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We investigate the convergence in distribution of integrals of stochastic processes
satisfying a functional limit theorem+We allow a large class of continuous Gauss-
ian processes in the limit+ Depending on the continuity properties of the underly-
ing process, local Lebesgue or Riemann integrability is required+

1. INTRODUCTION

Let $xk, n,1 � k � n, n � 1,2, + + + % be a triangular array of random elements in
D@0,1# , the Skorokhod space of functions on @0,1# , and assume that

x@nt # , n
D@0,1#
&& G~t !, (1.1)

where

G~t ! is a continuous Gaussian process on @0,1# + (1.2)

Condition ~1+2! means that almost all sample paths of G~t ! are continuous on
@0,1# + In many applications one needs the relation

1

n (1�k�n

T ~xk, n !
D
&& �

0

1

T ~G~s!! ds (1.3)

with some real-valued function T, where D
&& denotes convergence in distribu-

tion+ This paper seeks to establish ~1+3! for various processes $xk, n,1 � k � n%
under general conditions on the function T ~x!+
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THEOREM 1+1+ If T is continuous on ~�`,`! and (1.1) and (1.2) are sat-
isfied, then (1.3) holds.

Under the conditions of Theorem 1+1, the sample paths of T ~G~s!!, 0 � s � 1
are continuous with probability one, and thus the integral *0

1 T ~G~s!! ds exists
pathwise+

In the case when G~t ! is a Brownian motion, a short proof of Theorem 1+1 is
provided by Pötscher ~2004!, using the continuous mapping theorem+ His proof
works also under ~1+2!+ For the sake of completeness, in Section 3 we give a
quick proof of Theorem 1+1 using the Skorokhod–Dudley–Wichura representa-
tion theorem+

Park and Phillips ~1999!, de Jong ~2004!, Pötscher ~2004!, and de Jong and
Wang ~2005! consider extensions of Theorem 1+1 for a larger class of functions
T+ The following result is due to Pötscher ~2004!+

THEOREM 1+2+ Let G~t ! be Brownian motion and assume that (1.1) holds
and

T is Borel measurable, (1.4)

T is locally Lebesgue integrable, (1.5)

xk, n 0~k0n!102 has a density function hk, n satisfying hk, n~x! � K
for all x, 1 � k � n, and n � 1 with some constant K+

(1.6)

Then relation (1.3) holds.

Here the integral *0
1 T ~G~t !! dt is defined pathwise; its existence is estab-

lished in Karatzas and Shreve ~1991, Prop+ 6+27!+ Densities are always meant
with respect to the Lebesgue measure+ Local Lebesgue integrability of T means
that *�N

N T ~x! dx exists for all N in the Lebesgue sense+
In this note we investigate two extensions of Theorem 1+2+ First we consider

the case when the limit in ~1+1! is Gaussian, but not necessarily a Brownian
motion, and then we study the case when the distribution of xk, n is not neces-
sarily smooth, i+e+, ~1+6! may not hold+

2. RESULTS

Assuming only ~1+2!, ~1+4!, and ~1+5! we want to define *0
1 T ~G~s!! ds pathwise

as a Lebesgue integral+ Conditions ~1+2! and ~1+4! imply that the paths of T ~G~s!!,
0 � s � 1 are Borel measurable with probability one, but as the next example
shows, ~1+5! in general is not enough for the existence of *0

1 T ~G~s!! ds+
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Example 2.1

Let T ~x!� 6x 6�102 for x � 0 and T ~0!� 0 and let G~t !� t 2j, 0 � t � 1, where
j is a standard normal random variable+ ~Or, alternatively, let T be as before
and G~t ! � t 2W~t !, 0 � t � 1, where W~t !, 0 � t � 1 is a Brownian motion+!
Then *0

1 T ~G~s!! ds does not exist+

Our first result gives a sufficient condition for the existence of
*0

1 T ~G~s!! ds+

THEOREM 2+1+ If (1.2) and (1.4) hold,

EG~t ! � 0, s 2~t !� EG 2~t !, 0 � t � 1, (2.1)

�
0

1 1

sa~t !
dt � ` with some 0 � a� 1, (2.2)

and

6x 6a�1T ~x! is locally Lebesgue integrable, (2.3)

then *0
1 T ~G~s!! ds exists with probability one.

