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CONVERGENCE OF INTEGRAL
FUNCTIONALS OF STOCHASTIC
PROCESSES
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We investigate the convergence in distribution of integrals of stochastic processes
satisfying a functional limit theorem. We allow a large class of continuous Gauss-
ian processes in the limit. Depending on the continuity properties of the underly-
ing process, local Lebesgue or Riemann integrability is required.

1. INTRODUCTION

Let {x; ,,1 = k = n,n=1,2,...} be a triangular array of random elements in
D[0,1], the Skorokhod space of functions on [0,1], and assume that

Dl0,1]

x[nt],n I F(t)’ (1.1)
where
I'(z) is a continuous Gaussian process on [0,1]. (1.2)

Condition (1.2) means that almost all sample paths of T'(#) are continuous on
[0,1]. In many applications one needs the relation

! > T(xk,n)gf T(I(s)) ds (1.3)

N 1=k=n

with some real-valued function T, where —> denotes convergence in distribu-
tion. This paper seeks to establish (1.3) for various processes {x; ,,1 = k =< n}
under general conditions on the function 7'(x).
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THEOREM 1.1. If T is continuous on (—o0,00) and (1.1) and (1.2) are sat-
isfied, then (1.3) holds.

Under the conditions of Theorem 1.1, the sample paths of T(I'(s)), 0 =s =1
are continuous with probability one, and thus the integral fol T(I'(s)) ds exists
pathwise.

In the case when I'(¢) is a Brownian motion, a short proof of Theorem 1.1 is
provided by Pétscher (2004), using the continuous mapping theorem. His proof
works also under (1.2). For the sake of completeness, in Section 3 we give a
quick proof of Theorem 1.1 using the Skorokhod—Dudley—Wichura representa-
tion theorem.

Park and Phillips (1999), de Jong (2004), Potscher (2004), and de Jong and
Wang (2005) consider extensions of Theorem 1.1 for a larger class of functions
T. The following result is due to Potscher (2004).

THEOREM 1.2. Let I'(t) be Brownian motion and assume that (1.1) holds
and

T is Borel measurable, (1.4)
T is locally Lebesgue integrable, (1.5)

Xy /(k/n)"? has a density function h,_, satisfying h; ,(x) = K (1.6)
forall x,1 =k =n, and n =1 with some constant K. ’

Then relation (1.3) holds.

Here the integral fol T(T'(r)) dr is defined pathwise; its existence is estab-
lished in Karatzas and Shreve (1991, Prop. 6.27). Densities are always meant
with respect to the Lebesgue measure. Local Lebesgue integrability of 7 means
that fiVNT(x) dx exists for all N in the Lebesgue sense.

In this note we investigate two extensions of Theorem 1.2. First we consider
the case when the limit in (1.1) is Gaussian, but not necessarily a Brownian
motion, and then we study the case when the distribution of x, , is not neces-
sarily smooth, i.e., (1.6) may not hold.

2. RESULTS

Assuming only (1.2), (1.4), and (1.5) we want to define fol T (T (s)) ds pathwise
as a Lebesgue integral. Conditions (1.2) and (1.4) imply that the paths of T(T'(s)),
0 = s = 1 are Borel measurable with probability one, but as the next example
shows, (1.5) in general is not enough for the existence of fol T(T(s)) ds.



306 ISTVAN BERKES AND LAJOS HORVATH

Example 2.1

Let T(x) = |x|7"? forx # 0 and T(0) = 0 and let I'(¢) = £2£, 0 = ¢ < 1, where
¢ is a standard normal random variable. (Or, alternatively, let T be as before
and I'(¢) = t2W(t), 0 = t = 1, where W(¢), 0 = ¢t = 1 is a Brownian motion.)
Then fol T(T'(s)) ds does not exist.

Our first result gives a sufficient condition for the existence of
fol T(T(s)) ds.

