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Abstract. We introduce new entropy concepts measuring the size of a given class of increasing
sequences of positive integers. Under the assumption that the entropy function of A is not too large,
many strong limit theorems will continue to hold uniformly over all sequences in A. We demonstrate
this fact by extending the Chung-Smirnov law of the iterated logarithm on empirical distribution
functions for independent identically distributed random variables as well as for stationary strongly
mixing sequences to hold uniformly over all sequences in A. We prove a similar result for sequences
ðnk!Þ mod 1 where the sequence ðnkÞ of real numbers satisfies a Hadamard gap condition.
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1. Introduction

Let X1;X2; . . . be a sequence of random variables and A a class of increasing
sequences of positive integers. The purpose of our paper is to investigate under
what conditions the sequence ðXnÞ satisfies the strong law of large numbers uni-
formly over A in the sense that

lim
N!1

1

N
sup

ðpkÞ 2A

���� X
pk 4N

Xpk

���� ¼ 0 a:s: ð1:1Þ

When relation (1.1) is valid, we will also be interested in the speed of convergence;
in particular we will investigate when the uniform law of the iterated logarithm

lim sup
N!1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N log logN

p sup
ðpkÞ 2A

���� X
pk 4N

Xpk

����<1 a:s: ð1:2Þ

holds.
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Our work was motivated by recent results of Mauduit and Sárk€oozy on pseudo-
random behavior. Given independent random variables X1;X2; . . . taking the values
� 1 with probability 1=2 � 1=2, it is not hard to prove that

lim
N!1

1

N
max

a5 1;b5 0

���� X
k5 1

akþb4N

Xakþb

���� ¼ 0 a:s:

Thus, if ðxnÞ is a ‘truly’ random � 1 sequence, then the quantity

KN :¼ max
a5 1;b5 0

���� X
k5 1

akþb4N

xakþb

���� ð1:3Þ

is oðNÞ. Hence for a computer generated �1 sequence ðx1; . . . ; xNÞ the quantity
(1.3), introduced by Mauduit and Sárk€oozy in [14] (see Knuth [10], p. 148 for a
related ‘serial test’), can be used as a measure of pseudorandomness. More gener-
ally, for a sequence ðx1; . . . ; xNÞ in ½0; 1Þ, Mauduit and Sárk€oozy introduced the
quantity

WNðx1; . . . ; xNÞ :¼ max
a5 1;b5 0

���� X
k5 1

akþb4N

ð1ðxakþb 4 1=2Þ � 1=2Þ
���� ð1:4Þ

which they called the well-distribution measure of the sequence. In a long series of
papers (see e.g. [15], [16], [4], [13] and the references therein), they investigated
the quantities KN and WN for several interesting sequences ðxnÞ defined by num-
ber-theoretic algorithms. A good estimate for KN and WN means a high degree of
pseudorandomness, but to assess how this is related to ‘‘true’’ random behavior, one
needs a probabilistic analysis of the well-distribution measure, i.e. to study the
behavior of KN and WN for typical classes of random sequences. The purpose of
our paper is to provide such an analysis.

In addition to the well-distribution measure WN , several related quantities (e.g.
the corresponding correlation measures) are of considerable interest in pseudo-
randomness studies (see e.g. [14], [13], [1], [4]), but in the present paper we will not
deal with such quantities.

Note that in (1.1) we use the norming N�1 for all sums
P

pk 4N Xpk , although
many of them consist of less than N elements. This choice is the natural one for our
arithmetic applications, and changing (1.1) to

lim
N!1

sup
ðpkÞ 2A

1

#fk : pk 4Ng

���� X
pk 4N

Xpk

���� ¼ 0 a:s: ð1:5Þ

would actually result in a useless concept. If, for example,A consists of all increasing
arithmetic progressions in N, then there are many sets in A having exactly one ele-
ment under N and thus (1.5) is false even if Xn are i.i.d. binomial variables.

Given a sequence ðxnÞ and a class A of subsequences of N, we define a
generalization of the well-distribution measure of Mauduit and Sárk€oozy by

W
ðAÞ
N ðx1; . . . ; xNÞ :¼ sup

ðpkÞ 2A

sup
04 t4 1

���� X
pk 4N

ð1ðxpk 4 tÞ � tÞ
����: ð1:6Þ
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When ðx1; . . . ; xNÞ is understood, we shall simply write WNðAÞ instead of
W

ðAÞ
N ðx1; . . . ; xNÞ. Note that, in contrast to (1.4), definition (1.6) involves a sup

in t as well. This is quite natural, since the value 1=2 in (1.4) was arbitrary. Note
that in the case when the class A consists of the single sequence N, the quantity in
(1.6) reduces to NDNðx1; x2; . . . ; xNÞ, where

DN ¼ DNðx1; . . . ; xNÞ :¼ sup
04 t4 1

���� 1

N
card ðk4N : xk 4 tÞ � t

����
is the discrepancy of ðx1; . . . ; xNÞ. Clearly, the sup in t makes the estimation of
WNðAÞ more difficult, but our results will be easy to compare with known dis-
crepancy estimates in the literature.

Let �1; �2; . . . be a sequence of random variables in ½0; 1Þ. Analogously to (1.1),
we will say that ð�nÞ satisfies the Glivenko-Cantelli theorem uniformly over A if

lim
N!1

1

N
sup

ðpkÞ 2A

sup
04 t4 1

���� X
pk 4N

ð1ð�pk 4 tÞ � tÞ
���� ¼ 0 a:s:; ð1:7Þ

where 1ðAÞ denotes the indicator function of the set A. Relation (1.7) expresses a
certain uniformity in the behavior of empirical distribution functions of subse-
quences of ð�kÞ, a requirement tailored for the specific needs of pseudorandom
behavior. It seems this kind of subsequential uniformity has not been studied in the
probabilistic literature so far. On the other hand, uniform convergence of empirical
processes with respect to sets in Euclidean spaces has a wide literature going back
to the 1970’s. Let ð�nÞ be a sequence of i.i.d. random variables, uniformly distrib-
uted over the unit cube Kd of Rd, and let C be a class of Borel sets � Kd. Put

ZNðCÞ ¼
X
k4N

ð1ð�k 2CÞ � �ðCÞÞ; C2C

where � is the Lebesgue measure. It is known that the validity of the uniform
strong law and LIL, i.e.

lim
N!1

sup
C 2C

1

N
jZNðCÞj ¼ 0 a:s: ð1:8Þ

and

lim sup
N!1

supC 2C jZNðCÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N log logN

p <1 a:s: ð1:9Þ

are closely connected with the geometry of the class C, namely how many suffi-
ciently separated elements of the class C exist, or how closely the elements of C
can be approximated by ‘‘special’’ sets. For example, let NIð�; CÞ denote the
smallest number r of measurable sets A1; . . . ;Ar in Kd such that for every C2
C there exist Ai;Aj, 14 i< j4 r such that Ai � C � Aj and �ðAjnAiÞ<� (‘‘metric
entropy with inclusion’’). Then the validity of the uniform LIL and CLT is closely
related to the finiteness of the entropy integralð1

0

ð logNIðx2;CÞÞ1=2
dx:
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(See e.g. Dudley [6], [7], Dudley and Philipp [8].) Another important geometric
property relevant for the uniform strong law (1.8), discovered by Vapnik and
�CCervonenkis, is how finite sets fx1; . . . ; xNg in Rd can be ‘‘shattered’’ by elements
of C, i.e. how many different sets of the form fx1; . . . ; xNg \ C, C2C exist. In
fact, a necessary and sufficient condition for (1.8) can be given in terms of this
quantity; see e.g. Pollard [21], p. 22.

