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A LAW OF THE ITERATED LOGARITHM
FOR ARITHMETIC FUNCTIONS

ISTVÁN BERKES AND MICHEL WEBER

(Communicated by Richard C. Bradley)

Abstract. Let X, X1, X2, . . . be a sequence of centered iid random variables.

Let f(n) be a strongly additive arithmetic function such that
∑

p<n
f2(p)

p
→ ∞

and put An =
∑

p<n
f(p)

p
. If EX2 < ∞ and f satisfies a Lindeberg-type

condition, we prove the following law of the iterated logarithm:

lim sup
N→∞

∑N
n=1 f(n)Xn

AN
√

2N log log N

a.s.
= ‖X‖2.

We also prove the validity of the corresponding weighted strong law of large
numbers in L1.

1. Main results

Let X, X1, X2, . . . be i.i.d. random variables with EX = 0, EX2 < ∞. In this
paper we study the weighted LIL for (Xn), i.e. the relation

(1.1) lim sup
N→∞

∑N
n=1 dnXn√

2D2
N log log D2

N

a.s.= ‖X‖2,

where D2
N =

∑N
k=1 d2

k. By the Hartman-Wintner law of the iterated logarithm,
relation (1.1) holds if dn = 1 for all n ≥ 1, and assuming slightly stronger moment
conditions for X, (1.1) will actually hold for a large class of weight sequences (dn).
For example, a Skorohod embedding argument similar to the one used in Fisher [4]
and Weber [11] shows that if EX2 log+ |X| < ∞ and

(1.2) Dn � n, dn = O(Dnn−γ)

for some γ > 0, then (1.1) holds. Condition (1.2) covers, with γ = 1/2, all sequences
(dn) regularly varying with a positive exponent, and because of the arbitrary value
of γ, it leaves a lot of room for irregular sequences (dn) as well. If we assume only
EX2 < ∞, the situation changes radically. In this case condition (1.2) does not
suffice for the LIL (1.1), and in addition to the order of magnitude of dn and Dn,
the distribution of the sequence {dn/Dn, n ≥ 1} becomes crucial for the validity of
(1.1). As a consequence, (1.1) fails for many irregular sequences (dn), and in fact,
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proving (1.1) for an explicitly given (irregular) sequence (dn) is generally a delicate
problem. The situation is similar for the weighted strong law of large numbers

(1.3) lim
N→∞

∑N
n=1 dnXn∑N

n=1 dn

a.s.= ‖X‖1

under E|X| < ∞. Assuming slightly higher moment assumptions such as
E|X| log+ |X| < ∞, one can give simple sufficient conditions for (1.3), similar to
(1.2), but assuming only X ∈ L1, the validity of (1.3) again becomes a delicate
problem. In view of the special role irregular sequences and their distributions play
in the theory, it is natural to ask if typical irregular sequences in number theory,
such as additive and multiplicative arithmetic functions, can be used as coefficients
in the LIL (1.1) and SLLN (1.3). The purpose of this paper is to study the case of
additive functions and to prove a positive answer under natural conditions on f .

Let f(n), n = 1, 2, . . ., be a strongly additive arithmetic function, namely a
function f satisfying

f(mn) = f(m) + f(n), (m, n) = 1,

f(pα) = f(p), p a prime, α = 2, 3, . . . .
(1.4)

It follows that f(n) =
∑

p f(p)χ(p|n), so that f is completely determined by its
values taken over the primes. (Here, and in the sequel,

∑
p denotes the summation

along the primes, χ denotes the indicator function and m|n means that the integer
m is a divisor of the integer n.) A typical example is ω(n), the number of different
prime factors of n. Put

(1.5) An =
∑
p<n

f(p)
p

, Bn =
∑
p<n

f2(p)
p

.

By the classical central limit theorem of Erdős and Kac [3], if |f(p)| = O(1) and
Bn → ∞, then we have

(1.6) lim
N→∞

1
N

#{n ≤ N : f(n) ≤ AN + xB
1/2
N } = (2π)−1/2

∫ x

−∞
e−u2/2du.

The same conclusion holds for unbounded f(p), provided

(1.7) lim
n→∞

1
Bn

∑
{p<n, |f(p)|≥εB

1/2
n }

f2(p)
p

= 0 for any ε > 0.

(See Kubilius [7], Shapiro [9].) Condition (1.7) is the analogue of the Lindeberg
condition of classical probability theory and, as Kubilius [7] showed, it is also nec-
essary for (1.6) under mild regularity conditions on the sequence Bn. Condition
(1.7) is satisfied if, for example,

(1.8) f(p) = o(B1/2
p ), Bp → ∞.

