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Abstract. We investigate the estimation of parameters in the random coefficient
autoregressive (RCA) model X; = (¢ + b)Xi_| + e where (¢, 0, ¢°) is the parameter
of the process, Ebg = w?, Ee(z) = ¢”. We consider a nonstationary RCA process satisfying
Elog|@ + bg) >0 and show that ¢ cannot be estimated by the quasi-maximum
likelihood method. The asymptotic normality of the quasi-maximum likelihood estimator
for (¢, w?) is proven so that the unit root problem does not exist in the RCA model.
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I. INTRODUCTION
In this article, we are interested in the random coefficient autoregressive model
(RCA) defined by the equations
X = (¢ + bk)Xo—1 + e, —00 <k < o0, (1)

where ¢ is a real parameter. The RCA process was introduced by Andél (1976)
who also studied its properties. For a detailed early study, we refer to Nicholls
and Quinn (1982). Throughout this article, we assume that

{(bk,er)} are i.i.d. random vectors. (2)

Let log* x = max{log x, 0}. It follows from Aue et al. (2006) (cf. also Quinn,
1980, 1982) that under condition (2) and

Elog" |eg| < oo and Elog™ |p + by| < oo, (3)

(1) has a stationary, nonanticipating (i.e. X is measurable with respect to the o-
algebra generated by (b;, ¢;), i < k) solution if and only if

—oo < Elog|e + by| < 0. (4)

Quinn and Nicholls (1981) started the study of the estimation of the parameter of
the process in (1). Let 8 = (¢, w?, %), where
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2 I. BERKES, L. HORVATH AND S. LING

Eby =0, Eb=aw*>0, (5)
Eeg =0, Ee}=a>>0 (6)

and
COV(b(),e‘()) =0. (7)

Aue et al. (2006) used the quasi-maximum likelihood method to estimate § when

(4) holds. They established the strong consistency as well as the asymptotic

normality of the quasi-maximum likelihood estimator under minimal conditions.
In this article, we consider the case when (4) does not hold. We assume

Xe=(o+bi)Xi1+e, 1<k<n (8)

and
Elog|o + by| > 0, 9)
i.e. we start the recursion in (8) from the initial value X, and (9) guarantees that
the solutions of (8) cannot converge. Throughout this article, we assume that X is
a constant. Following the theory developed for the stationary case, we estimate
the parameter 0 of the process in (8) using the quasi-likelihood method. Assuming

that by and ¢y are normally distributed, the conditional log-likelihood function
(the constant terms are omitted) is given by

L,(u) = zn:gk(u) with £ (u) = —% (10g(XXk21 +y)+ M>7
=1

X2, +y

where u = (s, x, y). We show that

~L,(u) —
L) Lo
but
(L (0) = £,(0)) 55 f(s,x) for all u with x > 0 and y > 0,
n
where
1 ’ o (¢ —s)

Since f{*) does not depend on y, the quasi-maximum likelihood method cannot
be used to estimate ¢°. Since |X,| Lo (n — 00) (cf. Lemma 1), so in (1) b,X,_;
dominates e,, which is the reason why the variance of ¢, cannot be estimated by
the quasi-likelihood method. Hence, we are interested in estimating 5 = (¢, ®?).

Now 7, = 1,(y) = (,1(»),7,2()) Is defined by
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NONSTATIONARY RANDOM COEFFICIENT AUTOREGRESSIVE MODELS 3

max L,(z,y) = L,(4,,»),

zel

z = (s, x) and the set I" satisfies
I={(s,x) 15, <5 <s" x, <x<x"} (11)
with some s, <s*, 0 <x* <x*. We prove the asymptotic consistency of

n,(v) for all y and consider the asymptotic normality of #, under various
conditions.

2. RESULTS
First, we study the asymptotic consistency of 1,(y).
TraeoreM 1. If (2), (5)—(9) and (11) hold, then

1,07) (0, ) (12)

for all y > 0.