We note if G~t ! has stationary increments, G~0! � 0 and

�
0

1 1

s~t !
dt � `, (2.4)

then the local time of G exists with probability one ~cf+ Geman and Horowitz,
1980, Thm+ 22+1!+ Geman and Horowitz ~1980! also point out that under con-
ditions like ~2+4! the trajectories of G~t ! oscillate wildly+ Hence ~2+4! is never
satisfied for smooth ~e+g+, differentiable! Gaussian processes+

Remark 2+1+ Although Theorem 2+1 covers a very large class of functions T,
from a purely mathematical point of view the question arises what happens if
instead of ~1+4! we assume only that T is Lebesgue measurable, i+e+, the level
sets $T � c% are Lebesgue measurable for any real c+ ~A set on the real line is
called Lebesgue measurable if it is the union of a Borel set and a subset of a
Borel set with measure 0+ Unlike the class B of Borel sets, the class L of Lebes-
gue measurable sets has the property that given any set A � L with measure 0,
all subsets of A belong to L+! If instead of ~1+4! we assume only that T is Lebes-
gue measurable, the pathwise existence of *0

1 T ~G~s!! ds becomes a delicate
problem, because the composition of a Lebesgue measurable and a continuous
function is in general not Lebesgue measurable+ ~See Halmos, 1950, p+ 83+! If
G~t ! has a continuous local time, this problem disappears because, as an argu-
ment in Pötscher ~2004, p+ 5! shows, in this case the integrand in ~1+3! differs
from a Borel-measurable function only on a set of Lebesgue measure 0, and
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hence it is Lebesgue measurable+ However, the assumptions of Theorem 2+1 do
not, in general, imply the existence of a local time for G, and thus the measur-
ability of T ~G~t !! remains open+ To handle this case, let Tn be a sequence of
functions such that Tn is continuous in the interval @�n, n# , Tn~x!� 0 for 6x 6� n,
and *�n

n 6Tn~x!� T ~x!6dx � 10n+ ~Such a sequence Tn exists by Luzin’s theorem
~cf+ Hewitt and Stromberg, 1969, Thm+ 11+36!+! As a trivial modification of the
proof of Theorem 2+1 shows, in this case *0

1 Tn~G~s!! ds is a Cauchy sequence
of random variables in L1 norm and hence convergent in L1+ Defining its limit
~which is easily shown to be independent of the approximating sequence Tn! as
*0

1 T ~G~s!! ds, all results of our paper remain valid under the Lebesgue measur-
ability of T+ Note that in this case the definition of the integral *0

1 T ~G~s!! ds is
not pathwise+

Next we show an example where Theorem 2+1 can be used to establish the
existence of *0

1 T ~G~s!! ds+

Example 2.2

Let T ~x! � 6x 6�102 , x � 0, T ~0! � 0, and

G~t ! ��
0

t

W~s! ds,

where W~t ! is Brownian motion+ Clearly, G~t ! is differentiable and s 2~t ! �
t 303+ Theorem 2+1 can be used with a � 7

12
_ to establish the existence of

*0
1 T ~G~s!! ds in this case+

After giving conditions for the existence of *0
1 T ~G~s!! ds, we turn to gener-

alizations of Theorem 1+2+

THEOREM 2+2+ Assume that (1.1), (1.2), (1.4), (2.1), (2.2), and (2.3) are
satisfied and there exist numbers ci, k � 0, 1 � k � n, n � 1 such that

lim
nr`

nck, n
a � ` for any fixed k, (2.5)

lim sup
nr`

1

n (k0�k�n

10ck, n
a � ` with some k0 � 1, (2.6)

and

xk, n 0ck, n has a density hk, n~x! satisfying 6x 61�ahk, n~x! � K
for all x, 1 � k � n, n � 1 with some constant K+

(2.7)

Then (1.3) holds.

CONVERGENCE OF INTEGRAL FUNCTIONALS 307



We now give some applications of Theorem 2+2+ Let ei , 1 � i � ` be a
stationary sequence of Gaussian random variables with Eei � 0 and r~i � j !�
Eei ej such that

lim
mr`

1

~CmHL~m!!2 (1�i, j�m

r~i � j ! � 1, (2.8)

where

0 � H � 1, C � 0, and L is a slowly varying function at `+ (2.9)

Let

xk, n �
1

CnHL~n! (1�i�k

ei , ck, n � ~Exk, n
2 !102

for any 1 � k � n+ According to Lemma 5+1 of Taqqu ~1975!,

x@nt # , n
D@0,1#
&& BH ~t !,

where BH~t ! is a fractional Brownian motion with parameter H+ This means
that BH~t ! is a continuous Gaussian process with EBH~t ! � 0 and

