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a b s t r a c t

We consider polynomial GARCH(p, q) variables which define an important subclass of
Duan’s augmented GARCH(p, q) processes. We prove functional central limit theorems
for the observations as well as for the volatility process under the assumption of finite
second moments. The results imply the convergence of CUSUM, MOSUM and Dickey–Fuller
statistics under optimal conditions.
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1. Introduction

Statistical properties of financial data have received considerable attention in the literature during the last three decades.
One of the most often used models is the GARCH(p, q) sequence introduced by Engle (1982) and Bollerslev (1986). We say
that {yk, k ∈ Z} is a GARCH(p, q) sequence if it satisfies the equations

yk = σkεk (1.1)

and

σ2
k = ω+

∑
1≤i≤p

αiy
2
k−i +

∑
1≤j≤q

βjσ
2
k−j, (1.2)

ω > 0, αi ≥ 0, 1 ≤ i ≤ p, βj ≥ 0, 1 ≤ j ≤ q. (1.3)

The necessary and sufficient condition for the existence of a unique solution of (1.1) and (1.2) was obtained by Nelson
(1990) for p = q = 1 and by Bougerol and Picard (1992a,b) in the general case. Without loss of generality we can assume
that min(p, q) ≥ 2. To state the result of Bougerol and Picard (1992a,b) we put

τ n =

(
β1 + α1ε

2
n,β2, . . . ,βq−1

)
∈ Rq−1, ζ n =

(
ε2
n, 0, . . . , 0

)
∈ Rq−1

and α =
(
α2, . . . ,αp−1

)
∈ Rp−2. Next we define a sequence of (p+ q− 1)× (p+ q− 1) matrices An written in block form as

An =


τ n βq α αp

Iq−1 0 0 0
ζ n 0 0 0
0 0 Ip−2 0
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where Ij is an identity matrix of size j. A norm of a d× d matrix M is given by

‖M‖ = sup
{
‖Mx‖d : x ∈ Rd and ‖x‖d = 1

}
,

where ‖ · ‖d is the Euclidean norm in Rd. We say that a solution to (1.1) and (1.2) is non-anticipative if yk is independent of
σ({εj, j > k}). We can now state the result of Bougerol and Picard (1992a,b).

Theorem 1.1. If (1.3) holds, E log ‖A0‖ <∞ and

{εk, k ∈ Z} are independent, identically distributed random variables, (1.4)

then (1.1) and (1.2) have a unique, non-anticipative, stationary and ergodic solution if and only if

γL = inf
0≤n<∞

1
n+ 1

E log ‖A0A1 . . .An‖ < 0.

We note that γL is the top Lyapunov exponent of the sequence An. For further discussion on the existence of a GARCH(p, q)
sequence we refer the reader to Berkes et al. (2004). We also note that the moment condition E log ‖A0‖ <∞ in Theorem 1.1
is satisfied if E log(ε2

0 + 1) <∞.
Duan (1997) defined the so-called augmented GARCH process which is a unification of several extensions of the GARCH

model (1.1) and (1.2). We shall say that {yk, −∞ < k <∞} is an augmented GARCH(p, q) sequence if (1.1) and the volatility
equation

Λ(σ2
k ) =

p∑
i=1

gi(εk−i)+
q∑

j=1
cj(εk−j)Λ(σ2

k−j)

hold, where Λ(·), gi(·) (i = 1, . . . , p) and cj(·) (j = 1, . . . , q) are real valued measurable functions and Λ−1 exists. Motivated
by the Box–Cox transformation of the original data, the function Λ(·) typically comprises the cases Λ(x) = xδ, δ > 0, or
Λ(x) = log x.