In this paper, we will develop entropy concepts for classes of subsequences of
N and use them to study uniform subsequential limit theorems of the type (1.1),
(1.2) and (1.7). Quite naturally, the behavior of the quantities in (1.1), (1.2), (1.7)
is connected with the size of the class A and we will see that various ‘‘sequential’’
analogues of entropy measures in Rd will lead to substantial information on em-
pirical processes. Beside the simplest case of i.i.d. variables �n, we will study
some classes of dependent sequences as well, in particular mixing and lacunary
sequences.

Throughout our paper, we will assume that the class A contains the se-
quence N. This assumption implies that WN is bounded below by N times the
discrepancy of the same sequence and this will permit us to compare our re-
sults with classical discrepancy bounds in the literature. Apart from the lower
bounds in the LIL in Theorems 1, 2, 6, all our results remain valid without this
assumption.

Given a class A of subsequences of N, for each N5 1 let AN denote the
collection of the restrictions of these subsequences to the segment ½1; 2; . . . ;N� of
the first N positive integers, i.e.

AN :¼ fA \ ½1; 2; . . . ;N� : A2Ag:
Clearly

AN ¼
[
r5 1

ANðrÞ

where ANðrÞ denotes the class of sets A2AN for which N2�r < card A4
N2�ðr�1Þ. We call

 ðA;N; rÞ :¼ cardANðrÞ ð1:10Þ
the entropy function of the class A.

Next, let ð�kÞ be a sequence of random variables in ½0; 1Þ. In the simplest case
of Theorem 1, the �k will be independent, with each �k having uniform distribution
over ½0; 1Þ, i.e.

Pð�k 4 tÞ ¼ t; 04 t4 1; k5 1: ð1:11Þ
In Theorems 2 and 4 we permit �k to have asymptotically uniform distribution over
½0; 1Þ.

Theorem 1. Let ð�kÞ be a sequence of independent random variables with
uniform distribution (1.11) over [0,1). Let A be a class of subsequences of N with
entropy function  satisfying

 ðA;N; rÞ4 expðB � 2r=2 log logNÞ; r5 0; N5 10 ð1:12Þ
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for some constant B> 0. Then with probability 1,

1=44 lim sup
N!1

ðN log logNÞ�1=2
WNðAÞ4C

for some constant C, depending only on the constant B in (1.12).

Theorem 1 gives the precise growth speed of WNðAÞ in the almost everywhere
sense under the entropy condition (1.12). It is worth mentioning that in the case
when A is the class of arithmetic progressions, the recent paper of Alon et al. [1]
(for a preliminary study see Cassaigne, Mauduit and Sárk€oozy [4]) shows that the
precise order of magnitude of WNðAÞ in probability (‘‘typical value’’) is Oð

ffiffiffiffi
N

p
Þ.

They also determine the typical value of the corresponding correlations.
As Theorem 6 below will show, Theorem 1 remains valid, under a more stringent

entropy condition, for a large class of mixing sequences ð�kÞ of random variables.
Applications include e.g. continued fraction digits and digits in other classical ex-
pansions. Before, however, stating this general result, we will consider a particularly
simple and arithmetically interesting dependent sequence, namely the sequence �k ¼
�kð!Þ ¼ nk! mod 1 for rapidly increasing sequences ðnkÞ of integers. This is not
covered by the mixing theory, but it will exemplify the methods applied in this field.

It is easy to see that the class A0 of arithmetic progressions satisfies  ðA0;
N; rÞ4C22r and thus Theorem 1 applies for this class. A0 is, however, a fairly small
class and we will show now that condition (1.12) permits much larger classes A
than A0. To see this we first construct, for each integer r5 1, a class AðrÞ of
sequences of positive integers such that each sequence in AðrÞ, intersected with
½2n; 2nþ1Þ, has 2n�r elements, the so obtained finite sequences are all different and
for n5 n0ðrÞ their number is 22½r=2�

. To this end, choose 22½r=2�
subsetsH

ðnÞ
1 ; . . . ;H

ðnÞ
22½r=2�

of f2n; . . . ; 2nþ1 � 1g with cardinality 2n�r. Since ð 2n

2n�rÞ ! 1, this is possible for
n5 n0ðrÞ; for 14 n< n0ðrÞ we choose a single subset H

ðnÞ
0 of f2n; . . . ; 2nþ1 � 1g

with 2n�r elements. Let AðrÞ consist of the sequences [n< n0ðrÞH
ðnÞ
0 [n5 n0ðrÞ H

ðnÞ
j ,

j ¼ 1; 2; . . . ; 22½r=2�
; this class obviously has the above properties. Let now A ¼

[1
r¼1A

ðrÞ. Clearly, all sequences in AðrÞ have between N2�r�1 and N2�rþ1 ele-
ments in ½1; . . . ;N� for any N5 1 and thus if a sequence ðnkÞ2A has between
N2�r and N2�ðr�1Þ elements in ½1;N� then ðnkÞ belongs to Ar or Ar�1. Hence

 ðA;N; rÞ4 22ðr�1Þ=2 þ 22r=2

4 22r=2þ1 4 expð2 � 2r=2Þ:
In the construction of the sequences in AðrÞ above, we chose their finite segments

in ½2n; 2nþ1Þ separately and the number of choices for the finite segment in ½2n; 2nþ1Þ
was 22½r=2�

(actually we can have a little more by (1.12)), which is much more than the
number Oð22rÞ of arithmetic progressions in ½2n; 2nþ1Þ having between 2n�r and
2n�rþ1 elements. This shows that Theorem 1 permits much larger classes A than
arithmetic progressions. Note that once the 22½r=2�

sequences in each interval ½2n; 2nþ1Þ
were chosen, we combined them to infinite sequences by ‘‘patching together’’ the
first, second, . . ., 22½r=2�

