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Summary. Principal component analysis has become a fundamental tool of functional data
analysis. It represents the functional data as Xi .t/ D μ.t/ C Σ1�l<1ηi,l C vl .t/, where μ is the
common mean, vl are the eigenfunctions of the covariance operator and the ηi,l are the scores.
Inferential procedures assume that the mean function μ.t/ is the same for all values of i. If,
in fact, the observations do not come from one population, but rather their mean changes at
some point(s), the results of principal component analysis are confounded by the change(s). It
is therefore important to develop a methodology to test the assumption of a common functional
mean.We develop such a test using quantities which can be readily computed in the R package
fda. The null distribution of the test statistic is asymptotically pivotal with a well-known asymp-
totic distribution. The asymptotic test has excellent finite sample performance. Its application is
illustrated on temperature data from England.
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1. Introduction

Functional data analysis (FDA) has been enjoying increased popularity over the last decade
due to its applicability to problems which are difficult to cast into a framework of scalar or
vector observations. Even if such standard approaches are available, the functional approach
often leads to a more natural and parsimonious description of the data, and to more accu-
rate inference and prediction results. Ramsay and Silverman (2005) has become a standard
reference to the ideas and tools of FDA. To name a few recent applications of FDA which
illustrate its advantages alluded to above, we cite Antoniadis and Sapatinas (2003), Fernández
de Castro et al. (2005), Müller and Stadtmüller (2005), Yao et al. (2005) and Glendinning and
Fleet (2007).
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A main tool of FDA is principal component analysis (PCA). It represents the functional
observations Xi.t/, t ∈T , i=1, 2, . . . , N, in the form Xi.t/=μ.t/+Σ1�l<∞ηi,l vl.t/, where μ is
the mean, vl are the eigenfunctions of the covariance operator and the ηi,l are the scores. The
set T can be interpreted as a time or a spatial domain, the methodology we develop requiring
merely that it be a compact subset of a Euclidean space. To perform the functional PCA, the
functional mean μ.t/, approximated by the sample mean of the Xi.t/, is first subtracted from the
data. The first principal component v1.t/ is then interpreted as the main pattern of deviation
of the observations from the mean μ.t/ or, equivalently, as the direction in a function space
of the largest variability away from the mean function. The subsequent eigenfunctions define
analogous directions orthogonal to the previous eigenfunctions. This interpretation and the
inferential procedures that are based on it assume that the mean function μ.t/ is the same for
all values of i. If, in fact, the mean changes at some index i, the results of PCA are confounded
by the change. Issues of this type are most likely to emerge if the data are collected sequentially
over time. Applications that we have in mind abound in climatology, environmental science and
economics; detecting and locating changes in mean can be interpreted, for example, as climate
shifts, a baseline change in a pollution level or a shift in a long-term rate of growth.

It is thus useful to develop a methodology for the detection of changes in the mean of
functional observations that is both easy to apply and justified by a clear large sample argument.
We propose a significance test for testing the null hypothesis of a constant functional mean
against the alternative of a changing mean. We also show how to locate the change-points if
the null hypothesis is rejected. Our methodology is readily implemented by using the R package
fda (R Development Core Team, 2008; Ramsay et al., 2007). The null distribution of the test
statistic is asymptotically pivotal with a well-known asymptotic distribution going back to the
work of Kiefer (1959).

The problem of detecting a change in the mean of a sequence of Banach-space-valued random
elements has recently been approached from a theoretical angle by Rackauskas and Suquet
(2006). Motivated by detecting an epidemic change (the mean changes and then returns to its
original value), Rackauskas and Suquet (2006) proposed an interesting statistic based on increas-
ingly fine dyadic partitions of the index interval and derived its limit, which is non-standard.

The change-point problem has been extensively studied in the multivariate setting starting
with Srivastava and Worsley (1986), whereas the work of Horváth et al. (1999) is most closely
related to the present paper. Different multivariate settings with further references are discussed
in Lavielle and Teyssiére (2006), Zamba and Hawkins (2006) and Qu and Perron (2007), among
others.

Returning to the functional setting, a somewhat related problem has recently been studied by
Benko et al. (2009), who considered two populations, admitting the PCAs:

Xi,p.t/=μp.t/+ ∑
1�l<∞

ηi,p,l vp,l.t/, p=1, 2:

Benko et al. (2009) developed a bootstrap test for checking whether the elements of the two
decompositions (including the means) are the same. Earlier, Laukaitis and Račkauskas (2005)
considered the model

Xi,g.t/=μg.t/+ "i,g.t/, g =1, 2, . . . , G,

with innovations "i,g and group means μg, and tested H0 : μ1.t/= . . . =μG.t/. Other contribu-
tions in this direction include Cuevas et al. (2004), Delicado (2007) and Ferraty et al. (2007).
In these settings, it is known which population or group each observation belongs to. In our
setting, we do not have any partition of the data into several sets with possibly different means.
The change can occur at any point, and we want to test whether it occurs or not.
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The paper is organized as follows. In Section 2, we introduce the required notation and
assumptions, and recall several results which will be used in the following sections. Section
3 describes the methodology proposed and contains theorems which provide its asymptotic
justification. The finite sample performance is investigated in Section 4, which also contains an
illustrative application to the detection of changes in mean patterns of annual temperatures.
The proofs of the theorems of Section 3 are presented in Appendix A.

2. Notation and assumptions

We consider functional observations Xi.t/, t ∈T , i=1, 2, . . . , N, defined over a compact set T .
We assume that the Xi are independent, and we want to test whether their mean remains constant
in i. Thus we test the null hypothesis

H0 : E{X1.t/}=E{X2.t/}= . . . =E{XN.t/}, t ∈T :

Note that, under hypothesis H0, we do not specify the value of the common mean.
Under the alternative, hypothesis H0 does not hold. The test that we construct has particularly

good power against the alternative in which the data can be divided into several consecutive
segments, and the mean is constant within each segment, but changes from segment to segment.
The simplest case of only two segments (one change-point) is specified in assumption 4.

Under the null hypothesis, we can represent each functional observation as

Xi.t/=μ.t/+Yi.t/,

E{Yi.t/}=0:
.2:1/

The following assumption specifies conditions on μ.·/ and the errors Yi.·/ that are needed to
establish the asymptotic distribution of the test statistic.

In what follows, unless indicated otherwise, all integrals denote integration over the set T .

