|T,|>3"¢4,})<DC, i P{|Da, X|>eA,) + C,(P{|T,| >¢4,))” . (6)
k=1

Choosing p large enough and summing (6) for n = 1,2,... we get

ZP{|T |>3e4,}<DC, > P{X|>ze4,/Dag} + C, Z(P{|T |>ed ).

n=1 I<k<kn n=1
n=1
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Assumptions (a) and (b) therefore imply (c). Conversely if (c) is true, then

1 1
P{|T,1|>8A,,}>§P{lmax |aka|>eA,,} =§ [1 —P{ max |ai Xy <eA, H

1<k<ky

l H Pllag X |=eAn }‘|

KKy

—_—

_ [ H(l — P{la; X«| >?An})

k=1

[\

NS

[1 —e Ek (Pllax Xil > 24, }:| —[1 — e“”].

From this estimate and (c) follows that 1, tends to 0, and then the chain of estimates can be continued as

1= e = 10 + OO Y,

for any integer n sufficiently large. Therefore, for n large

P{IT,| >4y} =0

And consequently (c) implies ), 4, <oo, which is exactly (a). O

Proof of Theorem 5. The proof is based on a convexity argument enabling us to use the Gaussian
randomization technique. First of all, there is no loss of generality in assuming that for any n>1 and 1 <k <k,
we have

Xkl <1 as.

Let 27 be an independent copy of 2 defined on a joint probability space (2',.o/',P’) with corresponding
expectation symbol E'. Write 7/, = Zl,:": 1k Xy Let &= {enr, 1 <k<kyn>1} be a triangular array of
independent Rademacher random variables defined on a joint probability space (€2, ./, P,), with
corresponding expectation symbol E,. Similarly, let g = {g,, | <k<k,,n>1} be a triangular array of
independent .47(0,1) distributed random variables defined on a joint probability space (€, .27 , P,), with
corresponding expectation symbol E;. Let 4 be any real number and consider the convex non-decreasing
function ¢ ,(x) = (x — A)". If X is any random variable, then for any positive real a, aP{X > A4 + a} <E¢ ,(X).
Applying this for A = 4,6 = a and X = T, and then using Jensen’s inequality lead to

(SAH)P{ Tn >28An} <E(pé:A”(TH) = EqDI:An(Tn - E,T:‘l)

k=1
kn
Zk;] A kc€n,k (Eg |gn,k |)Xn,k>

ko
SEE/(psA,,(Tn - T;) = EEsq)eA,, (Z an,ksn,an,k>

@/m'"
Z/Ijn: 19n,kEn,k |gn,k | Xn,k)

= EE,¢, A, <

@/m'?
Z/?l: a ,kgn Xn,k
=EE,0,,, <% . (7)

< EEEEQ ¢1;A,, <

2/m)'/?

In the last equality we used the fact that {&,x|g,, |, 1 <k <k, n>1} g{gn,k, 1<k<k,,n>=1}. Applying it now to
A= A,e =aand X = —T,, and arguing similarly also gives

kn
M) | N

(FAH)P{— T,, > 28An} < EEg(P::A,, ( (2/7_[)1/2
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As P{|T,|>2eA4,}<P{T,>2eA,} + P{—T,>2¢A,}, we obtain from (7) and (8)

k
. nkYn Xn
(A)PUT,| > 264,) <2EE, g, [ =1 rkns Xk

2/m'"?
But,
lein—lan kGn i X ni /oo (2/”)1/2“
Eo | =———""—"| = P A(0,1)> F—— 3 du
e® A (2/7’C)1/2 e, ( ) Vn
V o0
= P{M(O,l)>v}dv
\/ 2/7[ /mA
2., dw
= e/ —— dv
\/ /n 2/ |V / V2
- 7/ R(v)e ™"/ dv<\/% n g V2T v
2/ T, Vi
4 67L AZ/TEVZ
Therefore,

v )
P{|T,|>2eA,) <E 1 e=d 4/
4eA

n

We now make use of the boundedness assumption on the sequence 2. The above inequality becomes in this
case

P{|T,|>2e4,}< EEC*BZAg/nV%

since V2 =Yk la”ank\Zk” a; kSAZas Put form =1, 2,.
Im={n:m<A4,/V,<m+1}.

Then
o0
Y PUT,I>2e4,) < 5 ZEZe“ LS ZE[#{J Jemt 2T 2 (2 /)

n=1 m 1 nely, m 1

E Sup[ﬂ:{.]m}678 m- /27‘[] Zefszmz/Zn

4 mz1 m=1
tn:m<A,/V,<m+ 1}
<C.E
’ rsnlipl exp{e’m?/2m}

This completes the proof of Theorem 5. [
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