The last relation is stronger than (1.7), but it is still sharp: Halberstam [5] proved
that replacing the o by O in (1.8), the central limit theorem (1.6) becomes gen-
erally false. For additional limit theorems related to (1.6), see Kubilius [7]; for
an alternative approach via the theory of mixing random variables, see Philipp
[8]. The purpose of this paper is to show that under condition (1.8) the sums∑

n≤N f(n)Xn satisfy the LIL for any centered i.i.d. sequence Xn with finite vari-
ances and the strong law of large numbers for any i.i.d. sequence Xn with finite
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mean. This result establishes a connection between two different types of prob-
abilistic behavior of arithmetic functions, namely the “density” type distribution
result (1.6) and the almost sure asymptotic behavior of

∑N
k=1 f(k)Xk with ran-

dom Xk. As we are going to see, the key arithmetic property behind our results
is a bound for the frequency of large values of f , and in fact a byproduct of our
argument will be a large deviation result corresponding to (1.6).

Theorem 1.1. Assume that f ≥ 0 and condition (1.8) is satisfied. Then for any
sequence X, X1, X2, . . . of centered, independent, identically distributed, integrable
random variables we have

(1.9) lim
N→∞

∑N
n=1 f(n)Xn∑N

n=1 f(n)
a.s.= EX.

Theorem 1.2. Under the conditions of Theorem 1.1, for any sequence X, X1,
X2, . . . of centered, independent, identically distributed, square integrable random
variables we have

(1.10) lim sup
N→∞

∑N
n=1 f(n)Xn

AN

√
2N log log N

a.s.= ‖X‖2.

In view of the law of large numbers of Jamison-Orey-Pruitt [6], for the proof of
Theorem 1.1 it would suffice to verify the arithmetical condition

(1.11) lim sup
t→∞

#
{
N :

∑N
n=1 f(n) ≤ tf(N)

}
t

< ∞.

Conversely, the validity of Theorem 1.1 implies (1.11). However, we could not
find a direct argument for (1.11); instead we will use a suitable randomization of
the function f(n) in Theorems 1.1 and 1.2 and will obtain the theorems through
studying the randomized function. This idea goes back to Weber [13], and our main
tool will be Lemma 4.1 in [13] on the number of divisors of random sums Sn.

As we will see, (1.8) implies Bn = o(A2
n), and thus (1.6) describes the distribution

of f(n) in a short interval (AN (1 − o(1)), AN (1 + o(1)) around AN . On the other
hand, relation (1.11) can be equivalently written as

#{N : f(N) ≥ cNAN} 	 1/c

(see Lemma 2.1 below), and thus (1.11) is a large deviation result corresponding to
(1.6). Our theorems show the interesting fact that such a result is valid under the
same condition (1.8) required for the validity of the weak limit theorem (1.6).

Since (1.7) is the precise condition for the central limit theorem (1.6) for f , the
question arises if (1.7) is also sufficient for the validity of Theorems 1.1 and 1.2. If
f(p) does not fluctuate too wildly, e.g. if

(1.12) sup
n≤p,p′≤n2

f(p)/f(p′) = O(1),

then this is true, as the proofs of our theorems will show. It is possible that (1.7)
is sufficient without regularity conditions, but this remains open.

2. Preparatory lemmas

Although Theorems 1.1 and 1.2 are formulated under condition (1.8), we will ar-
range the proofs to show that the Lindeberg condition (1.7) plus the mild regularity
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condition (1.12) also suffice. For this reason, in the sequel we will assume (1.7) in-
stead of (1.8) and will indicate the places where (1.8) or the additional condition
(1.12) is required.

Lemma 2.1. Under (1.7) we have

(2.1)
n∑

m=1

f(m) ∼ nAn,
n∑

m=1

f2(m) ∼ nA2
n.

Proof. Fix ε > 0 and let us observe that by f ≥ 0 and the Lindeberg condition
(1.7) we have for n ≥ n0(ε)

Bn =
∑
p<n

f2(p)
p

=
∑

{p<n, f(p)≥εB
1/2
n }

f2(p)
p

+
∑

{p<n, f(p)<εB
1/2
n }

f2(p)
p

≤ εBn + εB1/2
n

∑
p<n

f(p)
p

= εBn + εB1/2
n An

and consequently

Bn ≤
(

ε

1 − ε

)2

A2
n.

Thus we proved

(2.2) Bn = o(A2
n).