Next, we consider the asymptotic normality of 7, (y). Let
2 2113
_ (@) W Ebj
Q= (szbS var(b3) ) (13)
THEOREM 2.  [f the conditions of Theorem 1 are satisfied and

Eej < 0o and Ebj < oo, (14)

then the distribution of n'/>(q,(d%) — (@, ®?)) converges to the bivariate normal
distribution with mean 0 and covariance matrix €.

We note that Theorems 1 and 2 were obtained by Ling and Li (2006) as a
preliminary result for the study of nonstationary double AR(1) processes when b,
and ¢, are normally distributed and independent. Their result implies that in the
case of normal (b, ey), o> cannot be estimated by the quasi-maximum likelihood
method. A similar phenomenon was also observed by Jensen and Rahbek
(2004a,b) in nonstationary ARCH models. Theorem 2 assumes that ¢° is known.
We show in the next section that #,(y) is asymptotically normal for all y >0
under the condition E log |¢ + bo| > 0.

Usually, the statistical inference is about ¢, the expected value of the
autoregressive coefficient. We show that 7, ,(y) is asymptotically normal for all
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4 I. BERKES, L. HORVATH AND S. LING

y so that there is no need to know o> to obtain asymptotic statistical inference
about ¢.

TraeOREM 3. We assume that the conditions of Theorem 1 are satisfied and (14)
holds. Then for any y >0 the distribution of \/n(i,,(y) — ¢)/w converges to
the standard normal _distribution and consequently the distribution of
Vi(i,1(¥) — @)/ /1,2(v) converges also to the standard normal distribution.

Next we are interested in the asymptotic distribution of 7,(¢?) — (¢, ®?)
without assuming (14). The assumption Eb] < oo will be replaced with the
requirement that b3 is in the domain of attraction of a stable law. This means
that

P{b} > x} = x"L(x), (15)

where 1 < o <2 and L is a slowly varying function at oco.
Asumption o > | guarantees that Eb} = o? exists. Let

a, = inf{x : x“L(x) < 1/n}.

If (15) holds, then

where ¢ is a stable random variable with characteristic function
exp{—d|t[*(1 +isign(?) tan(na/2))}, if 1 <o < 2, (17)
and d is a positive constant (Breiman, 1968, p. 204).

THEOREM 4.  We assume that the conditions of Theorem 1 are satisfied, (15)
and

Eleo|” < oo with some v > 2o/ (o0 — 1) (18)

hold. Then n'*(ij, (%) — @) and n(7,,(c?) — @?)/a, are asymptotically inde-
pendent; the distribution of n'2(1,1(0?) — @) converges to the normal distribution
with mean 0 and variance »* and the distribution of n(ij,(6%) — ®?)/a, converges
to the stable distribution with the characteristic function given in (17).

We note that if {e;} and {b,} are independent sequences, then (18) can be
replaced by Eej < oo.
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NONSTATIONARY RANDOM COEFFICIENT AUTOREGRESSIVE MODELS 5
3. GROWTH OF X,
We ;vill show in Section 4 (cf. Lemma 1) that under the conditions of Theorem 1,

X, — oo. Now we find the order of the growth of X,,. To state our results we need
further notation. Let

&=loglp+bl|, SG) =&+ +& p=]] signle+b).

1</<i
Here, we consider the case when

Elog|p + bo| > 0. (19)

TueoreM 5. If (2), (3), (8) and (19) hold, then

e’S<”)yan —Xo+Y a.s.

where

Y= Z e_S(i)yiei.

1<i<oo

The random normalization exp(—S(n)) is the correct one in Theorem 5, if the
limit is nonzero with probability 1. The next result provides conditions for

P{Y + Xy #0} = 1. (20)

TraEOREM 6. We assume that (2), (3), (8) and (19) hold.

o If
P{(¢p+bo)Xo+eo=c} =0 forall c, (21)
then (20) holds.
(i) If
{bi}and{e;} are independent sequences (22)
and
Pleg =c} <1 forallc, (23)

then (20) holds.