-th sequence in the intervals. If, alternatively, we combine each
finite sequence in an individual interval with all other finite sequences in other inter-
vals, we get a class AðrÞ satisfying  ðAðrÞ; 2nþ1; rÞ522½r=2�n and thus (1.12) fails by a
large margin. Similarly, the class A of all sequences ðnkÞ which are linear in each
interval ½2n; 2nþ1Þ fails (1.12) by a large margin.
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By a result of Finkelstein [9], the sequence

fNðtÞ ¼ ðN log logNÞ�1=2
X
k4N

ð1ð�k 4 tÞ � tÞ ð1:13Þ

of normalized empirical distribution functions is, with probability 1, relatively
compact with respect to the uniform topology and the class of its limit points is
the class C0 of absolute continuous functions xðtÞ; t2 ½0; 1� satisfying

xð0Þ ¼ xð1Þ ¼ 0;

ð1

0

x0ðtÞ2
dt4 1:

It is easily seen that all functions in C0 belong to the Lip ð1=2Þ class, and thus for
any "> 0 there exists with probability 1 a random index N0 ¼ N0ð"Þ such that

jfNðtÞ � fNðsÞj4Cjt � sj1=2 þ " ð1:14Þ
for all 04 s; t4 1, and all N5N0ð"Þ, where C is an absolute constant. The last
relation is a substantial sharpening of the ordinary LIL

lim sup
N!1

sup
04 t< 1

jfNðtÞj<1 a:s:

As we will prove, a similar sharpening of Theorem 1 holds. Define, for a fixed
sequence p ¼ ðpkÞ2A and 04 t4 1,

fN;pðtÞ :¼ ðN log logNÞ�1=2
X
pk 4N

ð1ð�pk 4 tÞ � tÞ: ð1:15Þ

Then under the hypotheses of Theorem 1 the following result holds. For each 0<�
< 1=2 and "> 0 there is with probability 1 a random index N0 ¼ N0ð"Þ such that

jfN;pðtÞ � fN; pðsÞj4Cjt � sj� þ " ð1:16Þ
for all 04 s; t4 1, all ðpkÞ2A and all N5N0, where the constant C depends
only on B in (1.12).

Our next theorem concerns lacunary sequences fnk!g, where f�g denotes
fractional part. By a classical result of Weyl (see e.g. [11], pp. 32–33), for any
increasing sequence ðnkÞ of integers, fnk!g is uniformly distributed for almost
every ! in the sense that its discrepancy DN tends to 0 as N ! 1. This fact and
the simplicity of its definition make fnk!g a natural object for a pseudorandom-
ness study, and in fact a number of results in our paper will deal with this se-
quence. Very few sharp results on the discrepancy of fnk!g exist in the literature;
precise asymptotics are known only for nk ¼ k and rapidly increasing ðnkÞ. Philipp
[19] proved that if ðnkÞ satisfies the Hadamard gap condition

nkþ1=nk 5 q> 1; k ¼ 1; 2; . . . : ð1:17Þ
then the discrepancy of fnk!g satisfies the law of the iterated logarithm, i.e. for
almost all !2 ½0; 1Þ we have

1

4
4 lim sup

N!1

NDNðfnk!gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N log logN

p 4CðqÞ; ð1:18Þ
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where CðqÞ � 1=ðq� 1Þ. Our next theorem proves an LIL for the well dis-
tribution measure WNðAÞ of this sequence, extending substantially Philipp’s
result.

Theorem 2. Let ðnkÞ be a sequence of real numbers satisfying a Hadamard gap
condition (1.7) and let �k ¼ �kð!Þ ¼ fnk!g. Let the class A be a class of subse-
quences of N with entropy function satisfying

 ðA;N; rÞ4B � 2r� ð1:19Þ
for some constants B> 0 and �> 0. Then with probability 1

1=44 lim sup
N!1

ðN log logNÞ�1=2
WNðAÞ4C

for some constant C<1, depending only on B; � and q.

As we noted earlier, the class A of arithmetic progressions satisfies (1.19) with
� ¼ 2. A construction similar to that discussed after Theorem 1 shows that for
large �, (1.19) permits considerably larger classes than the class of arithmetic
progressions.

Again we shall prove an estimate of the modulus of continuity of the empirical
process. Define fN;p as in (1.15). In analogy with (1.16) we shall obtain under the
hypotheses of Theorem 2 that for each "> 0 there is with probability 1 a random
index N0ð"Þ such that

jfN;pðtÞ � fN; pðsÞj4Cjt � sj1=32 þ " ð1:20Þ
for all 04 s; t4 1 all ðpkÞ2A and all N5N0ð"Þ.

The second entropy concept is based on the Hamming distance of sequences of
integers. For N5 1 we define the (normalized) distance of two sequences A and B
of integers by

dðA;B;NÞ ¼ 1

N

X
n4N

j1ðn2AÞ � 1ðn2BÞj:

Given a class A of increasing sequences of positive integers, we define the entropy
function � by

�ðA; �;NÞ :¼ supfm : there exist A1; . . . ;Am2AN

such that dðAi;Aj;NÞ>� for all i 6¼ jg: ð1:21Þ
Clearly � is a non-increasing function of �5 0:

Theorem 3. Let ð�kÞ be a sequence of independent random variables with the
uniform distribution (1.11) over ½0; 1Þ. Let A be a class of increasing sequences of
positive integers with entropy function �ðA; �;NÞ growing not faster than a poly-
nomial in 1=� (depending only on A). Then with probability 1

WNðAÞ �
ffiffiffiffi
N

p
ð log�ðA;N��;NÞ þ ð log logNÞ1=2Þ for any �> 1=2:

The same result holds if �k ¼ fnk!g, where ðnkÞ is a sequence of real numbers
satisfying the Hadamard gap condition (1.7).
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As an example, consider a Vapnik-�CCervonenkis (VC) class A in the set N of
positive integers. For any finite set F � N, let �AðFÞ be the number of different
subsets F \ A;A2A. For n ¼ 1; 2; . . . let

mAðnÞ :¼ maxð�AðFÞ : card F ¼ nÞ:

Clearly mAðnÞ4 2n. Let

v ¼ VðAÞ :¼ inffn : mAðnÞ< 2ng
þ1 if mAðnÞ ¼ 2n for all n:

�

If VðAÞ< þ1, then A is called a VC class in N. We recall a result of Dudley
[6, Lemma 7.13] or Dudley [7, p. 105] measuring the size of VC classes. Let � be
the set of all laws on N of the form

n�1
XN
j¼1

�xðjÞ

for unit point masses �xðjÞ on xðjÞ2N; j ¼ 1; 2; . . . ; n; n ¼ 1; 2; . . . where the xðjÞ
need not be distinct. For � > 0 and �2� let

��ðA; �; �Þ :¼ supfm : there exist A1; . . . ;Am2A

such that �ðAi�AjÞ>� for i 6¼ jg

and put

��ðA; �Þ :¼ supf��ðA; �; �Þ : �2�g:

Lemma 1. [6], [7]. If A is a VC class in N with VðAÞ ¼ v, then there is a
constant K depending only on v such that

��ðA; �Þ4K��vj log �jv for all � > 0:

Hence, if A is a VC class in N, the entropy function � defined in (1.21) does
not grow faster than a polynomial in 1=�.