Assumption 1. The mean μ.·/ is in L2.T /. The errors Yi.·/ are independent and identically
distributed mean 0 random elements of L2.T / which satisfy

E‖Yi‖2 =
∫

E{Y2
i .t/}dt<∞: .2:2/

Their covariance function
c.t, s/=E{Yi.t/Yi.s/} t, s∈T .2:3/

is square integrable, i.e. is in L2.T ×T /.

Assumption 1 implies the following expansions (see for example chapter 4 of Indritz (1963)):

c.t, s/= ∑
1�k<∞

λk vk.t/vk.s/ .2:4/

and

Yi.t/= ∑
1�l<∞

λ
1=2
l ξi,l vl.t/, .2:5/

where λk and vk are the eigenvalues and eigenfunctions respectively of the covariance operator,
i.e. they are defined by ∫

c.t, s/vl.s/ds=λl vl.t/, l=1, 2, . . .: .2:6/

The sequences {ξi,l, l=1, 2, . . .} are independent, and within each sequence the ξi,l are uncorrel-
ated with mean 0 and unit variance. The infinite sum in equation (2.5) converges in L2.T / with
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probability 1. Recall also that vl, l = 1, 2, . . . , form an orthonormal basis in L2.T /, and all λl

are non-negative.
In practice, we work with estimated eigenelements that are defined by∫

ĉ.t, s/ v̂l.s/ds= λ̂l v̂l.t/, l=1, 2, . . . , .2:7/

where

ĉ.t, s/= 1
N

∑
1�i�N

{Xi.t/− X̄N.t/}{Xi.s/− X̄N.s/} X̄N.t/= 1
N

∑
1�i�N

Xi.t/:

To control the distance between the estimated and the population eigenelements, we need the
following assumptions.

Assumption 2. The eigenvalues λl satisfy, for some d> 0,

λ1 >λ2 > . . . >λd >λd+1:

Assumption 3. The Yi in expression (2.1) satisfy

E‖Yi‖4 =
∫

E{Y4
i .t/}dt<∞:

The results of Dauxois et al. (1982) and Bosq (2000) then imply that, for each k �d,

lim sup
N→∞

[N{E.‖ĉkvk − v̂k‖2/}] <∞,

lim sup
N→∞

[N{E.|λk − λ̂k|2/}] <∞,
.2:8/

where ĉk = sgn{
∫
T vk.t/ v̂k.t/dt}: The random sign ĉk is included because the vk and v̂k are

defined up to a sign and, since vk is unknown, it is impossible to ensure that
∫
T vk.t/ v̂k.t/dt �0:

We establish the consistency of the test under the alternative of one change-point formalized
in assumption 4. A similar argument can be developed if there are several change-points, but the
technical complications then obscure the main idea that is explained in Section 3 and Appendix
A.2 (in particular the functions (2.10) and (3.7) would need to be modified). The more general
case is studied empirically in Section 4.

Assumption 4. The observations follow the model

Xi.t/=
{

μ1.t/+Yi.t/, 1� i�kÅ,
μ2.t/+Yi.t/, kÅ <i�N,

.2:9/

in which the Yi satisfy assumption 1, the mean functions μ1 and μ2 are in L2.T / and

kÅ = [nθ] for some 0 <θ < 1:

We shall see in the proof of theorem 2 that under assumption 4 the sample covariances of the
functional observations converge to the function

c̃.t, s/= c.t, s/+θ.1−θ/{μ1.t/−μ2.t/}{μ1.s/−μ2.s/}: .2:10/

This is a symmetric, square integrable function, and it is easy to see that, for any x, y ∈L2.T /,∫ ∫
c̃.t, s/x.t/x.s/dt ds�0,

so c̃.t, s/ is a covariance function. Consequently, it has orthonormal eigenfunctions wk and
non-negative eigenvalues γk satisfying
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c̃.t, s/wk.s/ds=γk wk.t/: .2:11/

The quantities c̃.t, s/, wk and γk are used in Section 3 to describe the distribution of the test
statistic under the alternative of a single change-point.

3. Detection procedure

To explain the idea of the test procedure, denote

μ̂k.t/= 1
k

∑
1�i�k

Xi.t/,

μ̃k.t/= 1
N −k

∑
k<i�N

Xi.t/:

If the mean is constant, the difference Δk.t/ = μ̂k.t/ − μ̃k.t/ is small for all 1 � k < N and all
t ∈T . However, Δk.t/ can become large owing to chance variability if k is close to 1 or to N. It
is therefore usual to work with the sequence

Pk.t/= ∑
1�i�k

Xi.t/− k

N

∑
1�i�N

Xi.t/= k.N −k/

N
{μ̂k.t/− μ̃k.t/} .3:1/

in which the variability at the end points is attenuated by a parabolic weight function. If the
mean changes, the difference Pk.t/ is large for some values of k and of t. Since the observations
are in an infinite dimensional domain, we work with the projections of the functions Pk.·/ on
the principal components of the data. These projections can be expressed in terms of functional
scores which can be easily computed by using the R package fda.

Consider thus the scores corresponding to the largest d eigenvalues:

η̂i,l =
∫

{Xi.t/− X̄N.t/} v̂l.t/dt, i=1, 2, . . . , N, l=1, 2, . . . , d:

Observe that the value of Pk.t/ does not change if the Xi.t/ are replaced by Xi.t/− X̄N.t/. Con-
sequently, setting l= [Nx], x∈ .0, 1/, we obtain∫ { ∑

1�i�Nx

Xi.t/− [Nx]
N

∑
1�i�N

Xi.t/

}
v̂l.t/dt = ∑

1�i�Nx

η̂i,l −
[Nx]
N

∑
1�i�N

η̂i,l: .3:2/

Identity (3.2) shows that functional scores can be used for testing the constancy of the mean
function.

The following theorem can be used to derive various test statistics. To state it, introduce the
statistic

TN.x/= 1
N

d∑
l=1

λ̂
−1
l

( ∑
1�i�Nx

η̂i,l −x
∑

1�i�N

η̂i,l

)2

.3:3/

and let B1.·/, . . . , Bd.·/ denote independent standard Brownian bridges.

Theorem 1. Suppose that assumptions 1–3 hold. Then, under hypothesis H0,

TN.x/
d→ ∑

1�l�d

B2
l .x/ 0�x�1,

in the Skorohod topology of D[0, 1].

Theorem 1 is proved in Appendix A.
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By theorem 1, U.TN/→d U{Σ1�l�dB2
l .·/}, for any continuous functional U : D[0, 1] → R.