The first corollary says that under condition (19), X,, grows exponentially fast with
probability 1.
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6 I. BERKES, L. HORVATH AND S. LING
CoroLLArY 1. If (2), (3), (8), (19) and (21) or (22) and (23) hold, then
e | X,|—00 a.s. for all 0 <1 <Elog|p+ by
and
e "' X,|—0 a.s. for all T > Elog | + by|.
The second corollary is the asymptotic normality of ,(y) without assuming

that y = o”.

CoroLLARY 2. If(2), (5), (8), (11), (14), (19) and (21) or (22) and (23) hold, then for
all y > 0 the distribution of n'?>(1,,(6%) — (¢, ®?)) converges to the bivariate normal
distribution with mean 0 and covariance matrix €.

Similarly, in the case of E log|o + by| > 0, we have the following generalization
of Theorem 4.

CoroLLary 3. If (2), (5)—(8), (11), (15), (18), (19) and (21) or (22) and (23)
hold, then for ally > 0,n'?(3j, | (6°) — @) andn(7j, (%) — w*)/a, are asymptotically
independent; the distribution of n'*(3j, (c*) — @) converges to the normal
distribution with mean 0 and variance * and the distribution of n(7j,,(c*) — w*)/ay
converges to the stable distribution with the characteristic function given in (17).

4. PROOFS OF THEOREMS 1-4
The proofs will use the following result:

Lemma 1. If (2) and (5)—(9) hold, then

1X,| - oo (24)

Proor. We note that
Pleg+c(p+by) =c} <1 for all c.

Indeed, if ¢y + c(@ + by) = ¢ with probability 1, then multiplying this equation
with ¢ and taking expected values we obtain Eej + cpEey + cEbgey = cEey.
Since Eey = Eegby = 0, we obtain Eej = 0, which contradicts Eej = > > 0 (c.f.
(6)). Since (9) implies P{p + by = 0} = 0, the result follows immediately from
Remark 2.8 and Cor. 4.1 of Goldie and Maller (2000). U]

We start with the study of the log-likelihood function.
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Lemma 2. If (2), (3) and (5)—(9) are satisfied, then

sup|- (L, (w) — L,(0)) — £ (s.x)| — 0, (25)

uel+|71

where f(*) is defined in (10) and
I = {u=(s,5,5) 15, s < 5" x Sx<x,p <y <y,

with 0 < x, and 0 < y,.

Proor. We write

2Xk2 1+0_ Z Xk ]bk"'ek
2

1
L,(u) — L,(0) =5 log——>F———
ZISZ](;,' XX | +y . cosz2 | +o? 26)
1 (¢ — )Xot + Xi_1by + )’
2.5, xXp, +y

Using the mean value theorem we conclude

CL)2X2 +O' 2 x* *XZ + % 1
XX+ X |+ 0% ) x. X7 |+
- 1
o——s—.
- Z.X*X1371 +y*
By (24), we have that
1
E—s—0 27
xwxz %‘)@ - ( )

and therefore by the Markov inequality

1 2y2 2 2
- Z sup log%—logw— —0 (28)
n el XX, +y X

Also,

2

(Xi—1bx + ek)2 2 2 X2 €k

O N 1 s i = NI . S

1<§k;n{ W X2 | + o2 1;; W’ X2 | + o2 lg;n W’ X7 | + o2
2

ZX},I [
+ S b N
Z X2+ o2 Z X2 |+ 02

1<k<n - 1<k<n
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8 I. BERKES, L. HORVATH AND S. LING
Similarly to (27) we obtain

1 g P
)
W’ X7 | + o2

Tz

Since by (24) and the independence of ¢, and X,, _ 1, we have

82

E——"% 0.
sznz_l + o2

So, we obtain

Now, we write

1<k<n 1<k<n 1<k<n
COZO'Z
+ Z w2(w2X2 + 0-2)
1<k<n

The weak law of large numbers yields

1
—Zbk E 0.