THEOREM 2.1. If (1.2) and (1.4) hold,

ET(t) =0, o%(t) = ET?(1), 0=r=1, 2.1
L |
J dt < oo withsome() < a=1, 2.2)
o o%()
and
|x|* 1T (x) is locally Lebesgue integrable, (2.3)

then fol T(T (s)) ds exists with probability one.

We note if T'(¢) has stationary increments, I'(0) = 0 and

LS|
J—dt<oo, 2.4)
o o(r)

then the local time of T" exists with probability one (cf. Geman and Horowitz,
1980, Thm. 22.1). Geman and Horowitz (1980) also point out that under con-
ditions like (2.4) the trajectories of I'(¢) oscillate wildly. Hence (2.4) is never
satisfied for smooth (e.g., differentiable) Gaussian processes.

Remark 2.1. Although Theorem 2.1 covers a very large class of functions 7,
from a purely mathematical point of view the question arises what happens if
instead of (1.4) we assume only that 7 is Lebesgue measurable, i.e., the level
sets {T' < c} are Lebesgue measurable for any real c. (A set on the real line is
called Lebesgue measurable if it is the union of a Borel set and a subset of a
Borel set with measure 0. Unlike the class B of Borel sets, the class £ of Lebes-
gue measurable sets has the property that given any set A € £ with measure 0,
all subsets of A belong to £.) If instead of (1.4) we assume only that T is Lebes-
gue measurable, the pathwise existence of fol T(T'(s)) ds becomes a delicate
problem, because the composition of a Lebesgue measurable and a continuous
function is in general not Lebesgue measurable. (See Halmos, 1950, p. 83.) If
I'(¢) has a continuous local time, this problem disappears because, as an argu-
ment in Potscher (2004, p. 5) shows, in this case the integrand in (1.3) differs
from a Borel-measurable function only on a set of Lebesgue measure 0, and
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hence it is Lebesgue measurable. However, the assumptions of Theorem 2.1 do
not, in general, imply the existence of a local time for I', and thus the measur-
ability of T(I'(z)) remains open. To handle this case, let 7, be a sequence of
functions such that 7, is continuous in the interval [—n,n], T,(x) = 0 for | x| > n,
and [" |T,(x) — T(x)|dx = 1/n. (Such a sequence 7, exists by Luzin’s theorem
(cf. Hewitt and Stromberg, 1969, Thm. 11.36).) As a trivial modification of the
proof of Theorem 2.1 shows, in this case fol T,(I'(s)) ds is a Cauchy sequence
of random variables in L; norm and hence convergent in L;. Defining its limit
(which is easily shown to be independent of the approximating sequence T,,) as
fol T(T (s)) ds, all results of our paper remain valid under the Lebesgue measur-
ability of 7. Note that in this case the definition of the integral |, 0' T(T'(s))ds is
not pathwise.

Next we show an example where Theorem 2.1 can be used to establish the
existence of fol T(T(s)) ds.

Example 2.2

Let T(x) = |x|™"2, x # 0, T(0) = 0, and

()= ftW(s) ds,

where W(¢) is Brownian motion. Clearly, I'(¢) is differentiable and o %(t) =
t3/3. Theorem 2.1 can be used with @ = 5 to establish the existence of
fol T(T'(s)) ds in this case.

After giving conditions for the existence of |, 01 T(T'(s))ds, we turn to gener-
alizations of Theorem 1.2.

THEOREM 2.2. Assume that (1.1), (1.2), (1.4), (2.1), (2.2), and (2.3) are
satisfied and there exist numbers c;, > 0, 1 =k =n, n = 1 such that

lim nc;’, = o for any fixed k, (2.5)
1
lim sup — 2 1/cit, < oo with some ko =1, (2.6)

n—o N k=k=n
and

X n/Cin has a density h,_,(x) satisfying | x|'~*h,_,(x) = K

forallx,1 =k=n,n=1 with some constant K. 2.7)

Then (1.3) holds.
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We now give some applications of Theorem 2.2. Let e¢;, 1 =i < oo be a
stationary sequence of Gaussian random variables with Ee; = 0 and r(i —j) =
Ee;e; such that