Applying integral or max-functionals, or their weighted versions, leads to useful statistics.
In this paper, we focus on the integral of the squared function, i.e. the Cramer–von Mises
functional, which is known to produce effective tests (this functional was also selected in a
different context by Bugni et al. (2006)). Thus, we consider the convergence∫ 1

0
TN.x/dx

d→
∫ 1

0

∑
1�l�d

B2
l .x/dx,

which can be rewritten as

SN,d := 1
N2

d∑
l=1

λ̂
−1
l

N∑
k=1

( ∑
1�i�k

η̂i,l −
k

N

∑
1�i�N

η̂i,l

)2
d→

∫ 1

0

∑
1�l�d

B2
l .x/dx: .3:4/

The distribution of the random variable

Kd =
∫ 1

0

∑
1�l�d

B2
l .x/dx .3:5/

was derived by Kiefer (1959). Denoting by cd.α/ its .1−α/th quantile, the test rejects hypothesis
H0 if SN,d >cd.α/. The critical values cd.α/ are presented in Table 1 in Section 4.

A multivariate analogue of statistic (3.4) that was considered in Horváth et al. (1999) is

MN,d = 1
N2

N∑
k=1

(
k

N

N −k

N

)2

Δ.k/D̂d
−1

ΔT.k/, .3:6/

where Δ.k/ is the difference of the mean vectors (of dimension d) computed from the first k
and the last N−k data vectors, and D̂d is the d ×d matrix of estimated residual vectors. If d is
large, the inverse of D̂d is unstable. In statistic (3.4), this inverse is ‘replaced’ by inverses of the
d largest eigenvalues λ̂l, and the whole statistic is properly ‘diagonalized’ so that only the most
important variability of the data is considered, whereas the high dimensional noise is ignored.

We now turn to the behaviour of the test under the alternative hypothesis. We shall show that
it is consistent, i.e. SN,d →P ∞. In fact, we can obtain the rate of divergence: under HA, Sn,d
grows linearly with N. We formulate these results under the assumption of one change-point.

Under assumption 4, for 1�k �d, introduce the functions

gk.x/=

⎧⎪⎨
⎪⎩

x.1−θ/

∫
{μ1.t/−μ2.t/}wk.t/dt, 0 <x�θ,

θ.1−x/

∫
{μ1.t/−μ2.t/}wk.t/dt, θ <x< 1:

.3:7/

Theorem 2. Under assumption 4,

sup
0�x�1

|N−1TN −gT.x/ΣÅg.x/|=oP.1/,

where

g.x/= .g1.x/, . . . , gd.x//T,

ΣÅ =

⎛
⎜⎜⎜⎜⎝

1=γ1 0 · · · 0
0 1=γ2 · · · 0
:::

:::
:::

:::

0 0 · · · 1=γd

⎞
⎟⎟⎟⎟⎠:
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Theorem 2 is proved in Appendix A.

It follows that the test statistic (3.4) satisfies the law of large numbers under the alternative
hypothesis, i.e.

1
N

SN,d
P→ ∑

1�k�d

1
γk

∫ 1

0
g2

k .x/dx:

If
∫ 1

0 g2
k .x/dx> 0 for some 1�k �d, then SN,d →P ∞.

To understand when the test is consistent, introduce the jump function Δ.t/=μ1.t/−μ2.t/.
By expression (3.7), the condition

∫ 1
0 g2

k .x/dx> 0 is equivalent to
∫ 1

0 Δ.s/wk.s/ds �=0: Thus the
test will have no power if∫ 1

0
Δ.s/wk.s/ds=0, for all 1�k �d: .3:8/

By equations (2.10) and (2.11), condition (3.8) is equivalent to∫
c.t, s/wk.s/ds=γk wk.t/, for all 1�k �d: .3:9/

Comparing with condition (2.6), we see that condition (3.8) means that, up to a sign, the wk

and γk are equal to vk and λk, for 1�k �d. This leads us to the following corollary.

Corollary 1. If assumption 4 holds, and the jump function Δ.t/ = μ1.t/ − μ2.t/ is not or-
thogonal to the subspace that is spanned by the first d eigenfunctions of the covariance kernel
c.t, s/ (2.3), then SN,d →P ∞, as N →∞.

To estimate the change-point, we plot the function TN.x/ (3.3) against 0�x�1 and estimate
θ by the value of x which maximizes TN.x/. The intuition behind this estimator is clear from
equations (3.3) and (3.2). To ensure uniqueness, we formally define this estimator as

θ̂N = inf{x : TN.x/= sup
0�y�1

{TN.y/}}: .3:10/

Its weak consistency is established in the following proposition.

Proposition 1. If the assumptions of corollary 1 hold, then θ̂N →P θ.

Proof. The argument x maximizing TN.x/ clearly maximizes AN.x/=N−1 TN.x/. Theorem 2
states that sup0�x�1|AN.x/−A.x/|→P 0, where

A.x/=gT.x/ΣÅg.x/=
{

x.1−θ/A, 0�x�θ,
θ.1−x/A, θ <x< 1,

with

A= ∑
1�l�d

1
γl

{∫
Δ.t/wl.t/dt

}2

:

Under the assumptions of corollary 1, A>0, and it is easy to verify that A.x/ has then a unique
maximum at x=θ.

An important aspect of the procedure is the choice of the number d of the eigenfunctions vk.
This issue is common to all FDA procedures using functional PCA, and several approaches have
been proposed. These include an adaptation of the scree plot of Cattell (1966) (see Kokoszka
et al. (2008)), the cumulative percentage variance approach that is used in Section 4.2, the pseudo
Akaike information criterion and cross-validation (see Yao et al. (2005)). All these methods are
implemented in the MATLAB PACE package that was developed at the University of California
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at Davis. A general recommendation for the cumulative percentage variance method is to use d
which explains 85% of the variance. This choice is suitable in the setting of Section 4.2, where
d =8 explains 84% of the variance.

4. Finite sample performance and application to temperature data

In this section, we report the results of a simulation study that examines the finite sample
performance of the test. Recall that the test rejects if SN,d (3.4) exceeds the .1−α/th quantile of
Kd (3.5). For d �5, these quantiles were computed by Kiefer (1959) using a series expansion of
the cumulative distribution function of Kd . Horváth et al. (1999) used these expansions to find
the critical values for d =12 and noticed that the critical values that were obtained by simulat-
ing Kd by discretizing the integral are slightly different but actually lead to more accurate tests.
To cover a fuller range of the d-values, Table 1 gives simulated critical values for d =1, . . . , 30,
computed by discretizing the integral over 1000 points and running 100000 replications.