EBH ~t !BH ~s!�
1

2
$6 t 62H � 6s62H � 6 t � s62H % +

Thus conditions ~1+1!, ~1+2!, ~2+1!, and ~2+4! are satisfied, because s~t ! �
~EBH

2 ~t !!102 � t H , 0 � t � 1+ Clearly xk, n0ck, n is standard normal and

Exk, n
2 �

1

~CnHL~n!!2 (1�i, j�k

r~i � j !+

By 0 � H � 1 we have for any fixed k

lim
nr`

n

CnHL~n! � (1�i, j�k

r~i � j !�102
� `

provided that (1�i, j�k r~i � j ! � 0+ On the other hand, if (1�i, j�k r~i � j !� 0,
then P~xk, n � 0!� 1+ By ~2+8! this can happen only for finitely many k’s, inde-
pendently of n+ Drop these 0 terms and use Theorem 2+2 for the rest of the
array only+ By ~2+8! there is a constant k0 such that

Exk, n
2 �

1

2
�� k

n
�H L~k!

L~n!
�2

, if k � k0 +
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Using the properties of slowly varying functions ~cf+ Bingham, Goldie, and Teu-
gels, 1987, p+ 26! we obtain

nH�1L~n! (
k0�k�n

1

k HL~k!
r

1

1 � H
~nr `!+

Hence ~2+6! holds with a � 1, and therefore all conditions of Theorem 2+2 are
established with a � 1+

The next two examples are from Taqqu ~1975!+

Example 2.3

If the covariance functions satisfy

lim
kr`

r~k!

k 2H�2L1~k!
� 1 with some

1

2
� H � 1

or

lim
kr`

r~k!

k 2H�2L2~k!
� �1 with some 0 � H �

1

2
and r~0!� 2 (

1�k�`
r~k! � 0,

where L1~x! and L2~x! are slowly varying function at infinity, then ~2+8! and
~2+9! hold+ For the proof we refer to Taqqu ~1975!+

Example 2.4

Let $«k,�` � k � `% be a sequence of independent, identically distributed
standard normal random variables and define

ej � (
1�k�`

k H�302«j�k with some
1

2
� H � 1+

It is easy to see that $ej , 1 � j � `% is a stationary Gaussian sequence with
Eej � 0 and covariance function r satisfying

lim
kr`

r~k!

k 2H�2
��

1

`

t H�302~1 � t !H�302 dt+ (2.10)

Thus ~2+8! and ~2+9! hold+

We note that the convergence relation ~1+3! was also established by Jega-
nathan ~2004! under the conditions of Example 2+4 assuming that T and T 2 are
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both Lebesgue integrable on the real line+ The limit in Jeganathan ~2004! is
given as a functional of the local time of fractional Brownian motion+

Our next example is from Horváth and Kokoszka ~1997!+

Example 2.5

Consider the fractional ARIMA ~ p,d,q! process, which is a parametric model
frequently used in modeling of long-memory time series ~see, e+g+, Brockwell
and Davis, 1991, Sec+ 13+2!+ Let $«k,�` � k � `% be a sequence of indepen-
dent, identically distributed normal random variables with E«k � 0 and s 2 �
E«k

2 � 0+ Define the polynomials

Fp~z! � 1 � f1 z � f2 z 2 � {{{� fp z p,

Qq~z! � 1 � u1 z � u2 z 2 � {{{� uq z q,

with real coefficients fj , uj + As usual, we assume that Fp and Qq have no com-
mon roots and no roots in the closed unit disk+ The fractional ARIMA ~ p,d,q!
process is defined as the unique solution $en% of the equations

Fp~B!en � Qq~B!~1 � B!�d«n , �` � n � `, (2.11)

where B denotes the backward shift operator defined by Ben � en�1 and
~1 � B!�d is a linear time-invariant filter defined by

~1 � B!�d«n � (
0�j�`

bj «n�j , (2.12)

with $bj , 0 � j � `% being the coefficients in the series expansion of ~1 � z!�d ,
6z 6 � 1+ If d � 1

2
_ , then the infinite sum in ~2+12! converges with probability one,

and ~2+11! has a unique moving-average solution

en � (
0�j�`

cj «n�j ,

with the weights cj tending to zero at the rate j d�1 +

Theorem 13+2+2 of Brockwell and Davis ~1991! and Theorem 4+10+1 of Bing-
ham et al+ ~1987! yield

lim
kr`

r~k!

k 2d�1
� s 2� Qq~1!