1

lim ———— rii—j)=1, 2.8
where
0<H<1,C>0,and L is a slowly varying function at co. 2.9)
Let

1
xk,n €, Ck,n = (E'xkz,n)l/z

- CnHL(n) 1=i=k

for any 1 =< k =< n. According to Lemma 5.1 of Tagqu (1975),

D[0,1]
x[nt],n > BH(I)’

where By (1) is a fractional Brownian motion with parameter H. This means
that B (¢) is a continuous Gaussian process with EBy(f) = 0 and

1
BBy (1B () = 3 1+ |s[2 = |1 = s[21).

Thus conditions (1.1), (1.2), (2.1), and (2.4) are satisfied, because o (t) =
(EB3(1))"/* = t",0 = t = 1. Clearly x ,/c;., is standard normal and

1

Exz = r i_ j .
kn(cnfL(n))? 1s§jsk (i=9)

By 0 < H < 1 we have for any fixed k
1/2

lim ——— r(i—j = oo

n—oo CnHL(n) (15%5]( ( ])>

provided that > =; ;= r(i — j) > 0. On the other hand, if 2, ;=,r(i —j) =0,
then P(x;, = 0) = 1. By (2.8) this can happen only for finitely many &’s, inde-
pendently of n. Drop these O terms and use Theorem 2.2 for the rest of the
array only. By (2.8) there is a constant k, such that

1 ([ kV LK)
Ex2,=-1(- . ifk= k.
' 2 (\n/ L(n)
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Using the properties of slowly varying functions (cf. Bingham, Goldie, and Teu-
gels, 1987, p. 26) we obtain

1 1
nL(n) D)

- - .
ko=k=n kHL(k) 1-H (n OO)

Hence (2.6) holds with @ = 1, and therefore all conditions of Theorem 2.2 are
established with @ = 1.
The next two examples are from Taqqu (1975).

Example 2.3
If the covariance functions satisfy

r(k)

1
lim ————— =1 withsome —<H<1
k—oo k2H72L, (k) 2

or
. r(k) . 1
klgg szTLz(k) =—1 withsome0 < H < > and r(0) + 2 ls%;oor(k) =0,

where L,(x) and L,(x) are slowly varying function at infinity, then (2.8) and
(2.9) hold. For the proof we refer to Taqqu (1975).

Example 2.4
Let {g;,—00 < k < oo} be a sequence of independent, identically distributed

standard normal random variables and define

1
e;= >, k" ¥, withsome 2 <H<I.

J
1=k<oo

It is easy to see that {¢;, 1 = j < oo} is a stationary Gaussian sequence with
Ee; = 0 and covariance function r satisfying

r(k) *
lim —— = | #3721 —)H 32 41, (2.10)
1

koo k22

Thus (2.8) and (2.9) hold.

We note that the convergence relation (1.3) was also established by Jega-
nathan (2004) under the conditions of Example 2.4 assuming that T and T? are
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both Lebesgue integrable on the real line. The limit in Jeganathan (2004) is
given as a functional of the local time of fractional Brownian motion.
Our next example is from Horvath and Kokoszka (1997).

Example 2.5

Consider the fractional ARIMA (p,d,q) process, which is a parametric model
frequently used in modeling of long-memory time series (see, e.g., Brockwell
and Davis, 1991, Sec. 13.2). Let {g;,—o0 < k < oo} be a sequence of indepen-
dent, identically distributed normal random variables with Eg, = 0 and 02 =
Eg? > 0. Define the polynomials

(I)p(Z) =1l—¢z—drz®— - _¢pzp9
0,2)=1+60,2+0,z>+ - +0,z9,

with real coefficients ¢;, 0;. As usual, we assume that ®, and ®, have no com-
mon roots and no roots in the closed unit disk. The fractional ARIMA (p,d, q)
process is defined as the unique solution {e,} of the equations

®,(Be, =06,(B)(1 - B) e, —o0 < n < oo, (2.11)

where B denotes the backward shift operator defined by Be, = e,-, and
(1 — B)~“is a linear time-invariant filter defined by

(1-B)"",= > bye, (2.12)

0=j<co

with {b;, 0 = j < oo} being the coefficients in the series expansion of (1 — 279,
|z| < 1.If d < 1, then the infinite sum in (2.12) converges with probability one,
and (2.11) has a unique moving-average solution

€n = 2 Cj 8n7j’
0=j<oo

with the weights ¢; tending to zero at the rate j¢~'.