In the present paper we consider augmented GARCH sequences with Λ(x) = xδ, i.e. where the volatility process is given
by the equation

σ2δ
k =

p∑
i=1

gi(εk−i)+
q∑

j=1
cj(εk−j)σ

2δ
k−j, δ > 0. (1.5)

We shall call such a process {yk, −∞ < k <∞} a polynomial GARCH sequence. In order to assure that the left-hand side in
(1.5) is non-negative we assume that

gi(ε0) ≥ 0 (i = 1, . . . , p) and cj(ε0) ≥ 0 (j = 1, . . . , q). (1.6)

This framework includes GARCH(p, q), power GARCH(p, q) (cf. Carrasco and Chen (2002)) or asymmetric power GARCH(p, q)
(cf. Ding et al. (1993)). For several further examples see also Carrasco and Chen (2002). Our goal is to establish functional
central limit theorems (FCLTs) for the partial sum processes of the random variables

z(1)
k = |yk|

δ z(2)
k = |yk|

δ sign(yk) and z(3)
k = σ

δ
k . (1.7)

Our main result in Chapter 2 will show that

S(`)
n (t) =

1
n1/2

∑
1≤i≤nt

(z(`)i − Ez(`)0 ) (` ∈ {1, 2, 3}, t ∈ [0, 1])

converges weakly to a Brownian motion under second moment assumptions. The proof is short and relies on a basic theorem
of Billingsley (1968) who extended the earlier work of Ibragimov (1962). The major advantage of our approach is that it
frees the FCLT from the rather restrictive smoothness and moment conditions required by the earlier theory. In Section 2
we discuss the earlier approaches in this field. We will also give a simple necessary and sufficient criterion for the existence
of a strictly stationary solution to (1.1) and (1.5) with finite second moments. Our results are stated in Section 2. In Section 3
we give applications of the FCLT for statistical inference on time series models such as change point detection and unit root
testing. The proofs are given in Section 4.

2. Results

Lemma 2.1 gives a necessary and sufficient condition for the existence of a strictly stationary solution of (1.5) with
Eσ2δ

0 <∞. The proof is standard but for the sake of completeness it will be given in Section 4.



I. Berkes et al. / Statistics and Probability Letters 78 (2008) 2725–2730 2727

Lemma 2.1. Assume that (1.4) and (1.6) hold. Then a unique non-anticipative and strictly stationary solution of (1.5) with
Eσ2δ

0 <∞ exists if and only if

p∑
i=1

Egi(ε0) <∞ and
q∑

j=1
Ecj(ε0) < 1. (2.1)

Assuming without loss of generality that p = q, we have under (2.1)

σ2δ
k =

∞∑
m=1

∑
1≤l1,...,lm≤p

glm(εk−l1−l2−···−lm)
m−1∏
i=1

cli(εk−l1−l2−···−li) a.s.

and

Eσ2δ
0 =

(
p∑

s=1
Egs(ε0)

)
1

1− (Ec1(ε0)+ · · · + Ecp(ε0))
.

Remark 2.1. Using the independence of ε0 and σ0 it follows that a necessary and sufficient condition for E|y0|
2δ <∞ is (2.1)

and E|ε0|
2δ <∞.

Specializing to the GARCH(p, q) model we recover a result of Bollerslev (1986) and Bougerol and Picard (1992b), p. 122. They
show that a strictly stationary solution to (1.1) and (1.2) satisfying Ey2

0 <∞ exists if and only if

(α1 + · · · + αp)Eε
2
0 + (β1 + · · · + βq) < 1.

For notational convenience we will write from now on zk when we mean one of the random variables z(`)k (` = 1, 2, 3) in
(1.7). The same convention will be used for S(`)

n (t).

Theorem 2.1. Assume that (1.4) holds. If a strictly stationary solution of (1.1) and (1.5) with Ez2
0 <∞ exists, then the sum

τ2
= Var z0 + 2

∑
1≤k<∞

Cov(z0, zk) (2.2)

is convergent and

Sn(t)
D[0,1]
−→ τW(t),

where {W(t), 0 ≤ t ≤ 1} is a standard Brownian motion.