Corollary 1. Let ð�kÞ be a sequence of independent random variables with
uniform distribution (1.11) over ½0; 1Þ or �k ¼ fnk!g with a Hadamard lacunary
ðnkÞ. Then if A is a VC class in N, with probability 1 we have

WNðAÞ �
ffiffiffiffi
N

p
logN:

Theorem 4. Let ðnkÞ be an increasing sequence of integers and let �k ¼
�kð!Þ ¼ fnk!g. Let A be a class of subsequences of N with entropy function
satisfying (1.19) for some positive constants � and B. Then with probability 1,

WNðAÞ � N
�

1þ�ð logNÞ
3

1þ�þ" if �> 1;

� N
1
2ð logNÞ2þ"

if � ¼ 1;

� N
1
2ð logNÞ

3
2
þ"

if �< 1:

190 I. Berkes et al.



Note that we do not make here any growth or arithmetic condition on the ðnkÞ. In
the case when A ¼ L is the class of arithmetic progressions in N, Mauduit and
Sárk€oozy [15], [16] proved that for almost every !

WNðfk!gÞ � N1=2ð logNÞ1þ"
a:e:

WNðfk2!gÞ � N3=5ð logNÞ2=5þ"
a:e:

and for k ¼ 3; 4; . . .

WNðfkr!gÞ � N1��r a:e:

with some (explicitly given) constant �r > 0. They also proved that the above
relations, with a slightly smaller exponent of the log, hold for any irrational !
whose partial quotients in the continued fraction expansion remain bounded. For
the case A ¼ L, Philipp and Tichy [20] proved that for any increasing sequence
ðnkÞ of integers we have

WNðfnk!gÞ � N2=3ð logNÞ1þ"
a:e: ð1:22Þ

Note that

 ðL;N; rÞ4C � 22r ð1:23Þ
and thus the case � ¼ 2 in Theorem 4 and (1.23) yield the result of Philipp and
Tichy.

Theorem 5. Let ðnkÞ be an increasing sequence of integers and let �k ¼
�kð!Þ ¼ fnk!g. Let A be a class of subsequences of N with entropy function
�ðA; �;NÞ4C��v for some v5 0, where C depends only on A. Then with
probability 1,

WNðAÞ � N
vþ1
vþ2ð logNÞ

3
vþ2

þ"; "> 0:

Finally, we formulate a theorem which extends our results for mixing se-
quences of random variables. Let ð�nÞ be a strictly stationary sequence of random
variables satisfying a strong mixing condition

jPðABÞ � PðAÞPðBÞj4�ðnÞ # 0 ð1:24Þ
for all A2Fk

1 and B2F1
kþn. Here Fb

a denotes the 	-field generated by f�n;
a4 n4 bg. Let f be a measurable mapping from the space of infinite sequences
ð�1; �2; . . .Þ of real numbers into the real line. Define

�n ¼ f ð�n; �nþ1; . . .Þ; n5 1 ð1:25Þ
and

�mn ¼ Eð�njFnþm
n Þ; m; n5 1:

We assume that �n can be closely approximated by �mn in the form

Ej�n � �mnj4
ðmÞ # 0 ð1:26Þ
for all m; n5 1. This means that the functions f ð�n; �nþ1; . . .Þ can be closely
approximated by functions of finitely many variables.
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Sequences of the above type appear in many arithmetic applications. For exam-
ple, the partial quotients in the continued fraction expansion of a number � chosen
at random in ð0; 1Þ according to the Gaussian measure PðCÞ ¼ ðlog 2Þ�1Ð
C
ð1 þ xÞ�1

dx are stationary and satisfy the strong mixing condition (1.24) with
an exponentially decreasing �ðnÞ: (See e.g. [12], Chapter 9.) Similar results hold
for the digits in several other expansions. Condition (1.24) also holds, with expo-
nentially decreasing �ðnÞ, for a large class of Markov processes; for example, for
�n defined by a stochastic recurrence relation �n ¼ gð�n�1; "nÞ, where "n is an i.i.d.
sequence.

Theorem 6. Let ð�nÞ be a strictly stationary sequence of random variables
satisfying the strong mixing condition (1.24) with

�ðnÞ � n�p; p5 8: ð1:27Þ
Suppose that the random variables �n defined by (1.25) are uniformly distributed
over ½0; 1Þ and that they satisfy (1.26) with


ðmÞ � m�q; q5 12: ð1:28Þ
Let A be a class of increasing subsequences of N with entropy function satisfying

 ðA;N; rÞ4B � 2r� ð1:29Þ
for some constants B> 0 and

04�4 minðp=5 � 1; q=5 � 3Þ: ð1:30Þ
Then with probability 1

1=44 lim sup
N!1

ðN log logNÞ�1=2
WNðAÞ4C

for some constant C< þ1.

Again we have a stronger result, expressing the Lipschitz property of the nor-
malized empirical distribution functions fN;p. Specifically, for each "> 0 there is
with probability 1 a random index N0 ¼ N0ð"Þ such that

jfN;pðtÞ � fN; pðsÞj4C1jt � sj1=100 þ " ð1:31Þ
for all 04 s< 1, all ðpkÞ2A and all N5N0. The constant C1 only depends on
the constants implied by � in (1.27), (1.28) and the constant B in (1.29).

Our paper is organized as follows. Theorem 2 is proved in complete detail in
Section 2. The proofs of Theorem 1 and Theorem 6 are considerably simpler and
are given in Section 4. Theorem 3 is proved in Section 3 in the lacunary case; since
the i.i.d. can be proved in the same way, we will omit it. Finally, Theorems 4 and 5
are proven in Section 5.

2. Proof of Theorem 2

Clearly, sequences ðpkÞ2A having at most
ffiffiffiffi
N

p
elements in ½1;N� contribute to

the supremum in (1.7) by at most
ffiffiffiffi
N

p
and thus in the proof of Theorem 2 (and in

fact all proofs in our paper) we can restrict the definition of WN to sequences
ðpkÞ2A having more than

ffiffiffiffi
N

p
elements in ½1;N�.
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Let ðnkÞ be a sequence of real numbers satisfying the Hadamard gap condition
(1.17) and let �k ¼ �kð!Þ ¼ fnk!g. For 04 s< t4 1 we set

xnðs; tÞ :¼ 1ðs4 �n< tÞ � ðt � sÞ: ð2:1Þ
Finally, let � be the constant in the entropy condition (1.19). The key of the proof
of Theorem 2 is the following exponential inequality, which is a sharpening of [19,
Proposition 4.2.1].