Theorem 13.2.2 of Brockwell and Davis (1991) and Theorem 4.10.1 of Bing-
ham et al. (1987) yield

0,(1)
@, (1)

2

(k)
lim et =

> sin(wd) (=
x " 2de ™" dx,
T 0

where r(k) = Ee;e;;. It is clear that (2.8) and (2.9) hold with H = d + 1 and
L(x)=1.
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Example 2.6

Let ¢;, —co < i < oo be defined as in Example 2.4. It is easy to see that

var< > > ej>= > iir(i —j).

l=i=k l=sj=i 1=i,j=k
By (2.10) there is a constant ¢; > 0 such that

1
lim ——— > dir(i—j) = ¢ (2.13)

n—ow n 1=i,j=n

Let

1 2
Ck,n = ClnH+1< 2 l]r(l _.])>

1=i, j=k
and define

1

xk,n = H+1 2 2 ej'

cn 1=i=k 1=j=i

Because x; /¢y, is standard normal, (2.7) holds for 0 < a = 1. Also,

t
Xt 2y (1) = f By, (s) ds,

and hence (1.1) and (1.2) are satisfied. Using the covariance of By(s) we get

t []
20 = 20 = [ [ S+ 52~ = s dsd
0 Y0

1
=t2H+2f f §{|u\2H+|s|2H—|u—s\2H}dsdu,
0 Jo

and therefore (2.2) holds for all 0 = o < 1/(1 + H). By (2.13) we have (2.5)
for all k, large enough. If

> ijr(i—j) >0, (2.14)

1=i,j=k
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then ncg, — 0 for any 0 = a < 1/(H + 1). (We note that if (2.14) fails, then
P(xi, =0) =1, so T(x;,,) = T(0) has no effect on the limit.) So all the con-
ditions of Theorem 2.2 are satisfied, and therefore

LS 1) B [ 1wy

N 1<k=n

if |x|*"1T(x) is locally Lebesgue integrable with some 0 < o < 1/(H + 1).

In all our applications so far, the random variables x; , in (1.3) were normal.
The following example, which extends Examples 2.4 and 2.5, shows that the
long memory linear processes

Yn = 2 Ar&€y—i> n:1,2,...

0=k<co

with weights a, ~ ck #, 5 < B < 1 satisfy the assumptions of Theorem 2.2

even if the generating random variables &; are not Gaussian. This extends the
results of Potscher (2004, Sec. 3) to long memory processes.

Example 2.7

Let {g;,—o0 < k < oo} be a sequence of independent, identically distributed
random variables with Eg, = 0, Eel = 1, Ee§ < oo. Let {a;, k = 0} be a posi-
tive sequence satisfying

a, ~ const-k P, l<p<l,
and let

Yi = 2 A€, j=12,....

0=k<oo

Because X a; < oo, the sum defining y; converges a.s. and Ey; = 0, Ey] < co.
An easy calculation shows that

E(y + - +y,)? ~An* 2P
for some constant A > 0, and thus letting

— —-1/2_,—(3/2—
xk,n_A /I’l B/2-8) E Yis

1=i=k
it follows from Davydov (1970, Thm. 2) that

Dlo,
x[nt],n&BH(t)’ H: 3/2_B
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We now show that if the characteristic function ¢ of g, satisfies
le()] = O0(|t]™) as|t|—> o0

for some y > 0, then the random variables x, , have uniformly bounded den-
sities, and thus Theorem 2.2 applies with ¢, , = (Ex?,)"?. Our argument fol-
lows Potscher (2004). Let ¥, denote the characteristic function of x, ,. As is
seen from the proof of Lemma 3.1 of Potscher (2004) (cf. formulas (3.3) and
(B.1) there), we have