1<k<n

Using now the independence of b, and X_; with (24), we obtain
o2 1 w*a?
E- b2 ——————0and E- —_——— 0
1;;1 M@ X +0?) 1;,, (02X} + %)
and therefore by the Markov inequality and (29) we conclude
z Z (b — Li} 0.
"\ zn szkz—l +a?

By the independence of (by,e;) and X;_; we obtain

1 X1
E|- ey —5m | < Ebkek|E’ —
1;@ 02Xy + 0 1;,1 +"2
on account of (24), resulting in
X1 P
n Z 02X2 ;—0.
" zn k-1t 0o
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NONSTATIONARY RANDOM COEFFICIENT AUTOREGRESSIVE MODELS 9

Hence, we proved that

1 X,_1b 2
-3 Kiibi + er)” ‘2"+e"> —18 2. (31)
n&2, 0’ X¢_ | + o?

Next, we write

Xe1(@ — ) + Xi1by + &) 2 X X 2 1
5 =(p—5)"— + by —— +ei—>
XX +y XX +y XX +y XX +y
X? Xi_i
+2 s)b L 1 2(p —s)e
(QD ) kXsz—l Ty ((P ) kXsz—l Ty
Xi-1
+ 2bye
‘ kXXk{l +y
Clearly,
Xi—1 X1
E sup erhy—5——| < E\biey
uel™ l;n XXkal +y l;n *szfl + s
[ Xe—1]
= E|eyby| E———
1<z:k<n XX+
and since by (24)
‘X”l| _ O,
the Markov inequality yields
1 kal P
sup |— ekbk4 —0
wer=|n I;n xXk{1 +y
Similar arguments give
Xk 1 P
sup |- \go —s| —
uer |7 l;n XL+

Next, we observe that

X2 1y
sup bk— < sup-— b | + sup by —
uel™ |1 <, xXk2 1 uel" X 1<kz<n uel” l;n xxX 1Ty
<— b +— |br| ——5——
X l;n X l;n x*Xk 1 +y*
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10 I. BERKES, L. HORVATH AND S. LING

By the law of large numbers, we have

—Zbk—>0

1<k<n

and the Markov inequality with (24) gives

n Z | k|x*Xk2 1"‘)’*

I<k<n
Similarly,
1 1 1 P
2 2
sup — e <- e SN |}
uel* 1 |1 32, kXszﬂ +y ”1;; kx*szfl + e
Now,
X? ? 1
S T R
XX, +y  x x(xX7  +y) x

and therefore, arguing as before, we obtain

1 ( 5 X,il a)2> ly 5 1 1 5 | P
sup-— bi————— by +— (bk—w )| —0.
Similarly,
1 X7 1
suplt 3 (A1) Lo
wel* |1, 52, xXX;  +y x
Thus, we proved
1 —$) X1 + X 1b : -5 o’
sup - ((p — 5)Xi 12+ bt ((o—s)" o7 P (32)
el |1 52, XX+ X x
The result in Lemma 2 follows from (26), (28), (31) and (32). U

Lemma 3. If the conditions of Lemma 2 are satisfied and q = (¢, »*) € T, then

sup [1,(0) — | =0 for all 0 < y. < y".
e Sy<y*
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Proor. It is easy to see that

f(s,x) < f(n) for all (s,x)
and we have equality if and only if (s, x) = n. Since

max(L,(z,y) — L,(0)) = L,(1,,y) — L.(0),

zel

L,(u), u € T'* is continuous on I'*, it converges uniformly to f{(s, x), standard
arguments provide the result (Pfanzangl, 1969).

Lemma 4. If the conditions of Theorem 2 are satisfied, then for all 0 < y we have

— op(n'/2) (33)

gl,n(y) - Z %

1<k<n

and

= OP(nl/z)a (34)

where g, ,(v) and g,,(y) are the partial derivatives of L,(u) with respect to s and x at
(¢, 7, ).