Proposition 1. Let N5 1 be an integer and let R5 1. Suppose that ‘ :¼
t � s5N�3=2. Then for some constant A5 1 we have as N ! 1

P

�
max
Q4N

����X
Q

k¼1

xkðs; tÞ
����5AR‘1=32ðN log logNÞ1=2

�

� expð�16R‘�1=32 log logNÞ þ R�8�N�2�

where A and the constant implied by � depend only on q and �.

Proof. We follow the proof of [19, Proposition 4.2.1]. First, we note that
by the argument in [19, p. 338] we can assume without loss of generality
that q5 16. Next, for each k ¼ 1; 2; . . . ; define rk to be the largest integer r such
that

2r 4 nk4
k1=4

: ð2:2Þ
Let Fk denote the 	-field generated by the dyadic intervals

U�k ¼ ½�2�rk ; ð� þ 1Þ2�rkÞ � ¼ 0; 1; 2; . . . ; 2rk � 1:

Then, as in the proof of [19, Lemma 4.2.2] we have for k5 0 and j5 1

EðxjþkjFjÞ � ‘ � 4j1=4

16�k a:s: ð2:3Þ
where the constant implied by � is absolute.

As in [19], we define blocks H1; I1;H2; I2; . . . of consecutive integers induc-
tively: both Hj and Ij consist of 2½j1=2� consecutive integers and there are no gaps
between the blocks. Thus H1 ¼ f1; 2g, I1 ¼ f3; 4g; . . . ;H4 ¼ f13; 14; 15; 16g,
I4 ¼ f17; 18; 19; 20g; . . . Let hj be the largest number of Hj. For N5 1 let M ¼
MN be defined by

hM�1 <N4 hM; ð2:4Þ
then

hM � hM�1 ¼ 4½M1=2� � N1=3: ð2:5Þ
As in [19, (4.2.5)] we discretize the x�; �2Hj by setting

�� :¼ Eðx�jFhjÞ �2Hj: ð2:6Þ
We introduce the block sums

wj ¼
X
� 2Hj

x�; yj ¼
X
� 2Hj

�� ¼ EðwjjFhjÞ: ð2:7Þ
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Then as in [19, Lemma 4.2.3],

jjxk � �kjj2 � 2�k1=4

:

The proof of [19, Lemma 4.2.4] with ð8�Þ-th instead of sixth moments yields &

Lemma 2. As N ! 1,

P

� X
j4M

jyj � wjj5R‘1=32N1=2

�
� R�8�N�2�:

Relation [19, (4.2.8)] continues to hold with 2j
1=8

on the right side and thus the
proof of [19, Lemma 4.2.5] yields

Eðw2
j jFhj�1

Þ � ‘j1=2 a:s: ð2:8Þ

where the constant implied by � is absolute. Also Lemmas 4.2.6, 4.2.7, and 4.2.8
in [19] remain valid as they stand, yielding

XhM
n¼Nþ1

xn � ‘1=8N1=2 ð2:9Þ

and

yj ¼ Yj þ vj ð2:10Þ
where ðYj;LjÞ is a martingale difference sequence with Lj ¼ 	ðy1; . . . ; yjÞ,
satisfying

vj ¼ EðyjjLj�1Þ � ‘ � 16�j1=4

a:s: ð2:11Þ
and X

j4M

EðY2
j jLj�1Þ4D‘N a:s: ð2:12Þ

where the constant D and the constants implied by � are absolute.
Finally we replace [19, Lemma 4.2.9] by the following lemma.

Lemma 3. As N ! 1

P

�
max
k4M

����X
j4 k

Yj

����> 8RD‘1=32ðN log logNÞ
1
2

�
� expð�16R‘�1=32 log logNÞ:

For the proof we choose in the proof of [19, Lemma 4.2.9] the parameters c; �
and K as follows:

c ¼ 2M
1
2; � ¼ 2‘�1=16ð log logMÞ

1
2M�3=4; K ¼ 4RD‘3=8M3=2:

&

Treating the block sums

zj :¼
X
� 2 Ij

��

in the same way, and taking (2.9), (2.11) and Lemma 2 into account we finally
obtain the estimate as claimed in Proposition 1.
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Proposition 2. Let ðpkÞ2A and let N5 1, R5 1. Let 
ðNÞ denote the largest
k such that pk 4N and assume that 
ðNÞ5N1=2. Finally, suppose that t � s5
N�3=4. Then

P

�
max
Q4N

���� X
pk 4Q

xpkðs; tÞ
����5ARðt � sÞ1=32ð
ðNÞ log logNÞ1=2

�

� expð�14Rðt � sÞ�1=32
log logNÞ þ R�8�
ðNÞ�2�

where both A5 1 and the constant implied by � depend only on q and �.

Proof. Since there are 
ðNÞ terms with pk 4N, Proposition 1 implies

P

�
max
Q4N

���� X
pk 4Q

xpkðs; tÞ
����5ARðt � sÞ1=32ð
ðNÞ log log
ðNÞÞ1=2

�

� expð�16Rðt � sÞ�1=32
log log
ðNÞÞ þ R�8�
ðNÞ�2�:

Here we used the fact that

t � s5N�3=4 5
ðNÞ�3=2

by the assumptions of Proposition 2. Next observe that by N1=2 4
ðNÞ4N,
log log
ðNÞ differs from log logN by not more than 1 and thus their ratio is be-
tween 14=16 and 1 for N5N0. Hence the probability in question does not exceed

expð�14Rðt � sÞ�1=32
log logNÞ þ R�8�
ðNÞ�2�:

&

Proposition 3. Let N5 1, R5 1 and suppose that t � s5N�3=4. Then

P

�
max
Q4N

max
ðpkÞ 2AN

���� X
pk 4Q

xpkðs; tÞ
����5ARðt � sÞ1=32ðN log logNÞ1=2

�

� expð�12Rðt � sÞ�1=32
log logNÞ þ R�8�N�2�;

where both A5 1 and the constant implied by � depend only on q and �.

Proof. We partition AN into

AN ¼
[
r5 0

ANðrÞ: ð2:13Þ

As we noted at the beginning of this section, it suffices to consider those r’s such
that 2r 4

ffiffiffiffi
N

p
and thus using the entropy condition (1.19) and applying Proposition

2 with R replaced by R2r=2 and 
ðNÞ ¼ N2�r we get

P

�
max
Q4N

max
ðpkÞ 2ANðrÞ

���� X
pk 4Q

xpkðs; tÞ
����5AR2r=2ðt � sÞ1=32ðN2�r log logNÞ1=2

�

� 2�rðexpð�14R2r=2ðt � sÞ�1=32
log logNÞ þ ðR2r=2Þ�8�ðN2�rÞ�2�Þ: ð2:14Þ

Summing (2.14) over all considered r in (2.13) we obtain the result.
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We now can finish the proof of Theorem 2 using the familiar chaining argu-
ment. For N5 10 let m and M be defined by

m ¼ mðNÞ ¼ ½ð log logNÞ1=2�; M ¼ MðNÞ ¼
�

logN

2log 2

�
þ 4: ð2:15Þ

&

We write s and t in binary form and obtain

s ¼ a2�m þ
XM
i¼mþ1

	i2
�i þ 
12�M

and

t ¼ b2�m þ
XM
i¼mþ1

�i2
�i þ 
22�M;

where 	i ¼ 0; 1 and �i ¼ 0; 1 and a and b are integers with 04 a; b4 2m and
04 
1; 
2 4 1. Given a sequence p ¼ ðpkÞ of positive integers, we also write