[, ()| =[] le(A™ 20", 5)],

Jj=1

where ¢; = X/_,a;. By Egg = 0, Ee3 = 1 we have ¢(1) = 1 — t%/2 + o(t?) as
t — 0, and thus |@(¢)] = (1 + t?/4)"! in a neighborhood of 0. We now claim
that

lo(t)| = (1+ct?)™"* forall ¢t

with some positive constant c. By the previous remark and the bound |¢(7)| =
O(|t|™7) (and assuming, without loss of generality, that y < 1) the claimed
inequality holds with ¢ = § for |t| =ty and |¢| = 1,, provided #, is small enough
and ¢, is large enough. To prove it for 7, < |t| < ¢, note that |¢(z)| < 1 for
t # 0 (otherwise | ¢| would be periodic) and thus by the continuity of ¢ there
exists a constant o > 0 such that |@(f)] =1 — p for #, = |t| = t,. Hence
choosing ¢ small enough, the claimed inequality holds also for 7, =< |t| = t,.
Because ¢; ~ const-j' # we get, using |@(t)| =1,
[n/2]+1
W, (s)| = I le(A 2062 P, s)|=(1+an 's?) /8
j=1

for some constant a > 0. Thus
J |V (s)|ds = f (1+an"'s?)""/8 ds

oo
= ail/zn]/zf (14 u?)"™"8du
—0o0

=a1/2n1/2<J +f ) =a 2n'2(I, + I,), say.
=t Jju=1

Using 1/(1 + u?) < exp(—c,u?) for |u| =1 and the substitution v = n'/%u we
see that I, = C,n~'/2 where C, is a constant depending only on . On the other
hand, for |u| > 1 we have

(1 + u2)—n7/8 = (1 + MZ)—lz—ny/S-H = Czn—l/Z(l + MZ)—I’
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where C, is a constant depending only on 7. Hence
L =C,n '? fj" 1+ u®) Vdu= Cyn ?m,

and thus we proved that

J_OO W (s)|ds = C n=12,...,

where C is a constant depending only on ¢. By a well-known property of char-
acteristic functions (see, e.g., Lukdcs, 1970, Thm. 3.2.2) it follows that the ran-
dom variables x, , have uniformly bounded densities, as claimed.

A minor variation of the preceding argument shows that the assumption
lo(t)] = O(]t]77), ¥ > 0 can be weakened to

f lo(t)]"dt < oo for some integer r =1,

which is the condition assumed in Potscher (2004). Indeed, using | (1) = 1
and ¢; ~ const-j ' # we get, similarly as before,

[n/2] [n/2]
[W,(s)| = [] l@A2n= 02 P, _5)| =[] le(sn~"a, )|,
j=1

Jj=1

where the a,, ; are between positive bounds, independent of n, j. The last rela-
tion is very close to formula (B.1) in Potscher (2004), and from there the proof
can be completed by following his reasoning with minor changes.

So far we have replaced convergence to a Brownian motion in P&tscher’s
Theorem 1.2 with the convergence to a continuous Gaussian process. We showed
that we still have the convergence in distribution of the integral functionals.
Next we consider the case when (1.6) is not satisfied, i.e., if the distribution of
Xt 1s not necessarily smooth. The next example shows that (1.3) can fail if
only (1.4) and (1.5) are assumed.

Example 2.8
Let e, e,,... be independent, identically distributed random variables with

P(e; =1) =P(e; = —1) = 3. Let T(x) = 1 if x is irrational and T'(x) = 0 if x
is rational. If n is a square number, then

1 5 T( 1 ) .
- — e; | = 0.
N 1<k=n n'’? I=i=k
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However,

fT(W(t))dtZl a.s.,

where W is a Brownian motion, so (1.3) cannot be true.