Fp~1! �
2 sin~pd !

p
�

0

`

x�2de�x dx,

where r~k! � Eej ej�k+ It is clear that ~2+8! and ~2+9! hold with H � d � 1
2
_ and

L~x! � 1+
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Example 2.6

Let ei , �` � i � ` be defined as in Example 2+4+ It is easy to see that

var� (
1�i�k
(

1�j�i

ej� � (
1�i, j�k

ijr~i � j !+

By ~2+10! there is a constant c1 � 0 such that

lim
nr`

1

n2H�2 (
1�i, j�n

ijr~i � j ! � c1
2 + (2.13)

Let

ck, n �
1

c1 nH�1 � (
1�i, j�k

ijr~i � j !�102

and define

xk, n �
1

c1 nH�1 (
1�i�k
(

1�j�i

ej +

Because xk, n0ck, n is standard normal, ~2+7! holds for 0 � a � 1+ Also,

x@nt # , n
D@0,1#
&& G~t ! ��

0

t

BH ~s! ds,

and hence ~1+1! and ~1+2! are satisfied+ Using the covariance of BH~s! we get

s 2~t ! � EG 2~t !��
0

t�
0

t 1

2
$6u 62H � 6s62H � 6u � s62H % ds du

� t 2H�2�
0

1�
0

1 1

2
$6u 62H � 6s62H � 6u � s62H % ds du,

and therefore ~2+2! holds for all 0 � a � 10~1 � H !+ By ~2+13! we have ~2+5!
for all k0 large enough+ If

(
1�i, j�k

ijr~i � j ! � 0, (2.14)
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then nck, n
a r 0 for any 0 � a � 10~H � 1!+ ~We note that if ~2+14! fails, then

P~xk, n � 0! � 1, so T ~xk, n! � T ~0! has no effect on the limit+! So all the con-
ditions of Theorem 2+2 are satisfied, and therefore

1

n (1�k�n

T ~xk, n !
D
&& �

0

1

T ~G~t !! dt,

if 6x 6a�1T ~x! is locally Lebesgue integrable with some 0 � a � 10~H � 1!+

In all our applications so far, the random variables xk, n in ~1+3! were normal+
The following example, which extends Examples 2+4 and 2+5, shows that the
long memory linear processes

yn � (
0�k�`

ak«n�k , n � 1,2, + + +

with weights ak ; ck�b, 1
2
_ � b � 1 satisfy the assumptions of Theorem 2+2

even if the generating random variables «j are not Gaussian+ This extends the
results of Pötscher ~2004, Sec+ 3! to long memory processes+

Example 2.7

Let $«k,�` � k � `% be a sequence of independent, identically distributed
random variables with E«0 � 0, E«0

2 � 1, E«0
4 � `+ Let $ak, k � 0% be a posi-

tive sequence satisfying

ak ; const{k�b, 2
1
� � b � 1,

and let

yj � (
0�k�`

ak«j�k , j � 1,2, + + + +

Because (ak
2 � `, the sum defining yj converges a+s+ and Eyj � 0, Eyj

2 � `+
An easy calculation shows that

E~ y1 � {{{� yn !
2 ; An3�2b

for some constant A � 0, and thus letting

xk, n � A�102n�~302�b! (
1�i�k

yi ,

it follows from Davydov ~1970, Thm+ 2! that

x@nt # , n
D@0,1#
&& BH ~t !, H � 302 � b+
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We now show that if the characteristic function w of «0 satisfies

6w~t !6 � O~6 t 6�g ! as 6 t 6r `

for some g � 0, then the random variables xn, n have uniformly bounded den-
sities, and thus Theorem 2+2 applies with ck, n � ~Exk, n

2 !102 + Our argument fol-
lows Pötscher ~2004!+ Let Cn denote the characteristic function of xn, n+ As is
seen from the proof of Lemma 3+1 of Pötscher ~2004! ~cf+ formulas ~3+3! and
~B+1! there!, we have

6Cn~s!6 � )
j�1

n

6w~A�102n�~302�b!cn�j s!6,

where cj �(i�0
j ai + By E«0 � 0, E«0

2 � 1 we have w~t ! � 1 � t 202 � o~t 2! as
t r 0, and thus 6w~t !6 � ~1 � t 204!�1 in a neighborhood of 0+ We now claim
that

6w~t !6 � ~1 � ct 2 !�g04 for all t

with some positive constant c+ By the previous remark and the bound 6w~t !6�
O~6 t 6�g! ~and assuming, without loss of generality, that g � 1! the claimed
inequality holds with c � 1