Next we observe that ∑
p<n

1
p

= log log n + c0 + o(1)

for some constant c0 and thus ∑
nα≤p<n

1
p

= O(1)

for any 0 < α < 1. Hence fixing ε > 0 and using (1.7) we get for n ≥ n0(ε)

Bn − B[nα] =
∑

{[nα]≤p<n, f(p)<εB
1/2
n }

f2(p)
p

+
∑

{[nα]≤p<n, f(p)≥εB
1/2
n }

f2(p)
p

≤ ε2Bn

∑
[nα]≤p<n

1
p

+ εBn ≤ KεBn,

where K is a constant depending only on α. Thus we have

Bn − B[nα] = o(Bn),

and hence by a well-known result of Kubilius (see Theorem 12.1 of Elliott [2]) we
get

n∑
m=1

(f(m) − An) = o(nB1/2
n ),

n∑
m=1

(f(m) − An)2 ∼ nBn,

whence (2.1) follows in view of (2.2).

The next lemma is Jamison-Orey-Pruitt’s characterization [6, Theorem 3] of the
weighted strong law of large numbers in L1.
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Lemma 2.2. Let {wk, k ≥ 1} be a sequence of positive reals and put Wn =∑n
k=1 wk. Then the relation

(2.3) lim
N→∞

∑N
n=1 wnXn∑N

n=1 wn

a.s.= EX

holds for all sequences X = {X, X1, X2, . . .} of centered, independent, identically
distributed, integrable random variables if and only if

(2.4) lim sup
t→∞

N(t)
t

< ∞,

where N(t) = #
{
n : Wn ≤ twn

}
.

Although (2.4) characterizes the weighted strong law of large numbers, we shall
need a less elegant, but more adapted form of it. According to [6, Theorem 2, and
the remark at the bottom of p. 41], the conditions

(2.5) EX2

∫
y≥|X|

N(y)
y3

dy < ∞

and E |X| < ∞ imply (2.3), hence (2.4). Also, by the first half of the proof of
Theorem 3 in [6, p. 42], relation (2.4) and E |X| < ∞ imply (2.5), so that:

Lemma 2.3. Under the assumption E |X| < ∞, (2.4) and (2.5) are equivalent.

This observation will be crucial in the sequel. Trying to use the original char-
acterization (2.4) we could only establish the results in the spaces L logε L, ε arbi-
trarily small but strictly positive.

The next lemma comes from Weber [13, Lemma 2.1] and estimates (2.5) in Weber
[13]. We also refer to Weber [14] for a precise study of the distribution of values of
the divisors of i.i.d. random sums Sn, and to Weber [13] for the investigation of an
extremal divisor case.

Lemma 2.4. Let ε = {εi, i ≥ 1} be a Bernoulli sequence (i.e. a sequence of i.i.d.
random variables with P{εi = 0} = P{εi = 1} = 1/2) and put Sn = ε1 + . . . + εn,
n ≥ 1. There exist two absolute constants d0 < ∞ and C < ∞, such that for any
n ≥ d ≥ d0,

E {1d|Sn
} ≤ C( 1

n1/2 + 1
d ).

For proving Theorem 1.2, we shall need a weighted version of the usual LIL. The
following result is implicit in Fisher [4, see Corollary 3.4 and lines 8-11 on p. 178].

Lemma 2.5. Let {wk, k ≥ 1} be a sequence of positive reals and put Tn =
∑n

k=1 w2
k.

Assume that

(2.6) lim sup
t→∞

1
t
#

{
n : Tn ≤ tw2

n

}
< ∞.

Then, for any sequence X = {X, X1, X2, . . .} of centered, independent, identically
distributed, square integrable random variables we have

(2.7) lim sup
N→∞

∑N
n=1 wnXn√

2TN log log TN

a.s.= ‖X‖2.
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One recognizes in (2.6) condition (2.4) for the weights w2
n and in view of Lemma

2.3 it follows that under EX2 < ∞, (2.6) is equivalent to

(2.8) EX4

∫
y≥X2

Λ(y)
y3

dy < ∞,

where Λ(y) = #
{
n : Tn ≤ yw2

n

}
.

3. Proofs

Proof of Theorem 1.1. Clearly
∑

[n/2]≤p<n 1/p ≤
∑

[n/2]≤j<n 1/j = O(1), and thus
using (1.7), (2.2) and the Cauchy-Schwarz inequality we get

An − A[n/2] =
∑

{[n/2]≤p<n, f(p)≥B
1/2
n }

f(p)
p

+
∑

{[n/2]≤p<n, f(p)<B
1/2
n }

f(p)
p

≤

⎛
⎝ ∑

{p<n, f(p)≥B
1/2
n }

f2(p)
p

⎞
⎠

1/2 ⎛
⎝ ∑

[n/2]≤p<n

1
p

⎞
⎠

1/2

+ B1/2
n

∑
[n/2]≤p<n

1
p

= O(B1/2
n ) = o(An)

(3.1)

which shows that An is slowly varying. Assume now E|X| < ∞ and put

L(t) = #{n :
n∑

k=1

f(k) ≤ tf(n)}.

