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Abstract

We prove a strong invariance principle for the two-parameter empirical process of stationary sequences
under a new weak dependence assumption. We give several applications of our results.
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1. Introduction

Let {yk, k ∈ Z} be a stationary sequence and let F(s) = P(y0 ≤ s) denote its common
marginal distribution function. The purpose of the present paper is to study the asymptotic
behavior of the empirical process

R(s, t) :=
∑

0≤k≤t

(I {yk ≤ s} − F(s)), s ∈ R, t ≥ 0. (1)

The process R(s, t) captures several important features of the sequence {yk} and it is one of
the basic tools of statistical inference, both parametric and non-parametric, for {yk}. We will
be interested in the behavior of R(s, t) jointly in s and t , a fact that makes the analysis more
technical, but the two-dimensional study of R(s, t) is required in many important statistical
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applications, see e.g. Shorack and Wellner [64]. In the case of an independent sequence {yk}

the weak limit behavior of R(s, t) was studied first by Müller [50] and Bickel and Wichura [10];
the following basic result is due to Kiefer [44].

Theorem A. Let y0, y1, . . . be i.i.d. uniform (0, 1) random variables. Then there exists a
Gaussian process {K (s, t), 0 ≤ s ≤ 1, 0 ≤ t < ∞} with mean 0 and covariance
E K (s, t)K (s′, t ′) = (t ∧ t ′)(s ∧ s′ − ss′) such that

sup
0≤s≤1, 0≤t≤n

|R(s, t)− K (s, t)| = O(n1/3(log n)2/3) a.s. (2)

Komlós et al. [45] showed that the error rate in Kiefer’s theorem can be improved to O(log2 n).
It is also known that the rate cannot be better than O(log n) (cf. Csörgő and Révész [20]).
While this means a substantial improvement of (2), Theorem A remains an important result,
as one allowing extensions for dependent processes. Note also that to construct the process
K (s, t) may require enlarging the probability space of the {yk} or redefining the sequence {yk}

on a suitable probability space together with the Gaussian process K (s, t) such that (2) holds.
All approximation theorems in the following will be meant in this sense, without explicitly
mentioning this fact.

Letting Fn denote the empirical distribution function of the sample (y1, . . . , yn), (2) implies
the existence of Brownian bridges B1(s), B2(s), . . . such that

sup
0≤s≤1

∣∣√n(Fn(s)− s)− Bn(s)
∣∣ = O(n−1/6(log n)2/3) a.s., (3)

improving Donsker’s [31] classical invariance principle. Actually, (2) is much more informative
than (3): it enables one to prove also strong limit theorems, e.g. laws of the iterated logarithm and
fluctuation results for the empirical process

√
n(Fn(s) − s). Further, as we pointed out above,

some important statistical procedures require (2) instead of (3); a typical application is change
point problems, see e.g. Bai [2].

For a dependent sequence {yk}, the behavior of the empirical process is considerably more
complicated than in the i.i.d. case and precise results are known only in a few special cases.
For a stationary Gaussian sequence {yk, k ∈ Z}, the empirical process n−1/2 R(s, n) (s ∈ R)
converges weakly to a non-degenerate Gaussian process as long as the covariance sequence (rn)

of {yk, k ∈ Z} decreases sufficiently rapidly. For slowly increasing (rn) (the critical sequence is
rn ∼ n−1), a completely different phenomenon takes place: R(s, n) converges weakly, suitably
normalized, to a semi-deterministic Gaussian process, see Dehling and Taqqu [27]. Similar
results hold for linear processes {yk, k ∈ Z}, see Giraitis and Surgailis [38]. Although this
remarkable change of behavior probably holds for a large class of stationary processes, very
little is known in this direction. (See the remarks in Berkes and Horváth [7] concerning some
nonlinear time series models.) On the other hand, there has been a surge of interest in past
years in the empirical processes of nonlinear time series appearing in econometrics and physical
sciences, belonging to the weakly dependent type. These processes have nonlinear dynamics
given by a stochastic recurrence equation, finite or infinite order. When the correlations of such
processes decrease sufficiently rapidly (which is the case in most applications), their empirical
process behaves similarly as in the case of a short memory linear process, a fact having important
statistical consequences. The basic difficulty in this field is that, despite the simple construction
of such processes, the standard theory of weak dependence does not apply for them. The classical
approach to weak dependence, developed in the seminal papers of Rosenblatt [58] and Ibragimov
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[43], uses the strong mixing property and its variants like β-, %-, φ- and ψ-mixing. See Bradley
[18] for a comprehensive monograph of mixing theory. Weak invariance principles under strong
mixing conditions have been obtained among others by Billingsley [11], Deo [28], Mehra and
Rao [49], Rio [56], [57], Withers [68] and Doukhan et al. [33]. The classical mixing conditions
are attractive and lead to sharp results, but their scope of applications is rather limited. On the
one hand, verifying mixing conditions of the above type is not easy and even when they apply
(e.g. for Markov processes), they typically require strong smoothness conditions on the process.
For example, even for the AR(1) process