Proor. Elementary calculations yield

(’%k(u) (Xk — Skal)kal

Os xXk{1 +y
and
O(w) 1| X2,  (X— sXi1) X2
Ox 2 XX;(Z,I +y (xsz_1 —|—y)2

and therefore

biXE er X1
nan = 3§ N |
1;/«;;7 0’ XZ +y  ?XZ +y

1 X2 (Xk—lbk + ek)2X27
gz.’n(y):z_i{ k—1 o k—1 )

5] 2
1<k<n WX+ (X7 +)

Using the independence of (ex, b,) and X,_;, we obtain

© 2009 The Authors
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12 I. BERKES, L. HORVATH AND S. LING
1 e Xr_1 o2 X?
var{—in sz;2k+ :7215 > 53— 0.
1<k<n =1 TY s (02X +)

Similarly,

X7 1
1/2 k=1 _ —1/2 s
Var<n > o s wz}) _Var<n 3 +y)>

1<k<n
21 1
i 2 Era 0
o n o2, (X7 +Y)

and thus an application of the Markov inequality completes the proof of (33).
Write

2
X2 Meabte) X2 (P —b?) X
Xy (02X ) (@02XP+y)°
X2, 2
—————(y—2exbiXp—1 —e})
(szszl +Y)2
*((1)2717% XI?—I sz—l (0'27612{)
= 3 3
(@2X2 +y)° (X2, +Y)
X2
—%26#)1{)(](,1
(X +v)
X2
k—1 (y_ 0_2)' (35)

(02X | +y)°

One can easily verify

2
X2
—-1/2 k—1 2 2
E( PR ek)) 0 7
2
X2
E|n /2 Z k—zekkak 1] —0, (38)
1<k<n(w Xk1 J’)

and since y = o7 is assumed
1 X7
Tl —E Y — =0, (39)
n'/? 1;:1 (X2, +y)°
and therefore (34) is proven. O
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Lemma 5. If the conditions of Lemma 2 are satisfied, then

sup [gij(w) — gip(w)| =0, 1<i,j<2,

uel™
where
0”1 1 X?
giia(u) = ﬁ—Ln(“) = %’
s> n ”1gkankal +y
& 1 0% 1
= n = ——L = ——Ln
G120 (W) = g21.0(w) OsOx n (W) OxOsn (w)
1 (X =X )X
= (X2, +y)
91 1 x4 Xi — sXi1 )2 X}
gona(u) = m—Ln(u) =_ { Zk—l - (X . 1) 3k—1
xon ny Gz (206X + ) (X7 +)
and
1 (p—s) I (p—s) +o?
gii(u) = 0 gi2(u) = go1(u) = -2 gn(u) = I R

Proor. It can be proven along the lines of the proof of Lemma 2 and therefore
the details are omitted.

Proor oF THEOREM 2. Combining the central limit theorem for i.i.d. random
vectors with Lemma 4, we obtain

12 (g10(6%), 924(07)) = Na(0, 2), (40)
where
o
@ = ibzg Vﬁ?z(z)
20 4ob
Let ||| denote the maximum norm of vectors. Let Vi(u) = (0h(u)/uy,

Oh(u)/duy)". Applying the mean value theorem to the coordinates of VL,(u, ¢°),
there are random vectors &, ; and &, such that ||§,; — n| < |y, — #nll,j = 1,2
and

T
_ 8L,,(11, (72) aLn(énlf’ 62) ~ .
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14 I. BERKES, L. HORVATH AND S. LING

Lemma 5 and Theorem 1 give that for all y > 0

1 aLn(fl’lhy) 1 6Ln(§,127,)7) P
- : - . — Q**; 42
(n v Ou, "n v Ouy (42)
where
1
-— 0
Q.. = w
204

Putting together (40)—(42), we conclude
n'P(0,(0%) — ) = N>(0, 212,071,

Since Qy = Q. lQ Q! the proof of Theorem 2 is complete. U

EE

The proof of Theorem 3 uses Lemma 6.