Zðs; tÞ :¼ ZðpÞðQ; s; tÞ :¼
���� X
pk 4Q

xpkðs; tÞ
����:

We observe that for s< r< t

Zðs; tÞ4Zðs; rÞ þ Zðr; tÞ; ð2:16Þ

Zðr; tÞ4Zðs; tÞ þ Zðs; rÞ: ð2:17Þ
Thus

Zðs; tÞ4Zða2�m; b2�mÞ þ
XM
i¼mþ1

Zðai2�i; ðai þ 1Þ2�iÞ

þ
XM
i¼mþ1

Zðbi2�i; ðbi þ 1Þ2�iÞ þ ZðaMþ12�M; ðaMþ1 þ 1Þ2�MÞ

þ ZðbMþ12�M; ðbMþ1 þ 1Þ2�MÞ þ 2Q2�M; ð2:18Þ

where ai, bi ðm< i4M þ 1Þ are integers with 04 ai; bi< 2i. The last term is
explained by the fact that for 04 h< 2M and 04 
4 1,

Zðh2�M; ðhþ 
Þ2�MÞ4 Zðh2�M; ðhþ 1Þ2�MÞ þ 2�M

by an application of (2.16), (2.17). We define the following events:

ENða; bÞ ¼
(

max
Q4N

ðpkÞ 2AN

ZðpÞðQ; a2�m; b2�mÞ

5Aððb� aÞ2�mÞ1=32ðN log logNÞ1=2

)
ð2:19Þ
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EN ¼
[

04 a;b4 2m

ENða; bÞ

FNði;aÞ¼
(

max
Q4N

ðpkÞ 2AN

ZðpÞðQ;a2�i;ðaþ1Þ2�iÞ5A2�i=32ðN log logNÞ1=2

)
ð2:20Þ

and

FN ¼
[

m< i4M

[
04 a< 2i

FNði; aÞ:

Here, A is the constant from Proposition 3. Using Proposition 3 with R ¼ 1 we
obtain

PðENða; bÞÞ � expð�12log logNÞ
and so

PðENÞ � 22m expð�12log logNÞ � expð�10log logNÞ ¼ ð logNÞ�10:

Similarly, with R ¼ 1 and t � s ¼ 2�i,

PðFNði; aÞÞ � expð�12 � 2i=32 log logNÞ þ N�2�

and so

PðFNÞ �
X

m< i4M

2i expð�12 � 2i=32 log logNÞ þ 2MN�2�

� expð�10 log logNÞ ¼ ð logNÞ�10:

(Note that in the applications of Proposition 3 the condition t � s5N�3=4 is
satisfied.) Consequently, X1

p¼1

PðE2p [ F2pÞ<1:

Hence the Borel-Cantelli lemma implies that with probability 1 only finitely many
of the events E2p of F2p occur. Let N be sufficiently large and let p be such that
2p�1 <N4 2p. Then by (2.18) we have with probability 1 for all 04 s< t4 1,
N5N0ð"Þ

max
Q4N

max
ðpkÞ 2A

ZðpÞðQ; s; tÞ

4Aððb� aÞ2�mð2pÞÞ1=32ð2p log log 2pÞ1=2

þ 4A
X

mð2pÞ< i4Mð2pÞ
2�i=32ð2p log log 2pÞ1=2 þ 2pþ12�Mð2pÞ

4 4A½ðt � sÞ1=32 þ "�ðN log logNÞ1=2 þ 4N1=2

4 8A½ðt � sÞ1=32 þ "�ðN log logNÞ1=2:

This proves (1.20) and thus Theorem 2.
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3. Proof of Theorem 3

We prove the theorem first in the lacunary case, i.e. for the sequence �k ¼
fnk!g. Fix 1=2<�< 1 and 04 s< t4 1. By the hypotheses of the theorem, we
can choose � > 0 such that

�ðA; �;NÞ � ���=2 ð3:1Þ
where the constant implied by � depends only on A. For simplicity we set

�ð�Þ :¼ �ðA; ��; ½1=��Þ: ð3:2Þ
By Proposition 1 we have for any sequence ðpkÞ of positive integers and any R5
1, 0<"4 1=32 and t � s5 2�3r=2 as r ! 1

P

�
max
Q42r

���� X
pk4Q

xpkðs; tÞ
����5AR2

1
2rðt� sÞ"ð log�ð2�rÞþ ð logrÞ

1
2Þ
�

� expð�16Rðt� sÞ�" log�ð2�rÞ log
1
2rÞþR�8�2�2r� if log�ð2�rÞ> log

1
2r

expð�16Rðt� sÞ�" logrÞþR�8�2�2r� if log�ð2�rÞ4 log
1
2r

(

ð3:3Þ
for some constant A5 1. (In the case of the first line of (3.3) we apply Proposition
1 with R replaced by R log�ð2�rÞð log rÞ�1=2

). Let

� :¼ ARðt � sÞ"2�r=2 ð3:4Þ
and B ¼ fðpð1Þk Þ; . . . ; ðpðMÞ

k Þg a maximal set of sequences in A with pairwise
distance >� with respect to the normalized Hamming distance dð�; �; 2rÞ. Then

M ¼ �ðA; �; 2rÞ4�ðA; 2��r; 2rÞ ¼ �ð2�rÞ
since

�5 ðt � sÞ"2�r=2 5 2�rð3"=2þ1=2Þ 5 2��r;

provided we choose "> 0 so small that 3"=2 þ 1=2<�. Clearly, for any ðqkÞ2A
there is a ðpkÞ2B with dððpkÞ; ðqkÞ; 2rÞ4 �, which implies that for any Q4 2r the
sums

P
pk 4Q xpkðs; tÞ and

P
qk 4Q xqkðs; tÞ differ at most by �2r ¼ ARðt � sÞ"2r=2.