Xn = ρXn−1 + εn (|ρ| < 1)

with Bernoulli innovations, strong mixing fails to hold (cf. Rosenblatt [62]). Recognizing
this fact, an important line of research in probability theory in past years has been to find
weak dependence conditions which are strong enough to imply satisfactory asymptotic results,
but which are sufficiently general to be satisfied in typical applications. Several conditions
of this kind have been found, see Doukhan and Louhichi [32] and Dedecker et al. [22]
for recent surveys. For a general overview of the empirical process theory of dependent
sequences we refer to Dehling et al. [26]. Yu [74] proved a weak invariance principle for the
empirical process of associated sequences. Borovkova et al. [14] consider generalized empirical
processes of functionals of absolutely regular processes. Provided the key dependence coefficient
decreases sufficiently fast, Ango Nze and Doukhan (cf. [26]) obtain weak convergence to a
Gaussian process. For empirical processes related to Gaussian sequences we refer to Csörgő and
Mielniczuk [21]. Wu [69] introduced the so-called physical and predictive dependence measures.
In [70] he considers the weak convergence of weighted empirical processes under the assumption
of causality (see also [71]). For large sample theory of empirical processes generated by long
range dependent sequences we refer to Dehling and Taqqu [27]. For an overview and more
references see also Giraitis and Surgailis [38] and Koul and Surgailis [46].

Strong invariance principles for empirical processes of the type in Theorem A with
dependent data have been far less studied. Berkes and Philipp [8] extended Kiefer’s theorem for
strong mixing sequences and Berkes and Horváth [6] obtained a similar result for GARCH(p, q)
sequence (cf. Bollerslev [13]) under some minor (logarithmic) moment assumptions.

The purpose of the present paper is to study the behavior of the two-parameter empirical
process R(s, t) of stationary sequences under a new type of weak dependence condition
introduced below. Note that every stationary process {yk, k ∈ Z} can be represented, without
changing its distribution, as a shift sequence

yk(ω) = f (T kω), k ∈ Z

over some probability space (Ω ,F , P), where f : Ω → R is a measurable function and
T : Ω → Ω is a measure-preserving transformation. Actually, most stationary processes
in practice can be represented as a shift process of i.i.d. random variables, i.e. they have a
representation of the form

yk = f (. . . , εk−1, εk, εk+1, . . .), (4)

where {εk, k ∈ Z} is an i.i.d. sequence and f : RZ → R is Borel measurable. See
Rosenblatt [59–61] for general sufficient criteria for the representation (4). It is easy to see that
under mild technical assumptions on the function f , the process {yk, k ∈ Z} has the following
property:
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(A) For any k ∈ Z and m ∈ N one can find a random variable ykm such that we have

P(|yk − ykm | ≥ γm) ≤ δm (k ∈ Z, m ∈ N)

for some numerical sequences γm → 0, δm → 0.

(B) For any disjoint intervals I1, . . . , Ir of integers and any positive integers m1, . . . ,mr , the
vectors {y jm1 , j ∈ I1}, . . . , {y jmr , j ∈ Ir } are independent provided the separation between Ik
and Il is greater than mk + ml .

Definition 1. A random process {yk, k ∈ Z} is called S-mixing if it satisfies conditions
(A) and (B).

In Section 2 various constructions for the ykm will be given. The simplest choice (which
actually motivated the definition of S-mixing) is

ykm = f (. . . , 0, 0, εk−m, . . . , εk, . . . , εk+m, 0, 0, . . .).