The simulation study consists of two parts. First we use standard Gaussian processes as the
errors Yi and a number of rather arbitrary mean functions μ. This part assesses the test in
some generic cases analogously to assuming a normal distribution of scalar observations. In the
second part, we use mean functions and errors that are derived from monthly temperature data.

Table 1. Simulated critical values of the distribution of Kd

Nominal Results for the following values of d:
size (%)

1 2 3 4 5 6

10 0.345165 0.606783 0.842567 1.065349 1.279713 1.485200
5 0.460496 0.748785 1.001390 1.239675 1.469008 1.684729
1 0.740138 1.072101 1.352099 1.626695 1.866702 2.125950

7 8 9 10 11 12

10 1.690773 1.897365 2.096615 2.288572 2.496635 2.686238
5 1.895557 2.124153 2.322674 2.526781 2.744438 2.949004
1 2.342252 2.589244 2.809778 3.033944 3.268031 3.491102

13 14 15 16 17 18

10 2.884214 3.066906 3.268958 3.462039 3.650724 3.837678
5 3.147604 3.336262 3.544633 3.740248 3.949054 4.136169
1 3.708033 3.903995 4.116829 4.317087 4.554650 4.734714

19 20 21 22 23 24

10 4.024313 4.214800 4.404677 4.591972 4.778715 4.965613
5 4.327286 4.532917 4.718904 4.908332 5.101896 5.303462
1 4.974172 5.156282 5.369309 5.576596 5.759427 5.973941

25 26 27 28 29 30

10 5.159057 5.346543 5.521107 5.714145 5.885108 6.083306
5 5.495721 5.688849 5.866095 6.068351 6.242770 6.444772
1 6.203718 6.393582 6.572949 6.771058 6.977607 7.186491
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No assumptions on the marginal distribution of the Yis or the shape of the μs are made. This
part assesses the test in a specific, practically relevant setting.

4.1. Gaussian processes
To investigate the empirical size, without loss of generality, μ.t/ was chosen to be equal to 0 and
two different cases of Yi.t/ were considered, namely the trajectories of the standard Brownian
motion (BM), and the Brownian bridge (BB). These processes were generated by transforming
cumulative sums of independent normal variables computed on a grid of 103 equispaced points
in [0, 1]. Following Ramsay and Silverman (2005) (chapter 3) discrete trajectories were converted
to functional observations (functional objects in R) by using B-spline and Fourier bases and
various numbers of basis functions. No systematic dependence either on the type of the basis
or on the number of basis functions was found. The results that are reported in this section
were obtained by using a B-spline basis with 800 basis functions. We used a wide spectrum of
N and d , but for brevity we present the results for N = 50, 150, 200, 300, 500 and d = 1, 2, 3, 4.
All empirical rejection rates are based on 1000 replications.

Table 2 shows the empirical sizes based on critical values reported in Table 1. The empirical
sizes are fairly stable. Except for a very few cases of small sample sizes, all deviations from
the nominal significance levels do not exceed 2 standard errors computed by using the normal
approximation

√{p.1−p/=R}, where p is a nominal level and R the number of repetitions.

Table 2. Empirical size of the test using the B-spline basis

Process Results (%) for the following values of d and nominal sizes:

d=1 d=2 d=3 d=4

10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 50
BM 10.3 4.6 0.1 9.9 4.8 0.7 8.4 3.3 0.6 9.7 4.8 0.8
BB 11.2 5.5 0.8 10.6 4.9 1.1 8.4 4.0 0.9 8.5 4.3 1.2

N = 100
BM 12.2 5.6 1.3 9.8 5.6 0.9 9.3 4.6 0.9 9.0 5.4 0.9
BB 12.4 5.7 0.7 10.2 4.2 0.6 9.9 4.6 1.0 8.3 4.1 0.8

N = 150
BM 10.8 5.7 1.3 9.7 4.6 1.2 11.8 6.2 0.8 10.8 5.3 1.1
BB 10.5 5.0 1.2 9.8 4.4 1.1 10.4 6.2 0.7 10.5 5.1 1.2

N = 200
BM 9.7 5.4 0.8 9.2 4.3 0.7 9.3 5.8 1.3 10.8 5.5 0.9
BB 9.2 5.1 0.8 10.8 5.6 1.2 10.0 5.2 1.0 9.6 5.2 1.0

N = 300
BM 10.3 5.2 1.5 11.1 6.1 0.6 10.1 4.5 0.6 9.9 5.5 0.7
BB 10.4 5.6 1.1 9.4 4.8 0.9 9.9 4.1 0.8 10.5 5.3 1.3

N = 500
BM 11.6 6.3 1.3 10.6 6.9 1.5 10.9 5.7 1.4 9.0 4.4 0.6
BB 11.7 5.1 1.3 9.7 5.8 1.4 10.3 5.3 1.1 10.0 5.4 1.1
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Table 3. Empirical power of the test using the B-spline basis and a change-point at kÅ D [n=2]

Process Results (%) for the following values of d and nominal sizes:

d=1 d=2 d=3

10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 50
BM; BM + sin.t/ 81.5 70.8 43.7 72.6 60.0 33.2 67.7 54.9 27.3
BM; BM + t 88.4 78.0 54.1 84.7 74.0 45.4 77.5 64.3 36.0
BB; BB + sin.t/ 99.8 99.4 97.4 100 100 99.9 100 100 100
BB; BB + t 99.9 99.8 98.9 100 100 99.9 100 100 100

N = 100
BM; BM + sin.t/ 97.4 95.3 86.3 96.4 91.0 76.5 93.5 88.0 68.7
BM; BM + t 99.0 97.5 91.2 98.7 97.1 87.6 97.5 94.9 83.8
BB; BB + sin.t/ 100 100 100 100 100 100 100 100 100
BB; BB + t 100 100 100 100 100 100 100 100 100

N = 150
BM; BM + sin.t/ 99.9 99.5 96.6 99.6 98.6 95.1 98.9 97.4 90.3
BM; BM + t 100 99.8 98.7 99.8 99.7 98.8 99.9 99.7 97.8
BB; BB + sin.t/ 100 100 100 100 100 100 100 100 100
BB; BB + t 100 100 100 100 100 100 100 100 100

N = 200
BM; BM + sin.t/ 100 99.9 99.1 100 99.8 99.0 99.9 99.7 98.2
BM; BM + t 100 100 100 100 100 99.9 100 100 99.3
BB; BB + sin.t/ 100 100 100 100 100 100 100 100 100
BB; BB + t 100 100 100 100 100 100 100 100 100

Table 2 shows that, for these Gaussian processes, the empirical size does not depend apprecia-
bly either on n or on d.