To the best of our knowledge, there is no functional CLT for this general class of heteroscedastic time series. However, for
the convenience of the reader we shall recall some existing results for the GARCH(p, q) models below. The typical approach
is to show that a specific dependence property (e.g. mixing, NED, association, etc.) holds and the results are deduced from a
more general theory. However, the verification of many well-known dependence properties is rather delicate and requires
unnecessary side conditions on the model such as smoothness and higher moments. Assuming more than two moments is
clearly undesirable in applications since even in the case of GARCH(p, q) processes, computing the pth moment from the
parameters is an open problem with the exception of some integral p’s.

A possible method to prove a functional CLT is to use the Markov structure of the model to obtain mixing properties and
then to employ the theory of mixing variables to deduce the desired asymptotics. A detailed study of β-mixing properties
was given by Carrasco and Chen (2002). Their results cover many augmented GARCH(1,1) models and the PGARCH(p, q)
processes. It remains, however, open whether β-mixing holds for the general model (1.1)–(1.5). Note also that the approach
of Carrasco and Chen requires fairly restrictive conditions on the εk’s, such as a continuous and positive density on the
real line. Further it is known that β-mixing does not imply the CLT under finite second moments (cf. Bradley (1983)). An
overview of different dependence structures occurring in econometric time series models can be found in Ango Nze and
Doukhan (2004). Besides mixing, they consider e.g. NED (near-epoch dependence), association and the weak dependence
concepts introduced by Doukhan and Louhichi (1999). An elaborate treatment of weak dependence with applications is
presented in Dedecker et al. (2007).

For GARCH(p, q) sequences various further dependence structures have been applied in order to obtain FCLTs by different
authors and we shall review now the corresponding results. Let us first recall that if Eε0 = 0, then {yk,−∞ < k < ∞} is a
stationary and ergodic martingale difference sequence. Hence by Theorem 23.1 of Billingsley (1968) we obtain a functional
CLT under Ey2

0 < ∞. However, if Eε0 6= 0, or if we consider the absolute values |yk| or the conditional variances σ2
k the

martingale structure no longer applies. Using NED, Davidson (2002) and Hansen (1991) obtained the weak convergence of
n−1/2 ∑[nt]

k=1 yk to a Brownian motion if Ey4
0 <∞ instead of Ey2

0 <∞. The weak dependence concepts of Doukhan and Louhichi
have been used in Berkes et al. (2004) to obtain a functional CLT for the squared observations y2

k under E|y0|
8+δ < ∞. A

recent result of Doukhan and Wintenberger (2007) implies that the latter result holds under E|y0|
4+δ < ∞. Giraitis et al.

(2007) observed that an ARCH(∞) sequence is associated. This follows from the fact that i.i.d. r.v.’s are associated and that
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association is inherited by coordinatewise non-decreasing transformations. Applying the well-known result of Newman and
Wright (1981), they deduce a functional CLT for the partial sums processes of the squared observations y2

k under the sole
assumption Ey4

0 <∞. However, whether association is applicable for the general model considered in this paper is unclear.
Since we do not assume that the functions gi(·) or cj(·) in (1.5) are non-decreasing, we cannot assume that association is
inherited from the driving i.i.d. process. Also the concept of association seems not to be applicable for the original GARCH
variables, but only for the squared observations. These results show that the availability of a specific dependence structure
often requires fairly restrictive regularity conditions on the underlying process. For example, in the case of the AR-GARCH
model all existing Dickey–Fuller tests, as well as the underlying functional CLTs require the existence of 4 moments of the
process. Technically, the requirement of the finiteness of higher moments of y0 is a restriction on the functions gi(·) and cj(·)
in (1.5). However, as we have already noted, even for the GARCH(p, q) model it is very difficult to connect the moments of
y0 with the specific model (cf. Ling and McAleer (2002)).

Our approach is based on a theorem due to Billingsley (1968). The crucial observation is that augmented GARCH(p, q)
sequences can be well approximated with m-dependent random variables. Indeed, truncating the infinite series for σ2δ

k at m
(see Lemma 2.1) yields pm-dependent random variables σ2δ

km. According to Billingsley’s result the FCLT follows if E(σδk−σδkm)2

tends to zero sufficiently fast. We note that m-dependence was explored in Giraitis et al. (2000) to obtain a central limit
theorem for ARCH(∞) sequences.