Our last result says that without assuming (1.6) or (2.7), the local Lebesgue
integrability conditions in Theorems 1.2 and 2.2 should be replaced by the local
Riemann integrability of T'(x) to have (1.3).

THEOREM 2.3. If (1.1), (1.2), (1.4), (2.1), and (2.2) are satisfied and

K

lim [x|*"V sup |T(x+u) —T(x)|dx=0 forallK >0, (2.15)
K

h—0 J_ |ul=h

then (1.3) holds.

Note that the integral in (2.15) is finite if and only if T is locally bounded,
i.e., bounded on bounded intervals. The sufficiency of the last condition is obvi-
ous from 0 < & = 1; to see the necessity note that if there exists a point x, such
that 7 is unbounded in any neighborhood of x,, then for any fixed & > 0 the
integrand in (2.15) equals +oo for |x — xo| < h, and thus the integral is infi-
nite. The integrand is undefined for x = 0, but because we mean (2.15) as a
Lebesgue integral, this does not cause any problem.

We would like to point out that (2.15) cannot be replaced by

K
lim f [x|* Y T(x+h)—T(x)|dx =0 forall K> 0. (2.16)
h—0 J_g

Indeed, the function 7 in Example 2.8 is bounded and Lebesgue measurable,
and thus it satisfies

K
lim |T(x+ h) —T(x)|?dx =0 forall K> 0, p=1
h—0 J_g

(see Hewitt and Stromberg, 1969, p. 199). From 0 < « < 1 and the Holder
inequality it follows that (2.16) is also valid, but according to Example 2.8,
(1.3) cannot be true.

Remark 2.2. Condition (2.15) holds if and only if T is locally Riemann inte-
grable, i.e., it is bounded and Riemann integrable on any bounded interval.
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3. PROOFS

Proof of Theorem 1.1. By the Skorokhod-Dudley—Wichura representation
theorem (cf. Shorack and Wellner, 1986, p. 47) there exist x; ,, | = k = n, and

[*(r), 0 =t =<1, such that

e 1 =k=n} g{x,f,n, 1=k=n} foreachn,
T(1),0=r=1} 2{I(t),0=r=1} foreachn,
and

0551’121|x[*m]’n —TH1)] =o(l) as.

For any & > 0 there is N such that

P{ sup |[(2)] 2N/2} =g,

0=r=1

and therefore by (3.2) and (3.3) there is an integer n, such that

P{ max [x; | ZN} =2¢, ifn=n,.

1=k=n
Let

T(x) if|x|=N

T =
w() {0 if x| > N,

By (3.4) and (3.5) we have

1 1
P{— > T #E— TN(xZn)}SZS ifn=n,

N 1<k=n n \=k=n

and

1 1
P{fo T(T(t)) dr # fo Ty (T (1)) dt} =g foralln=1.

Hence it is enough to prove that for any N = 1

I |
f Ty (X, dt —f Ty(T (1)) dt >0 as. (n = )
0 0

3.1)

3.2)

3.3)

3.4)

3.5)

3.6)
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and

1 . »

AT O+ Ty (5 ) 50 (1 o0), (37)
because

1 . ! . 1 1 .
- 2 TN ('xk,n) = TN ('x[m‘],n) dt - ;l TN(O) + ; TN (xn,n)
0

N 1<k=n

(x3., = 0 by definition). We note that Ty is continuous on [—N,N], and there-
fore it is uniformly continuous on [—N, N]. Hence (3.6) follows from (3.3).
Relation (3.7) is obvious, because by (3.1)—(3.5) and the continuity of Ty on
[—N,N] we have Ty (x},,) = Ty(T(1)). |

Proof of Theorem 2.1. Clearly, it is enough to consider the case T = 0. (Other-
wise, write T as the difference between the positive and the negative parts and

prove the existence for each part separately.) For any &€ > 0 there is N = 0 such
that

P{ sup |T(1)| = N} <e. (3.8)

0=r=1
Also, there is a constant ¢ such that

1
—— w2 < ¢ forall0=u < oo.