4
_ for 6 t 6� t0 and 6 t 6� t1, provided t0 is small enough

and t1 is large enough+ To prove it for t0 � 6 t 6 � t1 note that 6w~t !6 � 1 for
t � 0 ~otherwise 6w6 would be periodic! and thus by the continuity of w there
exists a constant ® . 0 such that 6w~t !6 � 1 � ® for t0 � 6 t 6 � t1+ Hence
choosing c small enough, the claimed inequality holds also for t0 � 6 t 6 � t1+
Because cj ; const{j 1�b we get, using 6w~t !6 � 1,

6Cn~s!6 � )
j�1

@n02#�1

6w~A�102n�~302�b!cn�j s!6� ~1 � an�1s 2 !�ng08

for some constant a � 0+ Thus

�
�`

`

6Cn~s!6ds � �
�`

`

~1 � an�1s 2 !�ng08 ds

� a�102n102�
�`

`

~1 � u2 !�ng08 du

� a�102n102��
6u 6�1

��
6u 6�1

� � a�102n102~I1 � I2 !, say+

Using 10~1 � u2! � exp~�c1u2! for 6u 6 � 1 and the substitution v � n102u we
see that I1 � C1 n�102 where C1 is a constant depending only on g+ On the other
hand, for 6u 6 � 1 we have

~1 � u2 !�ng08 � ~1 � u2 !�12�ng08�1 � C2 n�102~1 � u2 !�1,
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where C2 is a constant depending only on g+ Hence

I2 � C2 n�102�
�`

`

~1 � u2 !�1 du � C2 n�102p,

and thus we proved that

�
�`

`

6Cn~s!6ds � C n � 1,2, + + + ,

where C is a constant depending only on w+ By a well-known property of char-
acteristic functions ~see, e+g+, Lukács, 1970, Thm+ 3+2+2! it follows that the ran-
dom variables xn, n have uniformly bounded densities, as claimed+

A minor variation of the preceding argument shows that the assumption
6w~t !6 � O~6 t 6�g!, g � 0 can be weakened to

�
�`

`

6w~t !6r dt � ` for some integer r � 1,

which is the condition assumed in Pötscher ~2004!+ Indeed, using 6w~t !6 � 1
and cj ; const{j 1�b we get, similarly as before,

6Cn~s!6 � )
j�1

@n02#

6w~A�102n�~302�b!cn�j s!6� )
j�1

@n02#

6w~sn�102an, j !6,

where the an, j are between positive bounds, independent of n, j+ The last rela-
tion is very close to formula ~B+1! in Pötscher ~2004!, and from there the proof
can be completed by following his reasoning with minor changes+

So far we have replaced convergence to a Brownian motion in Pötscher’s
Theorem 1+2 with the convergence to a continuous Gaussian process+We showed
that we still have the convergence in distribution of the integral functionals+
Next we consider the case when ~1+6! is not satisfied, i+e+, if the distribution of
xk, n is not necessarily smooth+ The next example shows that ~1+3! can fail if
only ~1+4! and ~1+5! are assumed+

Example 2.8

Let e1, e2, + + + be independent, identically distributed random variables with
P~e1 � 1! � P~e1 � �1! � 1

2
_ + Let T ~x! � 1 if x is irrational and T ~x! � 0 if x

is rational+ If n is a square number, then

1

n (1�k�n

T� 1

n102 (
1�i�k

ei� � 0+
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However,

�
0

1

T ~W~t !! dt � 1 a+s+,

where W is a Brownian motion, so ~1+3! cannot be true+

Our last result says that without assuming ~1+6! or ~2+7!, the local Lebesgue
integrability conditions in Theorems 1+2 and 2+2 should be replaced by the local
Riemann integrability of T ~x! to have ~1+3!+

THEOREM 2+3+ If (1.1), (1.2), (1.4), (2.1), and (2.2) are satisfied and

lim
hr0

�
�K

K

6x 6a�1 sup
6u 6�h
6T ~x � u!� T ~x!6 dx � 0 for all K � 0, (2.15)

then (1.3) holds.