3. Applications

Example 3.1. The CUSUM (cumulative sum) statistics defined by

Cn = max
1≤k≤n

∣∣∣∣∣ ∑
1≤i≤k

zi −
k

n

∑
1≤i≤n

zi

∣∣∣∣∣
is one of the most often used statistics to test for the stability of {zi, 1 ≤ i ≤ n}. While with zk = sign(yk)|yk|δ we test for
stability in the mean, the choice zk = |yk|δ or zk = σ

δ
k is used for testing stability in the volatility. Under the assumptions of

Theorem 2.1

Cn

τn1/2
D
−→ sup

0≤t≤1
|B(t)|, (3.1)

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge and τ is defined by (2.2). The MOSUM (moving sum) version of Cn is

Mn = max
nh<k≤n

∣∣∣∣∣ ∑
k−nh≤i≤k

zi − h
∑

1≤i≤n
zi

∣∣∣∣∣ ,
where 0 < h < 1. Under the conditions of Theorem 2.1

Mn

τn1/2
D
−→ sup

h≤t≤1
|B(t)− B(t − h)|. (3.2)

In order to use (3.1) and (3.2) we need to estimate τ. One could use, for example, the Bartlett estimator (cf. Giraitis et al.
(2003)).

For a review of CUSUM and MOSUM we refer the reader to Csörgő and Horváth (1997). Zeileis et al. (2005) provides a
comparison between CUSUM and MOSUM.

Example 3.2. CUSUM as well as MOSUM requires the estimation of τ2. The estimation of τ2 is not needed if ratio based
statistics are used. Following Kim (2000) and Taylor (2005) we define

Kn(t) =
(

t

1− t

)1/2
max
nt≤k≤n

∣∣∣∣∣ ∑
nt<i≤k

zi −
k− nt

n(1− t)

∑
nt≤i≤n

zi

∣∣∣∣∣
/

max
1≤k≤nt

∣∣∣∣∣ ∑
1≤i≤k

zi −
k

nt

∑
1≤i≤nt

zi

∣∣∣∣∣ .
If the conditions of Theorem 2.1 are satisfied, then for any 0 < δ < 1/2

Kn(t)
D[δ,1−δ]
−→

(
t

1− t

)1/2
sup
t≤s≤1

∣∣∣∣W(s)−W(t)−
s− t

1− t
(W(1)−W(t))

∣∣∣∣
/

sup
0≤s≤t

∣∣∣∣W(s)−
s

t
W(t)

∣∣∣∣ .
Functionals of Kn(t) can be considered as ratio based versions of the Kwiatowski et al. (1992) test.

Example 3.3. Starting with x0 = 0 we define

xk = %xk−1 + zk 1 ≤ k <∞,
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where zk is one of the z(i)k , i = 1, 2, 3, defined in (1.7). We assume that Eε0 = 0. The least square estimator for % is given by

%̂n =
∑

1≤k≤n
zkzk−1

/ ∑
1≤k≤n

z2
k−1.

If % = 1 (unit root), then under the conditions of Theorem 2.1

n(%̂n − 1)
D
−→

(∫ 1

0
W(s)dW(s)

)/∫ 1

0
W2(s)ds. (3.3)

The result in (3.3) is the asymptotics for the Dickey–Fuller test with augmented GARCH(p, q) errors. The same result was
obtained by Ling et al. (2003) assuming p = q = 1, Eε4

0 <∞ and the existence of a symmetric density of ε0.