Lemma 6. [f the conditions of Lemma 2 are satisfied, then for all y > 0

1 X2
sup|giza(u) — (s — @)= ——kL = Op(n!/?).
uel’ ! nlgzk;n (XXk271 +J’)2

Proor. Using the expression for g;,,(u) in Lemma 5, we obtain

gizn(u =——Z Xkl_%zb"Xi’il_lZLk{l

3 3
155en ( Xsz 1 +J/) VG2, X )T G, (X 4 )
Also,
X2 11 112 b
k 1 k 1 Y k
I DO Ty
n G, (XX, 1<k<n P XXk 1Y) 1S (XX +)

The central limit theorem yields

v 3 b=

1<k<n

sup p(n12).

X, <x<x*

Next, we show that
sup |4,(x)] = op(1), (43)

X, <x<x*

where

1 biX?
) = — S e
! n'/? 1521{;;1 (X2 +J’)2

© 2009 The Authors
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Since for any x € [x,,x"]

2
EA,(x)* = w_2 Z E Lz -0,
nogZ, \(XE +y)

the finite dimensional distributions of 4,(x) converge to 0. Similarly, for all
x, X' € [x,, x*] we have by the mean value theorem that

2
E(A,(x) — A, (X)) = o 3 E<X2 ! ! )
n(X) = An =— k-1 -
o zn (X, +y) (X7 +y)°
2
1
x—x E 2)(,;t | )
n 12;1 < (. XZ 1+J’*)
S (X _x/)za

for all n large enough. By Billingsley (1968, p. 96), the sequence 4,,(x) is tight, and
therefore 4,(x) converges in C[x,,x*] to 0. Hence the proof of (43) is complete.
Repeating the arguments leading to (43), we conclude

ly 2 by ekaS,l

_ ~1/2
sup |-= — sup |- ——————| = Op(n /7).
xsaze [0 G X 4 y) | wsese | G2, (X + )
The proof of Lemma 6 is established now. ]

Proor oF Taeorem 3.  Similarly to (41), we have

_ 8L,,(11,y) + (V aLn(fnva)

0 au, 814]'

T
) (m,0)—m, j=1,2,

where &, satisfies ||, ; — nll < |n,(v) — nll, / = 1,2. This gives
. 1 1
i 0) = 0 = = (en(0) Lgna0) + rs(n) a0 ), (@4)

where ¢;(n) are defined by

(1vaLn<:nJ,y>71V8Ln<:n,2,y>>1: (m(n) m<">)‘ (45)

n ouy Ouy c1(n)  exn(n)

Using (35)—(38) we obtain
924 (y) = op(n). (46)

Now (42) gives that ¢;;(n) — —w” in probability. Applying Lemma 6 and (42)
we obtain

ler2(n)] = [, (v) = @lOp(1) + Op(n™'/?). (47)

© 2009 The Authors
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16 I. BERKES, L. HORVATH AND S. LING

By (44)—(47), we conclude

1 0) = 0 = (=07 +0p(1)) 2 g140) + (1) ~ 9IOP(1) + Ol Jop(1)
= (- +0p(1)) 19140 + 11 0) — plop(1) + op(n%),
which yields

a1 (0) = ¢ = (1 +0p(1)™" ((—w2 +op(1)) %gn,l(y) + oP(n‘/z))‘

Now the first part of Theorem 3 follows from (33). The second part is an
immediate consequence of the first part of Theorem 1 and Slutsky’s lemma. [

The proof of Theorem 4 is based on the modification of Lemma 4, which yields
Lemma 7.

Lemma 7. If the conditions of Theorem 4 are satisfied, then for all 0 < y we have

by
gl,n(y) - Z E

1<k<n

= op(n'”) (48)

and

G20(e?) = 32 52 (8~ )| = oplan). (49)

1<k<n

where g, ,(y) and g, ,(y) are the partial derivatives of L,(u) with respect to s and x at
(¢, @, y).

Proor. We follow the proof of Lemma 4. Since the proof of (33) required only
that Eb} < oo, we have (48).