In the power study, several cases that violate the null hypothesis were considered. We report
the power for kÅ = [N=2]. Several other values of kÅ were also considered, and only a small
loss of power was observed for N=4 < kÅ �3N=4. A few different mean functions μ before and
after change were used, namely μi.t/=0, t, t2,

√
t, exp.t/, sin.t/, cos.t/, i=1, 2, e.g. μ1.t/= t and

μ2.t/= cos.t/, etc.
Table 3 presents selected results of the power study. It shows that the test has overall good

power. For small samples, N �100, in cases where the BB was used the power is slightly higher
than for those with the BM. Nonetheless, for N � 150 the power approaches 100% for both
processes and all choices of other parameters. The power decreases as the number of principal
components d increases. This can be explained as follows: the critical values of SN,d increase
with d , but the change-point is mainly captured by a few initial leading principal components
explaining the major part of the variance.

4.2. Analysis of central England temperatures
The goal of this section is twofold: to investigate the performance of the test in a real world
setting, and to demonstrate the advantages of the functional approach for high dimensional
data.
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Fig. 1. Daily temperatures in 1916 (^ ) with monthly averages ( ) and functional observations obtained by
smoothing with B-splines ( )

The data consist of 228 years (1780–2007) of average daily temperatures in central England.
The original data can thus be viewed as 228 curves with 365 measurements on each curve. These
data were converted to functional objects in R by using 12 B-spline basis functions. Multivariate
observations were obtained as in Horváth et al. (1999) by computing monthly averages, resulting
in 228 vectors of dimension d = 12. (We could not even compute statistics (3.6) for vectors of
dimension 365 because R reported that D̂ was singular.) These two procedures are illustrated in
Fig. 1. Even though we used 12 B-splines and 12 averages, the resulting data look quite different,
especially in the spring and autumn, when the temperatures change most rapidly. Gregorian
months form a somewhat arbitrary fixed partition of the data, whereas the splines adapt to their
shapes which differ from year to year.

To compute statistic (3.4), we used d = 8 eigenfunctions which explain 84% of variability. If
the test indicates a change, we estimate it by the estimator θ̂N (3.10). This divides the data set
into two subsets. The procedure is then repeated for each subset until periods of constant mean
functions are obtained. We proceed in exactly the same manner using statistic (3.6). We refer
to these procedures respectively as the FDA and multivariate data analysis (MDA) approaches.
The resulting segmentations are shown in Tables 4 and 5.

The functional approach identified two more change-points, 1850 and 1992, which roughly
correspond to the beginning of mass industralization and the advent of rapid global warming.
The multivariate approach ‘almost’ identified these change-points with the P-values in iterations
4 and 5 being just above the significance level of 5%. This may indicate that the functional method
has better power, perhaps due to its greater flexibility in capturing the shape of the data. This
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Table 4. Segmentation procedure of the data into periods with constant
mean function

Iteration Segment Decision SN,d or P-value Estimated
MN,d change-point

England temperatures (d=8) (FDA approach)
1 1780–2007 Reject 8.020593 0.00000 1926
2 1780–1925 Reject 3.252796 0.00088 1808
3 1780–1807 Accept 0.888690 0.87404 —
4 1808–1925 Reject 2.351132 0.02322 1850
5 1808–1849 Accept 0.890845 0.87242 —
6 1850–1925 Accept 1.364934 0.41087 —
7 1926–2007 Reject 2.311151 0.02643 1993
8 1926–1992 Accept 0.927639 0.84289 —
9 1993–2007 Accept 1.626515 0.21655 —

England temperatures (d=12) (MDA approach)
1 1780–2007 Reject 7.971031 0.00000 1926
2 1780–1925 Reject 3.576543 0.00764 1815
3 1780–1814 Accept 1.534223 0.81790 —
4 1815–1925 Accept 2.813596 0.07171 —
5 1926–2007 Accept 2.744801 0.08662 —

Table 5. Summary and comparison of segmentation†

Approach Change-points

FDA 1780 1808 1850 1926 1992 2007
MDA 1780 1815 1926 2007

†The beginning and end of the data period are given in italics.

conjecture is investigated below. Fig. 2 shows average temperatures in the last four segments
and clearly illustrates the warming trend.

The analysis that was presented above assumes a simple functional change-point model for
the daily temperatures. Obviously, we cannot realistically believe that the mean curves change
abruptly in one year; this is merely a modelling assumption that is useful in identifying patterns
of change in mean temperature curves. Well-established alternative modelling approaches have
been used to study the variability of temperatures. For example, Hosking (1984) fitted a frac-
tionally differenced auto-regressive moving average (ARMA(1,1)) model to the series of annual
average temperatures in central England in 1659–1976. It is generally very difficult to determine
on purely statistical grounds whether a change-point or a long-range dependent model is more
suitable for any particular finite length record; see Berkes et al. (2006) and Jach and Kokoszka
(2008) for recent methodology, discussion and references. It is often more useful to choose a
modelling methodology which depends on specific goals, and this is the approach that we use.
One way of checking an approximate adequacy of our model is to check whether the residuals
that are obtained after subtracting the mean in each segment are approximately independent and
identically distributed. This can be done by applying the test that was developed by Gabrys
and Kokoszka (2007) which is a functional analogue of the well-known test of Hosking
(1980) and Li and McLeod (1981) (see also Hosking (1981)). The P-value of 8% indicates
the acceptance of the hypothesis that the residuals are independent and identically distributed.
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Fig. 2. Average temperature functions in the estimated partition segments: , 1808–1849; . . . . . . .,
1850–1925; � - � - �, 1926–1991; – – –, 1992–2007