\27

Because I'(¢) is normal with ET(¢) = 0 and o2(t) = ET?(t) we get, letting
Ty (x) denote the function defined in the previous proof,

1 1 N 1
EJ Ty(T(s)) ds = f f T(x) ———— e~ 72070 gx gt
o 0o J-n~ N2mo(t)

1 N 1 x U
= CJ; f_NT(x) o) (m) dx dt

1 N
= cf dtf [x]* 1T (x) dx < oo. 3.9)
o o%(1) N

The proof is complete. u
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Proof of Theorem 2.2. For each € > 0 there is N = 0 such that (3.4) holds.
So by (1.1) there is an integer n, such that

P{ max |x, ,| = N} =2¢, ifn=n,. (3.10)

I=k=n

Thus

PLS T # 3 Talw,) | =20 ifn=ng

1=k=n 1=k=n

and

P{fl T(I(s))ds # fl Ty (T (s)) ds} =g,

where Ty(x) = T(x)I{|x| = N}. Next we show that for any k,

1
= 3 Ty(x,) 0. (3.11)
N 1=k=k,
Indeed,
N 1 X
E|TN(xk,n)| = ‘T(-x)|_hk,n — |dx
—N Ck,n Ck,n

N Ve [
= Con [x[* T ()| — hin| — ) dx
—-N ck,n Ck,n

N
<k [l Tl
-N

where K is defined in condition (2.7). Using (2.5) we get

1
=c > — 0,

I=k=ko NCk

1
E —
n

E TN(xk,n)

1=k=k,

proving (3.11).
By Luzin’s theorem (cf. Hewitt and Stromberg, 1969, Thm. 11.36) and (2.3)
for any 8 > 0 there is a continuous function 7* on [~N, N] such that

[

T(x)

|x|l*a

—T*(x)| dx = 6.
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Let Ty (x) = T*(x) for |x| = N and 0 otherwise. Using again (2.7) we get

1 . -
E;‘ S Ty () = Tl ) e~}

ko=k=n

I

1 L v
Sy |T<x>—T*<x>|x|‘a|hk,n(i)dx
Ck,n

n py=k=n Cr,n J—N

1 1 N | T(x) X
= - — e ~ T |Ix [y, | ) dx
N ky=k=n Ci,n J-N x| Ck,n
1 1 (V] T e x
= - T l—a T*(X) hk,n — | dx
N ky=k=n Ck,n -N |-x| Cr,n Ci,n
1
= 6K — 2 l/c,‘;n, 3.12)

N ky=k=n

where K is from condition (2.7). Also, (2.1) and (2.2) yield

E j [T (T(s) — TE(T () T(s) [} ds

[23 7)(2 ()'2
= f f |T(x) — T*(x)|x|"~ | 2(t))‘/2 72070) dx dt
1 f‘ 1 JN T(x) <|x| )1“ 2
= —T*x) || —= ] e 727D axdr
\2m Jo o*(t) J_n | |x|'7 ) o(t)
L N T(x)
=c dt — —T7(x)| dx
o a(t) Jon||x|""®
L
<oc[ ——ar (3.13)
o o(1)
where ¢ = sup|u|1’”‘e’”2/2. Similarly to (3.11) one can easily show that
1
- > Ti(x)lxea' " 550 forall k. (3.14)
N 1=k=k,

0

In view of (3.11)—(3.14), it is enough to show that

1 » 1

LS il D [ eI s a1s)
1=k=n 0

However, because of the continuity of Ty(x)|x|'™® on [—N,N], this is an
immediate consequence of (3.1), (3.2), and (3.6). |
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Proof of Theorem 2.3. We use again the Skorokhod—Dudley—Wichura repre-
sentation theorem, so we assume that (3.1)—(3.3) hold. By (1.1) and (1.2) we
also have (3.4) and (3.5). Hence, following the argument in the proof of Theo-
rem 1.1, it is enough to prove