To prove (49), we use (35). It is assumed that Eeg < oo and therefore (37)
holds. Assumption (15) yields that E|bo|** < oo for all 0 < 7 < «, and therefore
condition (18) with Hélder’s inequality gives Eejb] < oo. Hence

2 2
X? 4 X}
E n71/2 k_IZekkak_1> Z*E(e‘obo)z <kl> —0.
< lézk;n (wzxszl +y)2 n lézk;n (szszl +)/)2

Clearly, (39) is satisfied. Thus, it is enough to show that

PDCGITE] LR [ (50
R

1<k<n

© 2009 The Authors
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NONSTATIONARY RANDOM COEFFICIENT AUTOREGRESSIVE MODELS 17

Let
X} 1
Ek:b%_wz and Zk—1 :%——4
(X +y)° @

It is clear that |z;] < ¢; with some constant ¢;. Also, according to Lemma 1,
|z&«| — 0 in probability, as k — oo, and therefore

o =Ez =0 (k— o0). (51)
Fix n and define
6 = eal{lex| <tya,} and € =€ —Ee;, 1<k <n,

where 7, is a numerical sequence (to be chosen later) tending to oo and I{‘}
denotes the indicator function. Let

t
Alt) = / RdF (),
—t
where F denotes the distribution function of ¢;. By the classical theory of the
domain of attraction of stable laws (Feller, 1966, pp. 574-577), we have that

A@)
baies 2L 52)
with some 0 < ¢, < oco. Also, we note that by the definition of «, and the
properties of regularly varying functions we obtain

nL(a,)/a, — 1 (n — o0). (53)
We also need that for any x > 0 there is a constant 0 < ¢3 < oo such that
L(2 !
ﬁ <c3A¥ forall A>1and x> 1. (54)
L(x)

The assertion in (54) is an immediate consequence of the monotone equivalence
theorems in Bingham et al. (1987, p. 23). Indeed, there is a nonincreasing regularly
varying function ¥ such that
*KL
i L) ’
P )
and since Y(Ax) < Y(x) for all 2 > 1 and x > 1, (54) is proven.
Using the independence of €;* and z;_;, we conclude

E(e'zi 1) = E(¢]")'Ez | < E(€)Ez | = A(taan) i1
and the orthogonality of {€;*z;_;,k > 1} yields

© 2009 The Authors
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18 I. BERKES, L. HORVATH AND S. LING

1 . 1 o 1
Var(— Z € Zkl) == Z E(e;"zi-1)? SEA(T,,,G") Z -1

n 1<k<n n1<k<n 1<k<n

Combining (52)—(54) we obtain

Var(L Z 6lt*zkl> = O(l)arjz(fnan)27al‘(fnan) Z Ok—1

An 1<k<n

| <k<
— 1 2—atK _ Sit.
o)z, " Z k-1

1<k<n

By (51), if 7,—00 slowly enough, then 7, *** 7, &1 /n — 0, showing that

1
var( Z Ez*Zk1> :0(1).
a"lgkﬁn

Using the definitions of ¢; and a, together with (15), (53) and (54), we obtain
that

> Pl #at=n(l-F(t,a,)) =0 (n— o0).

1<k<n

Next we observe that

n nxdF(x) —0 (n— 00),
an J—1,a,
if 7,—o0 slowly enough, so using z,—0 (k—oc0) we conclude that
S zEg =3 zk_l/""xdm) :o(l)n/ " dF(x) = o(ay).

1<k<n 1<k<n Tnln —Tnln

Now the proof of (50) is complete. ]

Proor or Theorem 4.  Using (41), we obtain

(@) = 0= (el jone) + el ). (69)
and
o) = 0 = (en ) a0+ enl (@) ) (56)

where c; are defined in (45). By Lemma 7, (42) and (45) we obtain
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Journal compilation © 2009 Blackwell Publishing Ltd.