Keeping these caveats in mind, we use the partitions that were obtained above to generate
realistic synthetic data with and without change-points. We use them to evaluate and com-
pare the size and power properties of the FDA and MDA tests, and to validate our findings.
We compute the residuals of every observation in a constant mean segment by subtracting the
average of the segment, i.e.Ŷis =Xis − μ̂s, where s=1, . . . , S denotes the segment, and i=1, . . . , Is

indexes observations in the sth segment. The Ŷis are functional residuals, and their average in
each segment is clearly the zero function.
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Table 6. Empirical size of the test for models derived from the temperature data

Segment Number of Sizes for the following cases and
functions nominal sizes:

Case I Case II

10% 5% 1% 10% 5% 1%

FDA approach (d=8)
1780–1807 (Δ1) 28 8.0 3.0 0.1 7.6 2.5 0.2
1808–1849 (Δ2) 42 9.5 3.9 0.4 9.7 4.1 0.4
1850–1925 (Δ3) 76 10.0 4.7 0.7 10.2 4.3 0.7
1926–1992 (Δ4) 66 8.8 3.7 0.8 9.2 4.1 1.0
1993–2007 (Δ5) 16 3.8 0.3 0.0 3.3 0.1 0.0

MDA approach (d=12)
1780–1807 (Δ1) 28 3.0 0.5 0.0 2.8 0.4 0.0
1808–1849 (Δ2) 42 5.3 2.3 0.1 5.4 1.3 0.0
1850–1925 (Δ3) 76 6.9 1.9 0.0 9.1 4.2 0.6
1926–1992 (Δ4) 66 7.9 3.3 0.5 7.4 2.7 0.2
1993–2007 (Δ5) 16 — — — 0.0 0.0 0.0

Table 7. Empirical power of the test for change-point models derived from the temperature data for England
(d D 8) (FDA approach)

Segment Sample Change- Powers for the following cases and nominal levels:
size point(s) θ

Case I Case II Case III

10% 5% 1% 10% 5% 1% 10% 5% 1%

Δ1, Δ2 70 0.41 85.6 76.8 49.7 86.4 76.9 46.3 87.0 75.7 45.3
Δ1, Δ3 104 0.28 86.2 75.8 47.4 88.6 78.8 50.6 93.1 83.3 58.1
Δ1, Δ4 94 0.31 100 100 98.7 100 100 99.3 99.8 99.7 96.3
Δ1, Δ5 44 0.66 100 99.9 93.4 100 99.8 92.7 99.8 99.6 92.2
Δ2, Δ3 118 0.36 87.9† 78.5 52.8 88.0 78.9 52.1 88.6 79.6 54.0
Δ2, Δ4 108 0.40 99.7 99.0 95.6 100 99.6 96.7 100 99.3 95.7
Δ2, Δ5 58 0.74 99.2 97.8 86.3 99.4 98.6 85.8 99.6 98.7 86.6
Δ3, Δ4 142 0.54 99.9† 99.5† 99.1 100 100 98.9† 99.6 99.1 96.6
Δ3, Δ5 92 0.84 99.1 96.7 82.9 99.4 97.4 84.4 98.9 95.4 79.6
Δ4, Δ5 82 0.82 93.0 85.0 58.8 94.0 86.3 57.0 77.9 64.9 32.6
Δ1, Δ2, Δ3 146 0.20 0.49 99.1 97.9 89.6 99.2 97.0 89.9 99.3 98.5 94.2
Δ1, Δ2, Δ4 136 0.21 0.52 100 100 100 100 100 100 100 100 100
Δ1, Δ2, Δ5 86 0.34 0.83 100 100 99.7 99.9 99.9 99.2 100 100 99.7
Δ2, Δ3, Δ4 184 0.23 0.65 100 100 99.9 100 100 99.9 100 99.9† 99.9
Δ2, Δ3, Δ5 134 0.32 0.89 100 99.3† 96.4 99.9 99.8 97.4 100 99.7 97.7
Δ3, Δ4, Δ5 158 0.49 0.91 100 100 100 100 100 100 100 100 100
Δ1, Δ2, Δ3, Δ4 212 0.14 0.33 0.69 100 100 100 100 100 100 100 100 100
Δ1, Δ2, Δ3, Δ5 162 0.18 0.44 0.91 100 100 99.9 100 100 99.9 100 100 100
Δ2, Δ3, Δ4, Δ5 200 0.22 0.60 0.93 100 100 100 100 100 100 100 100 100
Δ1, Δ2, Δ3, Δ4, Δ5 228 0.13 0.31 0.64 0.93 100 100 100 100 100 100 100 100 100

†MDA performed better than FDA.
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Table 8. Empirical power of the test for change-point models derived from the temperature data for England
(d D 8) (MDA approach)

Segment Sample Change- Powers for the following cases and nominal levels:
size point(s) θ

Case I Case II Case III

10% 5% 1% 10% 5% 1% 10% 5% 1%

Δ1, Δ2 70 0.41 82.9 70.2 38.2 85.2 73.4 39.3 76.2 59.6 26.8
Δ1, Δ3 104 0.28 79.7 63.9 32.6 79.4 64.8 30.5 81.1 67.4 35.1
Δ1, Δ4 94 0.31 100 99.4 95.8 99.9 99.0 96.0 99.3 96.9 82.0
Δ1, Δ5 44 0.66 98.4 93.8 54.5 99.0 93.0 55.8 98.5 91.8 49.0
Δ2, Δ3 118 0.36 88.3 75.9 46.8 86.7 75.6 43.5 82.3 70.7 41.7
Δ2, Δ4 108 0.40 97.3 93.3 77.5 97.8 95.6 78.1 98.3 95.7 80.7
Δ2, Δ5 58 0.74 93.9 85.5 50.4 94.7 85.2 48.3 96.3 90.9 57.9
Δ3, Δ4 142 0.54 100 100 98.5 100 99.8 99.0 99.5 98.9 94.6
Δ3, Δ5 92 0.84 98.2 93.9 71.2 99.1 94.2 71.3 96.7 90.2 58.2
Δ4, Δ5 82 0.82 78.4 63.1 28.0 79.4 63.4 26.4 60.9 44.1 15.7
Δ1, Δ2, Δ3 146 0.20 0.49 97.5 93.2 76.9 97.7 93.1 77.9 97.4 94.9 80.2
Δ1, Δ2, Δ4 136 0.21 0.52 100 100 100 100 100 99.9 100 100 99.9
Δ1, Δ2, Δ5 86 0.34 0.83 100 99.8 96.2 99.9 99.7 95.7 100 99.8 97.4
Δ2, Δ3, Δ4 184 0.23 0.65 100 100 99.1 100 99.9 98.7 100 100 99.5
Δ2, Δ3, Δ5 134 0.32 0.89 99.8 99.4 93.7 99.6 99.3 93.8 99.7 98.6 92.1
Δ3, Δ4, Δ5 158 0.49 0.91 100 100 100 100 100 100 100 100 100
Δ1, Δ2, Δ3, Δ4 212 0.14 0.33 0.69 100 100 99.9 100 100 100 100 100 100
Δ1, Δ2, Δ3, Δ5 162 0.18 0.44 0.91 100 100 99.1 100 99.9 99.1 100 100 98.9
Δ2, Δ3, Δ4, Δ5 200 0.22 0.60 0.93 100 100 100 100 100 100 100 100 100
Δ1, Δ2, Δ3, Δ4, Δ5 228 0.13 0.31 0.64 0.93 100 100 100 100 100 100 100 100 100