Note that the integral in ~2+15! is finite if and only if T is locally bounded,
i+e+, bounded on bounded intervals+ The sufficiency of the last condition is obvi-
ous from 0 � a� 1; to see the necessity note that if there exists a point x0 such
that T is unbounded in any neighborhood of x0, then for any fixed h � 0 the
integrand in ~2+15! equals �` for 6x � x06 � h, and thus the integral is infi-
nite+ The integrand is undefined for x � 0, but because we mean ~2+15! as a
Lebesgue integral, this does not cause any problem+

We would like to point out that ~2+15! cannot be replaced by

lim
hr0

�
�K

K

6x 6a�1 6T ~x � h!� T ~x!6dx � 0 for all K � 0+ (2.16)

Indeed, the function T in Example 2+8 is bounded and Lebesgue measurable,
and thus it satisfies

lim
hr0

�
�K

K

6T ~x � h!� T ~x!6 p dx � 0 for all K � 0, p � 1

~see Hewitt and Stromberg, 1969, p+ 199!+ From 0 � a � 1 and the Hölder
inequality it follows that ~2+16! is also valid, but according to Example 2+8,
~1+3! cannot be true+

Remark 2+2+ Condition ~2+15! holds if and only if T is locally Riemann inte-
grable, i+e+, it is bounded and Riemann integrable on any bounded interval+
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3. PROOFS

Proof of Theorem 1+1+ By the Skorokhod–Dudley–Wichura representation
theorem ~cf+ Shorack and Wellner, 1986, p+ 47! there exist xk, n

* , 1 � k � n, and
Gn
*~t !, 0 � t � 1, such that

$xk, n , 1 � k � n% �
D
$xk, n
* , 1 � k � n% for each n, (3.1)

$G~t !, 0 � t � 1% �
D
$Gn
*~t !, 0 � t � 1% for each n, (3.2)

and

sup
0�t�1

6x@nt # , n
* � Gn

*~t !6 � o~1! a+s+ (3.3)

For any « � 0 there is N such that

P� sup
0�t�1

6G~t !6 � N02� � «, (3.4)

and therefore by ~3+2! and ~3+3! there is an integer n0 such that

P� max
1�k�n

6xk, n
* 6 � N� � 2«, if n � n0 + (3.5)

Let

TN ~x! � �T ~x! if 6x 6� N

0 if 6x 6 � N+

By ~3+4! and ~3+5! we have

P� 1

n (1�k�n

T ~xk, n
* !�

1

n (1�k�n

TN ~xk, n
* !� � 2« if n � n0

and

P��
0

1

T ~Gn
*~t !! dt � �

0

1

TN ~Gn
*~t !! dt� � « for all n � 1+

Hence it is enough to prove that for any N � 1

�
0

1

TN ~x@nt # , n
* ! dt ��

0

1

TN ~Gn
*~t !! dtr 0 a+s+ ~nr `! (3.6)
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and

1

n
$6TN ~0!6� 6TN ~xn, n

* !6% P
&& 0 ~nr `!, (3.7)

because

1

n (1�k�n

TN ~xk, n
* ! ��

0

1

TN ~x@nt # , n
* ! dt �

1

n
TN ~0!�

1

n
TN ~xn, n

* !

~x0, n
* � 0 by definition!+ We note that TN is continuous on @�N,N # , and there-

fore it is uniformly continuous on @�N,N # + Hence ~3+6! follows from ~3+3!+
Relation ~3+7! is obvious, because by ~3+1!–~3+5! and the continuity of TN on
@�N,N # we have TN ~xn, n

* ! D
&& TN ~G~1!!+ �

Proof of Theorem 2+1+ Clearly, it is enough to consider the case T � 0+ ~Other-
wise, write T as the difference between the positive and the negative parts and
prove the existence for each part separately+! For any « � 0 there is N � 0 such
that

P� sup
0�t�1

6G~t !6 � N� � «+ (3.8)

Also, there is a constant c such that

1

M2p
u1�ae�u202 � c for all 0 � u � `+

Because G~t ! is normal with EG~t ! � 0 and s 2~t ! � EG 2~t ! we get, letting
TN ~x! denote the function defined in the previous proof,

E�
0

1

TN ~G~s!! ds � �
0

1�
�N

N

T ~x!
1

M2ps~t !
e�~x 202s2~t !! dx dt

� c�
0

1�
�N

N

T ~x!
1

s~t !
� x

s~t !
��~1�a!

dx dt

� c�
0

1 1

sa~t !
dt�

�N

N

6x 6a�1T ~x! dx � `+ (3.9)

The proof is complete+ �
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Proof of Theorem 2+2+ For each « � 0 there is N � 0 such that ~3+4! holds+
So by ~1+1! there is an integer n0 such that

P� max
1�k�n

6xk, n 6 � N� � 2«, if n � n0 + (3.10)