NONSTATIONARY RANDOM COEFFICIENT AUTOREGRESSIVE MODELS 19

2 yal?) — o) = LS @2 - o?) + (1), (57)

An 1<k<n
Since (46) clearly holds, we also have (47) and from (49) we obtain that
~ 1 ~ _
Ma1(0%) — @ = 011(11);91,”(62) + ([l = @lOp(1) + Op(n™"/?))Op(an/n).
Hence by (42) and (48), we have
1/2(77111( 2)_¢):n_l/2 Z bk+0P(])' (58)
1<k<n

The convergence in distribution of n'/2(7j,,(6?) — ¢) and n(7,,(c*) — ©*)/a,
now follows from (57) and (58); only the dsymptotlc mdependence must be
established. Note that the vector (3, bi/n'/%, 3" i, (b7 — ©?)/a,) converges
in distribution (Sec. 10.1 in Meerschaert and Scheffler, 2001). The first coordinate
of the limit is normal, the second does not contain normal component and
therefore the coordinates of the limit distribution are independent (Meerschaert
and Scheffler, 2001, p. 41). Ul

5. PROOFS OF THEOREM 5 AND COROLLARIES 1-3

Using (8), one can easily verify that

w-yul

z.\

qo—i—b +X0H @ +bj),
j=1

+

and therefore

. -1
<H @+ b; > + Xo

’))l +X0 (59)

-] 5
o

Proor oF Taeorem 5. First we note that assumption (3) yields
lei| = O(e”") a.s. for any ¢; >0
(Berkes et al., 2003) and by the strong law of large numbers
eSS0 = o(e7™) a.s. for any 0 < ¢3 < E|&|.

Hence, Y is absolutely convergent with probability 1 and the result follows
immediately from (59). Ul
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The proof of the second part of Theorem 6 is based on Lemma 8.

Lewva 8. If (2), 3), (8), (19), (22) and (23) hold, then

P{Y =c} =0 forany c.

Proor. First, we show that for any sequence a,
Z PleSDy.e; + a;| &, —00 < j < oo} =00 as. (60)
1<i<o

Since E&, exists, we obtain P{¢p + by =0} =0, so y; can be 0 only with
probability 0. Hence (60) holds, if for any sequence d,,

> Plei#d} = o0, (61)

1<i<oco
By (22), we have (61) if and only if
> Pleg#dy = > (1—Pleg=di}) = oo, (62)
1<i<oo 1<i<oo

If P{eq = b;}—1, then ey must be a constant with probability 1, contradicting
(23).

Using (60), we obtain that for any sequence a,

Z PleSWye; # a;} = o0, (63)

1<i<oo

and therefore Lemma 8 follows from Lévy (1931) (see also Breiman, 1968,
p- 51). ]

Lemma 9. I£ (2), (5)~(8), (11), (19) and (21) or (22) and (23) hold, then

by
gl,;z(y) - Z E

1<k<n

— o) as. (64)

and

=0(1) a.s. (65)

where g1 ,(v) and g, ,(y) are the partial derivatives of L,(u) with respect to s and x at
(p. @, ).

Proor oF LEmma 9. We return to the decompositions of g; ,(y) and g, () used
in the proof of Lemma 4. Using Theorem 5 and Lemma 8§, we obtain
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> el < S el
1§k§nw k—1 +y 1<k<n
3 e S e S e SE
1<k<n

e 2ty

S{ max (e~ S(k—1) |Xk ) ( —S(k I)ka) +e—2S(k—l)y)—l}

1<k<o

% Z |ek|efs(k71)

1<k<n

=0(1) as.

since by Berkes ez al. (2003), Y \<iulerle S* 7V is finite with probability 1.
Similar arguments give

> n{ots )
PP e =
1<k<n 0?Xp +y  o?

completing the proof of (64).
The proof of (65) goes along the same lines and hence is omitted. Ul

IN

1 Wl
E byl ————=0(1 .S.
| k wzszk271 +y O( ) a.s.,

1<k<n

Proor oF CoroLLARY 1. It is an immediate consequence of the strong law of
large numbers and Theorems 5 and 6. ]

Proor oF CoroLLARY 2. The proof of Theorem 2 can be repeated; only Lemma 4
must be replaced with Lemma 9. O

Proor oF CororLLarY 3. Minor modifications of the proof of Theorem 4 are
required only. Namely, one must use Lemma 9 instead of Lemma 7. O
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