To assess the empirical size, we simulate ‘temperature-like’ data by considering two cases.
Case I : for every constant mean segment s, we produce synthetic observations by adding to its
mean function μ̂s errors drawn from the empirical distribution of the residuals of that segment,
i.e. synthetic (bootstrap) observations in the sth segment are generated via XÅ

is = μ̂s + ŶiÅs, where
iÅ indicates that ŶiÅs is obtained by drawing with replacement from { Ŷis, i = 1, . . . , Is}: Case
II : we compute residuals in each segment and pool them. We use this larger set of residuals
to create new observations by adding to the average of a segment the errors drawn with
replacement from that pool of residuals. For each segment, we generate 1000 of these bootstrap
sequences. Table 6 shows the resulting empirical sizes. As the sample size increases, the FDA
rejection rates approach nominal sizes, whereas the MDA test is much more conservative. For
the 1993–2007 segment, the size is not reported because the matrix D was (numerically) singular
for most bootstrap replications.

We next investigate the power. Three cases are considered. Case I : for each segment, we
produce synthetic observations by using the bootstrap procedure and sampling residuals from a
corresponding period. This means that the errors in each segment come from possibly different
distributions. Case II : we pool two, three, four or five sets of residuals (depending on how many
constant mean segments we consider) and sample from that pool to produce new observations.
This means that the errors in each segment come from the same distribution. Case III : we
slightly modify case II by combining all residuals from all segments into one population and
use it to produce new observations. In both case II and case III, the theoretical assumptions
of Section 2 are satisfied (see assumption 4), i.e. the means change, but the errors come from
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the same population. Table 7 shows the power of the test for the FDA approach and Table 8
presents results of the discrete MDA method. As seen in Table 7, the differences between the
three cases are of the order of chance error. Table 7 shows that the test has excellent power, even
in small samples, both for single and for multiple change-points. As for the Gaussian processes,
the power is slightly higher if there is a change-point around the middle of the sample. Comparing
Tables 7 and 8, it is seen that the FDA approach dominates the MDA approach. There are a
handful of cases, indicated with a dagger, when MDA performed better, but their frequency
and the difference size suggest that this may be attributable to chance error.
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Appendix A: Proof of theorems 1 and 2

A key element of the proofs of theorems 1 and 2 is the bound (A.5), which follows from a functional
central limit theorem in a Hilbert space. A result of this type is needed because the observations Xi.·/ are
elements of a Hilbert space and, to detect a change-point, we must monitor the growth of the partial sums
Σ1�i�NxXi.t/ which are a function of 0 <x< 1 (and of t ∈T ).

Lemma 1 is particularly noteworthy because it shows that the eigenvalues and the eigenfunctions also
converge under the alternative.

A.1. Proof of theorem 1
We shall work with the unobservable projections

β̃i,k =
∫

Yi.t/ v̂k.t/dt,

βi,k =
∫

Yi.t/vk.t/dt,

βÅ
i,k = ĉkβi,k

and the vectors

βi = .βi,1, . . . , βi,d/T, βÅ
i = .βÅ

i,1, . . . , βÅ
i,d/T, 1� i�N:

Since the Yi are independent and identically distributed functions with mean 0, the βi are independent
and identically distributed mean zero vectors in Rd . A simple calculation using the orthonormality of the
vk shows that each βi has a diagonal covariance matrix

Σd =

⎛
⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
:::

:::
:::

:::
0 0 · · · λd

⎞
⎟⎟⎠:

The functional central limit theorem thus implies that

N−1=2 ∑
1�i�Nx

βi

d→Δd.x/, 0�x�1, .A:1/
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where the convergence is in the Skorohod space Dd [0, 1]. The process {Δd.x/, 0 � x � 1} takes values in
Rd , has zero mean and covariance matrix Σd . Convergence (A.1) implies in turn that

1
N

( ∑
1�i�Nx

βi −x
∑

1�i�N

βi

)T

Σ−1
d

( ∑
1�i�Nx

βi −x
∑

1�i�N

βi

)
d→ ∑

1�i�d

B2
i .x/ .A:2/

in the Skorohod space D[0, 1].
The matrix Σd is estimated by Σ̂d . By expression (2.8) and assumption 2, Σ̂

−1
d →P Σ−1

d , so result (A.2)
yields

1
N

( ∑
1�i�Nx

βi −x
∑

1�i�N

βi

)T

Σ̂d

−1
( ∑

1�i�Nx

βi −x
∑

1�i�N

βi

)
d→ ∑

1�i�d

B2
i .x/: .A:3/

Note that ∑
1�i�Nx

βÅ
i,k −x

∑
1�i�N

βÅ
i,k = ĉk

( ∑
1�i�Nx

βi,k −x
∑

1�i�N

βi,k

)
:

Since ĉk
2 =1, we can replace the βi in result (A.3) by the βÅ

i and obtain

1
N

( ∑
1�i�Nx

βÅ
i −x

∑
1�i�N

βÅ
i

)T

Σ̂d

−1
( ∑

1�i�Nx

βÅ
i −x

∑
1�i�N

βÅ
i

)
d→ ∑

1�i�d

B2
i .x/: .A:4/

We now turn to the effect of replacing the βÅ
i,k by β̃i,k. Observe that

sup
0<x<1

∣∣∣∣N−1=2 ∑
1�i�Nx

βÅ
i,k −N−1=2 ∑

1�i�Nx

β̃i,k

∣∣∣∣= sup
0<x<1

∣∣∣∣
∫ {

N−1=2 ∑
1�i�Nx

Yi.t/

}
{ĉk vk.t/− v̂k.t/}dt

∣∣∣∣
� sup

0<x<1

[∫ {
N−1=2 ∑

1�i�Nx

Yi.t/

}2

dt

]1=2[∫
{ĉk vk.t/− v̂k.t/}2 dt

]1=2

:

The first factor is bounded in probability, i.e.

sup
0<x<1

[∫ {
N−1=2 ∑

1�i�Nx

Yi.t/

}2

dt

]
=OP .1/: .A:5/

Relationship (A.5) follows from the weak convergence in D{[0, 1], L2.T /} of the partial sum process
Σ1�i�NxYi, x∈ [0, 1]; see for example Kuelbs (1973).