Hence using (3.3) we get

P

�
max

ðqkÞ 2A
max
Q4 2r

���� X
qk 4Q

xqkðs; tÞ
����5 2AR2

1
2
rðt � sÞ"ð log�ð2�rÞ þ log

1
2rÞ

�

� expð�8Rðt � sÞ�"ð log�ð2�rÞ þ log
1
2rÞ log

1
2r þ log�ð2�rÞÞ

þ R�8��ð2�rÞ2�2r�

� expð�4Rðt � sÞ�" log rÞ þ R�8�2�3r�=2 ð3:5Þ
by distinguishing the cases log�ð2�rÞ> log

1
2r and log�ð2�rÞ4 log

1
2r and by

using (3.1) in the last step.
Relation (3.5) is analogous to Proposition 3 and the proof of Theorem 3 in the

lacunary case can now be completed by the same chaining argument that was used
the proof of Theorem 2. The proof for i.i.d. uniform random variables �k is the
same, except that instead of Proposition 1 we use the analogous exponential bound
given by Lemma 4 below.
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4. Proof of Theorems 1 and 6

The proof of Theorem 1 follows the pattern of the proof of Theorem 2. Let ð�nÞ
be an i.i.d. sequence with the uniform distribution (1.11) and define xnðs; tÞ by
(2.1). We replace Proposition 1 by the following lemma which is an immediate
consequence of Bernstein’s inequality and Skorokhod’s maximal inequality.

Lemma 4. Let N5 1, R5 1, 0<�< 1=2. There exist � ¼ �ð�Þ> 1, � ¼
�ð�Þ> 0 such that for ‘ ¼ t � s5N�� we have

P

�
max
Q4N

����X
Q

k¼1

xkðs; tÞ
����5 6R‘�ðN log logNÞ1=2

�

� expð�2R‘�ð1�2�Þ log logNÞ þ expð�RN�Þ
where the constant implied by � depends on �.

Proof. Clearly, the xkðs; tÞ are independent random variables with mean 0 and
variance ‘ð1 � ‘Þ4 ‘. Hence Bernstein’s inequality (see e.g. Petrov [18], pp. 57–
58) implies that the probability

P

�����X
Q

k¼1

xkðs; tÞ
����5 x

�

can be bounded by 2 expð�x2=4Q‘Þ if 04 x4Q‘ð1 � ‘Þ and by 2 expð�x=4Þ if
x>Q‘ð1 � ‘Þ. Thus for any x5 0 we have

P

�����X
Q

k¼1

xkðs; tÞ
����5 x

�
4 2 expð�x2=4Q‘Þ þ 2 expð�x=4Þ:

Choose � so that 1<�< 1=ð2�Þ. Then for any 14Q4N, ‘5N�� we have

P

�����X
Q

k¼1

xkðs; tÞ
����5 3R‘�ðN log logNÞ1=2

�

4 2 expð�9R2‘2�N log logN=4Q‘Þ þ 2 expð�3R‘�ðN log logNÞ1=2=4Þ
4 2 expð�2R‘�ð1�2�Þ log logNÞ þ 2 expð�RN1=2���Þ:

&

Using Skorokhod’s inequality (see e.g. Breiman [3], p. 45) completes the proof.

Lemma 5. Let ðpkÞ2A and let N5 1;R5 1, 0<�< 1=2. Let 
ðNÞ de-
note the largest k such that pk 4N and assume that 
ðNÞ5N1=2. Finally, sup-
pose that ‘ ¼ t � s5N��=2, where � ¼ �ð�Þ> 1 is the constant in Lemma 4.
Then

P

�
max
Q4N

���� X
pk 4Q

xpkðs; tÞ
����5 6R‘�ð
ðNÞ log logNÞ1=2

�

� expð�R � ‘�ð1�2�Þ log logNÞ þ expð�RN�=2Þ
where � ¼ �ð�Þ> 0 is the constant in Lemma 4.

The proof is an easy modification of the proof of Proposition 2.
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Lemma 6. Let N5 1;R5 1, 0<�< 1=2 and suppose that ‘ ¼ t � s5N��=2,
where � ¼ �ð�Þ> 1 is the constant in Lemma 4. Let B denote the constant in
(1.12). Then we have

P

�
max
Q4N

max
ðpkÞ 2AN

���� X
pk 4Q

xpkðs; tÞ
����5 12BR‘�ðN log logNÞ1=2

�

� expð�R � ‘�ð1�2�Þ log logNÞ þ expð�RN�=2Þ
where � ¼ �ð�Þ> 0 is the constant in Lemma 4.

Proof. We follow the proof of Proposition 3. We partition AN as in (2.13), and,
similarly as in the proof of Proposition 3, it suffices to consider those r’s for which
N2�r 5

ffiffiffiffi
N

p
. Applying Lemma 5 with R replaced by 2BR2r=2 and 
ðNÞ ¼ N2�r

and using (1.12) it follows that the probability in the statement of Lemma 6 does
not exceedX
r50;2r4

ffiffiffi
N

p
P

�
max
Q4N

max
ðpkÞ 2ANðrÞ

���� X
pk4Q

xpkðs; tÞ
����512BR2r=2 � ‘�ðN2�r log logNÞ1=2

�

�
X
r50

expð�2BR2r=2‘�ð1�2�Þ log logNþB2r=2 � log logNÞ

þ
X
r50

expð�2BR2r=2N�=2 þB2r=2 � log logNÞ

� expð�R‘�ð1�2�Þ log logNÞþ expð�RN�=2Þ: &

The remainder of the proof of Theorem 1 can now be completed as in Section 2.
The proof of Theorem 6 also follows the pattern of the proof of Theorem 2. We

will need the following exponential bound.

Proposition 4. Assume the conditions of Theorem 6 and let xnðs; tÞ be defined
by (2.1). Let N5 1 and R5 1 and suppose that ‘ :¼ t � s5N�2. Then for some
constant A5 1 depending only on p and q we have as N ! 1

P

�
max
Q4N

����X
Q

k¼1

xkðs; tÞ
����5AR‘1=120ðN log logNÞ1=2

�

� expð�6R‘�1=120 log logNÞ þ R�p=4N�p=10 þ R�3N2�q=5:

Proposition 4 is similar to [19, Proposition 3.3.1], but the term R�2N�1:03 there is
replaced by a term depending on p, q, which improves if p and q are increasing. The
proof follows the proof of [19, Proposition 3.3.1] with minor changes. Since the
changes are routine, we will leave the details to the reader.

Proposition 5. Let N5 1 and suppose that ‘5N�1. Then as N ! 1 we have
for some � ¼ �ðp; qÞ> 1=2

P

�
max
Q4N

max
ðpkÞ 2AN

���� X
pk 4Q

xpkðs; tÞ
����5AR‘1=120ðN log logNÞ1=2

�

� expð�4R‘�1=120 log logNÞ þ R�2N��:
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Proof. We fix first ðpkÞ2A and let 
ðNÞ denote the largest k with pk 4N.
Since the sequence ðxpkÞ is mixing with an even better mixing rate, under the as-
sumptions 
ðNÞ5

ffiffiffiffi
N

p
, ‘ ¼ t � s5N�1 Proposition 4 implies

P

�
max
Q4N

���� X
pk 4Q

xpkðs; tÞ
����5AR‘1=120ð
ðNÞ log logNÞ1=2

�

� expð�5R‘�1=120 log logNÞ þ R�p=4
ðNÞ�p=10 þ R�3
ðNÞ2�q=5: ð4:1Þ

We now partition AN as in (2.13) and apply (4.1) with R replaced by R2r=2 and

ðNÞ ¼ N2�r. As in our earlier proofs, it suffices to consider the case N2�r 5

ffiffiffiffi
N

p
.