4. Proofs

Proof of Lemma 2.1. We can assume without loss of generality that p = q. Repeated application of (1.5) yields

σ2δ
k =

∑
1≤l1≤p

gl1(εk−l1)+
∑

1≤l1,l2≤p

cl1(εk−l1)gl2(εk−l1−l2)+
∑

1≤l1,l2≤p

cl1(εk−l1)cl2(εk−l1−l2)σ
2δ
k−l1−l2

and more generally for n ≥ 2

σ2δ
k =

n∑
m=1

∑
1≤l1,...,lm≤p

glm(εk−l1−l2−···−lm)
m−1∏
i=1

cli(εk−l1−l2−···−li)+
∑

1≤l1,...,ln≤p

n∏
i=1

cli(εk−l1−l2−···−li)σ
2δ
k−l1−···−ln

. (4.1)

Due to (1.6) the random variable

Xk =

∞∑
m=1

∑
1≤l1,...,lm≤p

glm(εk−l1−l2−···−lm)
m−1∏
i=1

cli(εk−l1−l2−···−li) (4.2)

is well defined. These observations suggest setting σ2δ
k = Xk as the solution of (1.5). It is easy to see that formally this defines

a strictly stationary (and ergodic) solution of equation (1.5). It remains to show that Xk is a.s. finite, which will follow if we
show that EXk <∞. Observe that by (1.4)

E

 ∑
1≤l1,...,lm≤p

glm(εk−l1−l2−···−lm)
m−1∏
i=1

cli(εk−l1−l2−···−li)

 = GCm−1, (4.3)

with G = Eg1(ε0)+ · · · + Egp(ε0) and C = Ec1(ε0)+ · · · + Ecp(ε0). By the monotone convergence theorem and (2.1) it follows
that

EXk =
G

1− C
<∞.

Assume now that σ̂2δ
k is another stationary non-anticipative solution of (1.5), such that Eσ̂2δ

k < ∞. Obviously σ̂2δ
k has to

satisfy (4.1) for every n ≥ 1 and thus we get by (1.4), (1.6) and the stationarity of σ̂2δ
k − σ

2δ
k , that

E|σ̂2δ
k − σ

2δ
k | ≤ E

 ∑
1≤l1,...,ln≤p

n∏
i=1

cli(εk−l1−l2−···−li)|σ̂
2δ
k−l1−···−ln

− σ2δ
k−l1−···−ln

|

 = CnE|σ̂2δ
0 − σ

2δ
0 |.

Since C < 1 it follows that E|σ̂2δ
k − σ

2δ
k | = 0, and hence the solution is unique. The proof of Lemma 2.1 is now complete. �

Proof of Theorem 2.1. We show the functional CLT for the sequence {z(3)
k , k ≥ 1}. The proof for {z(1)

k , k ≥ 1} and {z(2)
k , k ≥ 1}

is similar. Let ηk = σ
δ
k − Eσδ0 and note that by Lemma 2.1 ηk = f (. . . , εk−2, εk−1) where f is a measurable mapping from the

space of infinite sequences into R. According to Theorem 21.1 of Billingsley (1968), for the proof of Theorem 2.1 it is enough
to find measurable mappings f` from R` into R such that

∑
1≤`<∞

(
E(η0 − η0`)

2
)1/2

<∞, (4.4)

where η0` = f`(ε−`, ε−`+1, . . . , ε−1).
Every positive integer ` can be written as

` = pK + r, (4.5)
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where K, r are integers satisfying K ≥ 0 and 0 ≤ r ≤ p− 1. Next we define

σ2δ
0` =

∑
1≤m≤K

∑
1≤l1,...,lm≤p

glm(ε−l1−l2−···−lm)
m−1∏
i=1

cli(ε−l1−l2−···−li),

where K is defined in (4.5). (We define σ0` = 0 if K = 0, i.e. 0 ≤ ` ≤ p− 1.) Let

η0` = σ
δ
0` − Eσδ0.

Then η0` is a function of ε−`, . . . , ε−1 and we have

|η0 − η0`| ≤ (σ2δ
0 − σ

2δ
0`)

1/2
=

 ∑
K+1≤m<∞

∑
1≤l1,...,lm≤p

glm(ε−l1−l2−···−lm)
m−1∏
i=1

cli(ε−l1−l2−···−li)

1/2

.

By (4.3) it follows that

E(η0 − η0`)
2
≤

G

1− C
CK,

where K is given in (4.5). This shows (4.4). �
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