Combining expressions (A.5) and (2.8), we obtain

sup
0<x<1

∣∣∣∣N−1=2 ∑
1�i�Nx

βÅ
i,k −N−1=2 ∑

1�i�Nx

β̃i,k

∣∣∣∣ P→0,

which in turn implies that∥∥∥∥
( ∑

1�i�Nx

βÅ
i −x

∑
1�i�N

βÅ
i

)
−

( ∑
1�i�Nx

η̂i −x
∑

1�i�N

η̂i

)∥∥∥∥=oP .N−1=2/, .A:6/

where the norm is the Euclidean norm in Rd . Relationships (A.4) and (A.6) yield the claim in theorem 1.

A.2. Proof of theorem 2
Theorem 2 follows from relationship (A.10) and lemma 2. To establish them, we need the following lemma.

Lemma 1. Under assumption 4, for every 1�k �d, as N →∞,

λ̂k
P→γk, .A:7/∫

{v̂k.t/− ĉk wk.t/}2 dt
P→0, .A:8/

where v̂k and λ̂k are defined by expression (2.7), wk andγk by equation (2.11) and ĉk =sgn{
∫

T vk.t/v̂k.t/dt}.
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Proof. It is easy to see that

X̄N.t/= ȲN.t/+ kÅ

N
μ1.t/+ N −kÅ

N
μ2.t/

and, denoting Δ.t/=μ1.t/−μ2.t/,

ĉN.t, s/= 1
N

( ∑
1�i�kÅ

+ ∑
kÅ<i�N

)
{Xi.t/− X̄N.t/}{Xi.s/− X̄N.s/}

= 1
N

∑
1�i�kÅ

{
Yi.t/− ȲN.t/+μ1.t/− kÅ

N
μ1.t/− N −kÅ

N
μ2.t/

}

×
{

Yi.s/− ȲN.s/+μ1.s/− kÅ

N
μ1.s/− N −kÅ

N
μ2.s/

}

+ 1
N

∑
kÅ<i�N

{
Yi.t/− ȲN.t/+μ2.t/− kÅ

N
μ1.t/− N −kÅ

N
μ2.t/

}

×
{

Yi.s/− ȲN.s/+μ2.s/− kÅ

N
μ1.s/− N −kÅ

N
μ2.s/

}

= 1
N

∑
1�i�kÅ

{
Yi.t/− ȲN.t/+ N −kÅ

N
Δ.t/

}{
Yi.s/− ȲN.s/+ N −kÅ

N
Δ.s/

}

+ 1
N

∑
kÅ<i�N

{
Yi.t/− ȲN.t/− kÅ

N
Δ.t/

}{
Yi.s/− ȲN.s/− kÅ

N
Δ.s/

}
:

Rearranging terms, we obtain

ĉN.t, s/= 1
N

N∑
i=1

{Yi.t/− ȲN.t/}{Yi.s/− ȲN.s/}+ kÅ

N

(
1− kÅ

N

)
Δ.t/Δ.s/+ rN.t, s/,

where

rN.t, s/=
(

1− kÅ

N

)
1
N

∑
1�i�kÅ

[{Yi.t/− ȲN.t/}Δ.s/+{Yi.s/− ȲN.s/}Δ.t/]

+ kÅ

N

1
N

∑
kÅ<i�N

[{Yi.t/− ȲN.t/}Δ.s/+{Yi.s/− ȲN.s/}Δ.t/]:

Using the law of large numbers for independent, identically distributed Hilbert-space-valued random
variables (see for example theorem 2.4 of Bosq (2000)), we obtain

∫
T

∫
T r2

N.t, s/dt ds→P 0 and∫ ∫
{ĉN.t, s/− c̃N.t, s/}2 P→0: .A:9/

Hence lemmas 4.2 and 4.3 of Bosq (2000) imply respectively results (A.7) and (A.8). �
As an immediate corollary to result (A.7), we obtain

Σ̂
−1
d

P→ΣÅ: .A:10/

Lemma 2. Under assumption 4,

sup
0�x�1

∣∣∣∣ 1
N

( ∑
1�i�Nx

η̂i,k −x
∑

1�i�N

η̂i,k

)
− ĉk gk.x/

∣∣∣∣=oP .1/,

with the functions gk defined by expression (3.7).

Proof. Denote

ĝk.x/= 1
N

( ∑
1�i�Nx

η̂i,k −x
∑

1�i�N

η̂i,k

)
, x∈ [0, 1],
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and observe that

η̂i,k =
∫

Yi.t/ v̂k.t/dt +
∫

μ1.t/ v̂k.t/dt −
∫

X̄N.t/ v̂k.t/dt, if 1� i�kÅ

and

η̂i,k =
∫

Yi.t/ v̂k.t/dt +
∫

μ2.t/ v̂k.t/dt −
∫

X̄N.t/ v̂k.t/dt, if kÅ <i�N:

We shall use the relationship

sup
0<x<1

∣∣∣∣ ∑
1�i�Nx

∫
Yi.t/ v̂k.t/dt

∣∣∣∣=OP .N1=2/, .A:11/

which follows from equation (A.5).
Suppose first that 0 <x�θ. Then, by results (A.11) and (A.8), uniformly in x∈ [0, 1],

ĝk.x/=x.1−θ/

{∫
μ1.t/ v̂k.t/dt −

∫
μ2.t/ v̂k.t/dt

}
+oP .N−1=2/

=x.1−θ/ĉk

{∫
μ1.t/wk.t/dt −

∫
μ2.t/wk.t/dt

}
+oP .1/:

If x>θ, then, uniformly in x∈ [0, 1],

ĝk.x/=θ.1−x/ĉk

{∫
μ1.t/wk.t/dt −

∫
μ2.t/wk.t/dt

}
+oP .1/:
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