Letting � denote the constant in the entropy condition (1.29), an upper bound for
the probability in Proposition 5 is obtained by multiplying the bound in (4.1) by
2r� and sum over the indicated r’s. The sum of the first terms is

�
X
r

2r� expð�5R � 2r=2‘�1=120 log logNÞ � expð�4R‘�1=120 log logNÞ:

The sum of the second terms is

� ðR2r=2Þ�p=4
X

2r 4
ffiffiffi
N

p
ðN2�rÞ�p=10 � 2r�

4R�p=4N�p=10
X

2r 4
ffiffiffi
N

p
2r�

� R�p=4N�p=10þ�=2

� R�p=4N��

for some � > 1=2. We used here the fact that �< p=5 � 1 by (1.30). Finally, the sum
of the third terms is

� R�3
X

2r 4
ffiffiffi
N

p
ðN2�rÞ2�q=5

2r� ¼ R�3N2�q=5
X

2r 4
ffiffiffi
N

p
2rð�þq=5�2Þ

� R�3N2�q=5
ffiffiffiffi
N

p �þq=5�2 ¼ R�3N1�q=10þ�=2 � R�3N��

for some � > 1=2, using the fact that �< q=5 � 3 by (1.30). This completes the
proof of Proposition 4. &

The proof of Theorem 6 can now be completed by using the chaining argument
in Theorem 2.

5. Proof of Theorems 4 and 5

Assume the conditions of Theorem 4. Fix N5 1, r5 1 and let ðpkÞ be a fixed
sequence in ½1;N� such that ðpkÞ2ANðrÞ. By the Erd}oos-Turán inequality (see e.g.
[5], p. 15 or [11], p. 114) we have for any 14Q4N

sup
04 t4 1

���� X
pk 4Q

ð1ð�pkð!Þ4 tÞ � tÞ
����4 6R

H
þ 6

X
14 h4H

1

h

���� X
pk 4Q

eðhnpk!Þ
����:
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Here R ¼ #fk : pk 4Qg, eðxÞ ¼ expð2�ixÞ and H5 1 is arbitrary. Clearly R4N
and thus

max
Q4N

sup
04 t4 1

���� X
pk 4Q

ð1ð�pkð!Þ4 tÞ � tÞ
����
2

4
72N2

H2
þ 72

� X
14 h4H

1

h
max
Q4N

���� X
pk 4Q

eðhnpk!Þ
����
�2

:

By Hunt’s inequality (see e.g. [17]) we have

E

�
max
Q4N

���� X
pk 4Q

eðhnpk!Þ
����
2�

4C
X
pk 4N

14CN2�ðr�1Þ

and thus choosing H ¼ N and using Minkowski’s inequality we get

E

�
max
Q4N

sup
04 t4 1

���� X
pk 4Q

ð1ð�pk 4 tÞ � tÞ
����
2�

� N2�r log 2N þ 1 � N2�r log 2N: ð5:1Þ
(To justify the last step, we note that without loss of generality we can assume that
N2�ðr�1Þ 5 1, since otherwise ANðrÞ is empty.) Since the number of sequences
ðpkÞ2ANðrÞ is at most B � 2r� by the assumptions of Theorem 4, we have for any
�> 0, � > 0 (to be chosen suitably later),

P

�
max

ðpkÞ 2ANðrÞ
max
Q4N

sup
04 t4 1

���� X
pk 4Q

ð1ð�pk 4 tÞ � tÞ
����5 2N�ð logNÞ�

�

� N1�2�ð logNÞ2�2� � 2rð��1Þ: ð5:2Þ

Without loss of generality we can assume that N2�ðr�1Þ 5N�ð logNÞ� , i.e.

2r 4 2N1��ð logNÞ�� ð5:3Þ
since otherwise the absolute value of the sum in (5.2) would be less than
N�ð logNÞ� . Summing the probability bounds in (5.2) over all r subject to (5.3)
and choosing � and � according to the following table

we obtain letting N ¼ 2mþ1, m ¼ 1; 2; . . .

P

�
max

2m<Q4 2mþ1
max

ðpkÞ 2A
sup

04 t4 1

���� X
pk 4Q

ð1ð�pk 4 tÞ � tÞ
����5C�2m�m�

�

� ð log 2mÞ�ð1þ"0Þ � m�ð1þ"0Þ

� � �
> 1 �=ð1 þ �Þ ð3 þ "Þ=ð1 þ �Þ
¼ 1 1

2
2 þ "

< 1 1
2

3
2
þ "
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for some C�> 0, "0> 0. We apply the convergence part of the Borel-Cantelli
lemma and obtain the conclusion of Theorem 4.

Turning to the proof of Theorem 5, let ðpkÞ2A. From (5.1) it follows that

E

�
max
Q4N

sup
04 t4 1

���� X
pk 4Q

ð1ð�pk 4 tÞ � tÞ
����
2�

� N log 2N: ð5:4Þ

Let

� :¼ N� 1
vþ2ð logNÞ

3þ"
vþ2

and let B ¼ fðpð1Þk Þ; . . . ; ðpðMÞ
k Þg be a maximal set of sequences in A with pairwise

distance >� with respect to the normalized Hamming distance dð�; �;NÞ. By the
assumptions of Theorem 5 we have

M ¼ �ðA; �;NÞ4C��v ¼ CN
v

vþ2ð logNÞ�v3þ"
vþ2:

Clearly, for any ðqkÞ2A there is a ðpkÞ2B with dððpkÞ; ðqkÞ;NÞ4 �, which im-
plies that for any Q4N the sums

P
pk 4Q xpkðs; tÞ and

P
qk 4Q xqkðs; tÞ differ at

most by

�N ¼ N
vþ1
vþ2ð logNÞ

3þ"
vþ2:

Hence using (5.4) we get

P

�
max
Q4N

max
ðpkÞ 2A

sup
04 t4 1

���� X
pk 4Q

ð1ð�pk 4 tÞ � tÞ
����5 2N

vþ1
vþ2ð logNÞ

3þ"
vþ2

�

4P

�
max
Q4N

max
ðpkÞ 2B

sup
04 t4 1

���� X
pk 4Q

ð1ð�pk 4 tÞ � tÞ
����5N

vþ1
vþ2ð logNÞ

3þ"
vþ2

�

4M � N log 2N � N�2vþ1
vþ2ð logNÞ�23þ"

vþ2 ¼ ð logNÞ�ð1þ"Þ:

We let N ¼ 2m;m ¼ 1; 2; . . . ; apply the Borel-Cantelli lemma and obtain the con-
clusion of Theorem 5.
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