1
! > TN(xZ,,)if Ty((s)ds  (n— o0) (3.16)
0

n 1=k=n

for all N, where Ty(x) = T(x)I{|x| = N}. As in the proof of Theorem 1.1 we
have

1 . ! . 1 1 .
- 2 TN(X];’,,) = TN(x[nx],n) ds — ;TN(O) + ;TN(xn,n)’
0

N 1=k=n

and thus

1 1
LS i) - [ nas
0

n 1=k=n

! 1
= [ ) = T 5Dl ds + = 7,00
1
+ ; |TN(X:,H) - TN(Fn*(l))|

1
+ — [Ty (L (1))].
n
Hence

| =

1
= P{ Sup x5, — 1 (s)] = h} + P{— 17,,(0)| = 8/4}
0=s=1 n

1 1
LS ) - [ B

n 1=k=n

+ P{l sup | Ty (I (1) + u) = Ty (L (D)| = 8/4}

n |ul=h

+ P{l [Ty (L ()] = 8/4}

+ P{f sup [Ty (L (s) +u) — Ty (L7 (s))| ds = 8/4}

|ul=h

L4+ e+ (3.17)
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Because the distribution of T,*(1) does not depend on n, we get
] 1
lim P — |Ty(TF(1)| = e/4; =0
n—oo n
On the other hand,

E sup | Ty (T (1) + u) — Ty (T (1))

Jul=h
” ! —(x%/20%(1))
= W |sl‘lph|TN(x +u) — Ty(x)|e dx
l [e’e]
=—= SUP|TN(X+M)—TN(X)|dx,

o(l) ul=h

if o(1) > 0, where the last integral exists for all 4 by condition (2.15). If
o (1) = 0, then P{I’(1) = 0} = 1, and therefore

E sup [Ty (L7 (1) + u) = Ty (L ()| = sup |Ty (u) — Ty (0)].

lu|=h lu|=h

Thus by the Markov inequality we have in both cases

lim P{l sup [Ty (T (1) + ) — Ty (T (1)) = 8/4} 0

n— oo n |ul=h

for all h. Similarly to (3.13) we have

E[ sup 100 + 10— Ty (5 (s ds

[ul=h

1 2 2
11 o7 ST (x +u) = Ty (x)] ™27 dds
0 —o0

u|=h

L |
= cf - dsf [x|*1 sup | Ty (x + u) — Ty (x)] dx.
o o%(s) o lu|=h
Here the last integral tends to 0 as & — 0 by (2.15), and thus by (2.2) and the
Markov inequality we have

limP{f sup [Ty (CF(s) +u) — Ty (L (s))| ds = 8/4} =

h—0 |u|=h

for all n. Now given 6 > 0 we can choose & so small that /5 in (3.17) is at most
o for all n (note that the random variable in the probability I5 does not depend
on n). Then choosing n sufficiently large, (3.3) and the preceding estimates
show that I},..., 1, will be less than 6. Thus (3.17) yields
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1 1
LS i) - [ nenas| So,
0

N 1=k=n
and the proof of (3.16) is complete. u

Proof of Remark 2.2. In view of the comments made after Theorem 2.3, we
can assume that 7 is locally bounded. Let

gh(x) = |)C|a71 Sup\u|Sh‘T(x + M) - T()C)|

for x # 0 and g,(0) = 0. The function g,(x) is Lebesgue integrable on [—K, K ]
if & is small. For any fixed x, the sequence g, (x) is nonincreasing as h 10, and
thus it has a limit g(x) = 0. Hence by the monotone convergence theorem the
limit in (2.15) equals [, g(x) dx. So (2.15) holds if and only if [*, g(x) dx =0
for all K. Because g(x) = 0, this is true if and only if g(x) = 0 almost every-
where. Clearly, g(x,) = 0 for x, # 0 if and only if T is continuous at x,. So we
proved that (2.15) is equivalent with the almost everywhere continuity of 7.
Recalling that a function is Riemann integrable on an interval if and only if it
is bounded and almost everywhere continuous on the interval (cf. Riesz and
Szokefalvi-Nagy, 1990, p. 23), Remark 2.2 is proved. u
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