According to Lemmas 2.2 and 2.3, in order to prove Theorem 1.1, it suffices to
prove

(3.2) EX2

∫
y≥|X|

L(y)
y3

dy < ∞.

To establish (3.2), we use a probabilistic trick employed by Weber in [13]. Put

f1(n) =
∑

d0≤p≤n1/4

f(p)χ(p|n),

where d0 is the same constant as in Lemma 2.4 of [13]. Using f ≥ 0, (1.12), the
slow variation of An and the asymptotics for

∑
p<n p−1 used in the proof of Lemma

2.1 we get for sufficiently large n

An ≥ 1
2
A2n ≥ 1

2

∑
n1/4≤p<2n

f(p)
p

≥ 1
2

min
n1/4≤p≤n

f(p)
∑

n1/4≤p≤n

1
p
≥ K max

n1/4≤p≤n
f(p)

with some constant K > 0, and thus we get, using the fact that n has at most 4
different prime factors exceeding n1/4,

(3.3) |f(n) − f1(n)| ≤
∑
p≤d0

f(p) + 4 max
n1/4≤p≤n

f(p) 	 An.

(Note that this is the only point in the proof where the smoothness condition
(1.12) is used; if instead of the Lindeberg condition (1.7) plus (1.12) we assume
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(1.8), relation (3.3) is obvious in view of (2.2).) Let (Ω,A,P) be the probabil-
ity space on which the sequence X1, X2, . . . is defined, and consider the product
space (Ω,A,P)× (Ω̃, Ã, P̃), where the second space supports a Bernoulli sequence
{εi, i ≥ 1}. Let Ẽ denote expectation in (Ω̃, Ã, P̃) and set Sn = ε1 + . . . + εn,
n = 1, 2, . . .. Then by (2.1)

(3.4) L(t) ≤ #
{
n : nAn ≤ Ctf(n)

}
≤ #

{
n : SnASn

≤ Ctf(Sn)
}
,

and this is true for any t > 0, simply because the graph of the random walk
{Sn, n ≥ 1} replicates all positive integers with possible multiplicities. By the
strong law of large numbers lim

n→∞
Sn/n

a.s.= 1/2, and thus

SnASn
∼ (n/2)An/2 ∼ (n/2)An a.s.

Here we used the fact that An is slowly varying and thus by the uniform convergence
theorem for slowly varying functions (see e.g. Bingham et al. [1, Theorem 1.2.1])
if λn ∼ µn are two integer sequences, then Aλn

∼ Aµn
. Thus if Ωη = {SnASn

≥
ηnAn, ∀n ≥ 1}, then for some η > 0, P(Ωη) > 0. Also, reading (3.4) on Ωη gives

(3.5) L(t) ≤ #
{
n : nAn ≤ (Ct/η)f(Sn)

}
on Ωη, for all t > 0.

But for all t > 0

1
t
#

{
n : nAn ≤ tf(Sn)

}
≤ 1 +

1
t
#

{
n ≥ t : nAn ≤ tf(Sn)

}
=1 +

1
t

∑
n≥t

χ{ (nAn)2 ≤ t2f2(Sn)} ≤ 1 + t
∑
n≥t

f2(Sn)
(nAn)2

.
(3.6)

Further, by Lemma 2.4 there exists a constant C∗ such that

Ẽ f2
1 (Sn) = Ẽ

{ ∑
d0≤p≤(Sn)1/4

f(p)χ(p|Sn)
}2

≤ Ẽ
{ ∑

d0≤p≤n1/4

f(p)χ(p|Sn)
}2

=
∑

d0≤pi1 ,pi2≤n1/4

f(pi1)f(pi2)Ẽχ(pi1pi2 |Sn)

≤ C∗
{ ∑

pi1 ,pi2≤n1/4

f(pi1)f(pi2)
pi1pi2

}
≤ C∗{ ∑

p≤n1/4

f(p)
p

}2 ≤ C∗A2
n,

(3.7)

provided n is sufficiently large, which from now on we assume. From (3.3), (3.7)
and Minkowski’s inequality it follows that

(3.8) Ẽ f2(Sn) ≤ C ′A2
n.