Thus

P� (
1�k�n

T ~xk, n !� (
1�k�n

TN ~xk, n !� � 2« if n � n0

and

P��
0

1

T ~G~s!! ds � �
0

1

TN ~G~s!! ds� � «,

where TN ~x! � T ~x!I $6x 6 � N % + Next we show that for any k0

1

n (1�k�k0

TN ~xk, n !
P
&& 0+ (3.11)

Indeed,

E6TN ~xk, n !6 ��
�N

N

6T ~x!6
1

ck, n

hk, n� x

ck, n
� dx

� ck, n
�a�

�N

N

6x 6a�1 6T ~x!6� 6x 6ck, n
�1�a

hk, n� x

ck, n
� dx

� ck, n
�aK�

�N

N

6x 6a�1 6T ~x!6 dx,

where K is defined in condition ~2+7!+ Using ~2+5! we get

E
1

n � (1�k�k0

TN ~xk, n !� � c (
1�k�k0

1

nck, n
a
r 0,

proving ~3+11!+
By Luzin’s theorem ~cf+ Hewitt and Stromberg, 1969, Thm+ 11+36! and ~2+3!

for any d � 0 there is a continuous function T * on @�N,N # such that

�
�N

N

� T ~x!

6x 61�a
� T *~x!� dx � d+
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Let TN
*~x! � T *~x! for 6x 6 � N and 0 otherwise+ Using again ~2+7! we get

E
1

n � (k0�k�n

$TN ~xk, n !� TN
*~xk, n !6xk, n 61�a %�

�
1

n (k0�k�n

1

ck, n
�

�N

N

6T ~x!� T *~x!6x 61�a 6hk, n� x

ck, n
� dx

�
1

n (k0�k�n

1

ck, n
�

�N

N

� T ~x!

6x 61�a
� T *~x!�6x 61�ahk, n� x

ck, n
� dx

�
1

n (k0�k�n

1

ck, n
a �

�N

N

� T ~x!

6x 61�a
� T *~x!�� x

ck, n �
1�a

hk, n� x

ck, n
� dx

� dK
1

n (k0�k�n

10ck, n
a , (3.12)

where K is from condition ~2+7!+ Also, ~2+1! and ~2+2! yield

E ��
0

1

$TN ~G~s!!� TN
*~G~s!!6G~s!61�a % ds�

� �
0

1�
�N

N

6T ~x!� T *~x!6x 61�a 6
1

~2ps 2~t !!102
e�~x 202s2~t !! dx dt

�
1

M2p
�

0

1 1

sa~t !
�

�N

N

� T ~x!

6x 61�a
� T *~x!�� 6x 6s~t !�

1�a

e�~x 202s2~t !! dx dt

� c�
0

1 1

sa~t !
dt�

�N

N

� T ~x!

6x 61�a
� T *~x!� dx

� dc�
0

1 1

sa~t !
dt, (3.13)

where c � sup6u 61�ae�u202 + Similarly to ~3+11! one can easily show that

1

n (1�k�k0

TN
*~xk, n !6xk, n 61�a P

&& 0 for all k0 + (3.14)

In view of ~3+11!–~3+14!, it is enough to show that

1

n (1�k�n

TN
*~xk, n !6xk, n 61�a D

&& �
0

1

TN
*~G~s!!6G~s!61�a ds+ (3.15)

However, because of the continuity of TN
*~x!6x 61�a on @�N,N # , this is an

immediate consequence of ~3+1!, ~3+2!, and ~3+6!+ �
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Proof of Theorem 2+3+ We use again the Skorokhod–Dudley–Wichura repre-
sentation theorem, so we assume that ~3+1!–~3+3! hold+ By ~1+1! and ~1+2! we
also have ~3+4! and ~3+5!+ Hence, following the argument in the proof of Theo-
rem 1+1, it is enough to prove

1

n (1�k�n

TN ~xk, n
* ! D

&& �
0

1

TN ~G~s!! ds ~nr `! (3.16)

for all N, where TN ~x! � T ~x!I $6x 6 � N % + As in the proof of Theorem 1+1 we
have