Therefore

(3.9) Ẽ
1
t
#

{
n : nAn ≤ tf(Sn)

}
≤ 1+ t

∑
n≥t

Ẽ f2(Sn)
(nAn)2

≤ 1+C ′t
∑
n≥t

1
n2

≤ C ′′ < ∞.

It follows that

EẼX2

∫
y≥|X|

#
{
n : nAn ≤ yf(Sn)

}
y3

dy ≤ C ′′EX2

∫
y≥|X|

1
y2

dy ≤ C ′′E |X| < ∞.
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Also, in view of (3.5) and Fubini’s Theorem

Ẽχ(Ωη) · EX2

∫
y≥|X|

L(y)
y3

dy ≤ EẼX2

∫
y≥|X|

#
{
n : nAn ≤ (Cy/η)f(Sn)

}
y3

dy

≤ C ′′′E |X| < ∞.

As

Ẽχ(Ωη) · EX2

∫
y≥|X|

L(y)
y3

dy = P{χ(Ωη)}EX2

∫
y≥|X|

L(y)
y3

dy,

condition (3.2) is obtained and Theorem 1.1 is thus proved. �

Remark. It is quite interesting to observe by the randomization argument we used
in the above proof that the term “ 1

p” in the summand of An appears in (3.7) as the
expectation of a random factor.

Proof of Theorem 1.2. In view of Lemma 2.5 and the equivalence of (2.6) and (2.8),
it suffices to verify that

EX4

∫
y≥X2

Λ(y)
y3

dy < ∞,

where

Λ(y) = #
{
n :

n∑
k=1

f2(k) ≤ yf2(n)
}
.

The proof being very similar, we only mention the modifications. We replace f1(n)
by

f2(n) =
∑

d0≤p≤n1/8

f(p)χ(p|n),

where d0 is the same constant as in Lemma 2.4. Similarly to (3.3), we get

(3.10) |f(n) − f2(n)| 	 An.

By using the same randomization argument as above and applying (2.1), we see
that the set Ω∗

η defined by

Ω∗
η = {SnA2

Sn
≥ ηnA2

n, ∀n ≥ 1}

has positive probability for some η > 0, and on Ω∗
η we have for all y > 0

Λ(y) ≤ #
{
n : nA2

n ≤ (C0y/η)f2(Sn)
}

for some positive constant C0. Instead of (3.6) we have

1
t
#

{
n : nA2

n ≤ tf2(Sn)
}
≤ 1 +

1
t
#

{
n ≥ t : nA2

n ≤ tf2(Sn)
}

= 1 +
1
t

∑
n≥t

χ{n2A4
n ≤ t2f4(Sn)} ≤ 1 + t

∑
n≥t

f4(Sn)
n2A4

n

.
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Now,

Ẽ f4
2 (Sn) = Ẽ

{ ∑
d0≤p≤(Sn)1/8

f(p)χ(p|Sn)
}4

≤ Ẽ
{ ∑

d0≤p≤n1/8

f(p)χ(p|Sn)
}4

=
∑

d0≤pi1 ,pi2 ,pi3 ,pi4≤n1/8

f(pi1)f(pi2)f(pi3)f(pi4)Ẽχ(pi1pi2pi3pi4 |Sn)

≤ C∗
{ ∑

pi1 ,pi2 ,pi3 ,pi4≤n1/8

f(pi1)f(pi2)f(pi3)f(pi4)
pi1pi2pi3pi4

}
≤ C∗{ ∑

p≤n1/8

f(p)
p

}4

≤ C∗A4
n,

(3.11)

provided n is sufficiently large, which from now on we assume. From (3.10) and
(3.11) it follows that

Ẽ f4(Sn) ≤ C ′A4
n.

Thus instead of (3.9) we get

Ẽ
1
t
#

{
n : nA2

n ≤ tf2(Sn)
}
≤ 1 + t

∑
n≥t

Ẽ f4(Sn)
n2A4

n

≤ 1 + C ′t
∑
n≥t

1
n2

≤ C ′′ < ∞.

To conclude, we now operate exactly as at the end of the previous proof. �

Remark. The reduction argument based on (3.3) we used to treat the case of addi-
tive arithmetical functions is no longer valid when passing to multiplicative func-
tions, e.g. the usual divisor function d. However, the argument applies to the
truncated divisor function d1(n) =

∑
d≤n1/4 χ(d|n), and gives for any sequence X

of centered, independent, identically distributed, integrable random variables

lim
N→∞

∑N
n=1 d1(n)Xn∑N

n=1 d1(n)
a.s.= EX.

A similar result can be obtained for the LIL with the truncated divisor function
d2(n) =

∑
d≤n1/8 χ(d|n). We omit the details of proofs, which are quite similar to

the above.
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