1

n (1�k�n

TN ~xk, n
* ! ��

0

1

TN ~x@ns# , n
* ! ds �

1

n
TN ~0!�

1

n
TN ~xn, n

* !,

and thus

� 1

n (1�k�n

TN ~xk, n
* !��

0

1

TN ~Gn
*~s!! ds�

� �
0

1

6TN ~x@ns# , n
* !� TN ~Gn

*~s!!6ds �
1

n
6TN ~0!6

�
1

n
6TN ~xn, n

* !� TN ~Gn
*~1!!6

�
1

n
6TN ~Gn

*~1!!6+

Hence

P�� 1

n (1�k�n

TN ~xk, n
* !��

0

1

TN ~Gn
*~s!! ds� � «�

� P� sup
0�s�1

6x@ns# , n
* � Gn

*~s!6� h� � P� 1

n
6TN ~0!6� «04�

� P� 1

n
sup
6u 6�h
6TN ~Gn

*~1!� u!� TN ~Gn
*~1!!6� «04�

� P� 1

n
6TN ~Gn

*~1!!6� «04�
� P��

0

1

sup
6u 6�h
6TN ~Gn

*~s!� u!� TN ~Gn
*~s!!6 ds � «04�

� I1 � I2 � {{{� I5 + (3.17)
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Because the distribution of Gn
*~1! does not depend on n, we get

lim
nr`

P� 1

n
6TN ~Gn

*~1!!6 � «04� � 0+

On the other hand,

E sup
6u 6�h
6TN ~Gn

*~1!� u!� TN ~Gn
*~1!!6

��
�`

` 1

~2ps 2~1!!102
sup
6u 6�h
6TN ~x � u!� TN ~x!6e�~x 202s2~1!! dx

�
1

s~1!
�

�`

`

sup
6u 6�h
6TN ~x � u!� TN ~x!6 dx,

if s~1! � 0, where the last integral exists for all h by condition ~2+15!+ If
s~1! � 0, then P $Gn

*~1! � 0% � 1, and therefore

E sup
6u 6�h
6TN ~Gn

*~1!� u!� TN ~Gn
*~1!!6 � sup

6u 6�h
6TN ~u!� TN ~0!6+

Thus by the Markov inequality we have in both cases

lim
nr`

P� 1

n
sup
6u 6�h
6TN ~Gn

*~1!� u!� TN ~Gn
*~1!!6 � «04� � 0

for all h+ Similarly to ~3+13! we have

E�
0

1

sup
6u 6�h
6TN ~Gn

*~s!� u!� TN ~Gn
*~s!!6 ds

��
0

1�
�`

` 1

~2ps 2~s!!102
sup
6u 6�h
6TN ~x � u!� TN ~x!6e�~x 202s2~s!! dx ds

� c�
0

1 1

sa~s!
ds�

�`

`

6x 6a�1 sup
6u 6�h
6TN ~x � u!� TN ~x!6 dx+

Here the last integral tends to 0 as h r 0 by ~2+15!, and thus by ~2+2! and the
Markov inequality we have

lim
hr0

P��
0

1

sup
6u 6�h
6TN ~Gn

*~s!� u!� TN ~Gn
*~s!!6 ds � «04� � 0

for all n+ Now given d � 0 we can choose h so small that I5 in ~3+17! is at most
d for all n ~note that the random variable in the probability I5 does not depend
on n!+ Then choosing n sufficiently large, ~3+3! and the preceding estimates
show that I1, + + + , I4 will be less than d+ Thus ~3+17! yields
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� 1

n (1�k�n

TN ~xk, n
* !��

0

1

TN ~Gn
*~s!! ds� p

&& 0,

and the proof of ~3+16! is complete+ �

Proof of Remark 2+2+ In view of the comments made after Theorem 2+3, we
can assume that T is locally bounded+ Let

gh~x!� 6x 6a�1 sup6u 6�h 6T ~x � u!� T ~x!6

for x � 0 and gh~0!� 0+ The function gh~x! is Lebesgue integrable on @�K,K #
if h is small+ For any fixed x, the sequence gh~x! is nonincreasing as h f 0, and
thus it has a limit g~x! � 0+ Hence by the monotone convergence theorem the
limit in ~2+15! equals *�K

K g~x! dx+ So ~2+15! holds if and only if *�K
K g~x! dx � 0

for all K+ Because g~x! � 0, this is true if and only if g~x! � 0 almost every-
where+ Clearly, g~x0!� 0 for x0 � 0 if and only if T is continuous at x0+ So we
proved that ~2+15! is equivalent with the almost everywhere continuity of T+
Recalling that a function is Riemann integrable on an interval if and only if it
is bounded and almost everywhere continuous on the interval ~cf+ Riesz and
Szőkefalvi-Nagy, 1990, p+ 23!, Remark 2+2 is proved+ �
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