Clearly, condition (B) is satisfied. Note that (B) implies that {ykm, k ∈ Z} is a 2m-dependent
sequence, but this property is not strong enough to prove refined limit theorems for {yk, k ∈ Z}.
(We recall that a sequence {Zk} is called m-dependent if for each n the two sets of random
variables {Zk, k ≤ n} and {Zk, k > n + m} are independent.) In contrast, S-mixing (here “S”
stands for “stationary”) will permit us to carry over a large class of limit theorems for independent
random variables for {yk, k ∈ Z}. Note that S-mixing does not impose any moment condition
on the yk ; for example, it is inherited for the variables zk = g(yk) provided that g : R → R is
Lipschitz continuous.

If the representation (4) is one-sided, i.e. it has the form

yk = f (. . . , εk−1, εk),

then the process {yk, k ∈ Z} is called causal or non-anticipative. Many popular time series
models have a causal representation (cf. [55,65,67]) as an immediate consequence of their
“forward” dynamics, for example their definition by a stochastic recurrence equation. However,
if we assume e.g., that yk is some spatial response, causality has no interpretation and may not be
realistic. Hence the applicability of S-mixing to this more general model (4) is desirable. We note
that causality plays a crucial role in earlier approaches as e.g. in Wu [70] or Ho and Hsing [41].

The classical method to prove limit theorems for weakly dependent random variables is
exemplified by the CLT for strong mixing sequences, see e.g. Rosenblatt [58], Billingsley
[11] or Ibragimov [43]. This uses a blocking of the variables of the sequence {yk}, combined
with correlation inequalities, to approximate the characteristic function of normed sums
a−1

n

(∑n
k=1 yk − bn

)
of {yk} by the characteristic function of normed sums of independent

random variables. This method yields nearly optimal results in the case of the CLT and LIL,
but it is not strong enough to prove finer asymptotic results. Much stronger results can be proved
by using coupling techniques: if the dependence coefficient between a r.v. X and a σ -algebra M
is small, one can construct a r.v. X∗, independent of M and having the same distribution as X ,
such that X and X∗ are ‘close’. (See Berbee [4], Berkes and Philipp [9] and Bradley [17] for the
case of β-, φ- and α-mixing, respectively.) This enables one to approximate separated blocks of
a weakly dependent sequence (Xn) by independent random variables, leading directly to a large
class of limit theorems for (Xn). As noted above, the classical mixing conditions have a rather
limited applicability, but equally effective coupling inequalities have been obtained for most of



1302 I. Berkes et al. / Stochastic Processes and their Applications 119 (2009) 1298–1324

the new weak dependence measures, such as

τ(M, X) =
∫
‖FX |M(t)− FX (t)‖1dt

α(M, X) = sup
t∈R
‖FX |M(t)− FX (t)‖1

β(M, X) = ‖ sup
t∈R

FX |M(t)− FX (t)‖1

φ(M, X) = sup
t∈R
‖FX |M(t)− FX (t)‖∞

(see Dedecker et al. [22–24], Rio [56,57]). Here FX and FX |M denote, respectively, the
distribution function of X , resp. its conditional distribution relative to M. Our S-mixing
condition is not directly comparable with the above dependence measures: on the one hand,
S-mixing is restricted to a more limited class of processes, namely processes {yk} allowing the
representation (4); on the other hand, for such processes its verification is almost immediate
(see the examples in Section 3) and it provides the required approximating independent r.v. X∗

directly, without coupling inequalities. Actually, S-mixing lies much closer to the predictive
dependence measures introduced in Wu [69] which also provide the coupling variables directly,
although, as our examples will show, S-mixing leaves more freedom in constructing the
approximating independent r.v.’s.

A third approach to weak dependence is martingale approximation, as developed in
Gordin [39] and Philipp and Stout [53]. In the context of sequences {yk} of the form (4),
particularly complete results have been proved by Wu [69,73]. Again, S-mixing cannot be
directly compared to approximate martingale conditions valid for weak dependence sequences:
the latter hold for a very large class of processes, but they apply only in the context of partial
sums, unlike S-mixing which has no such limitations.

Our paper is organized as follows. In Section 2 we will formulate our results and in Section 3
we will give several applications. In Section 4 we will give the proofs.

2. Results

As discussed in the Introduction, our mixing condition requires approximating r.v.’s ykm ,
k ∈ Z,m ∈ N. In applications, such variables can be constructed in various ways
(truncation, substitution, coupling, smoothing); we will discuss various constructions after
formulating our theorems. On occasion we will use the notation an � bn , meaning that
lim supn→∞ |an/bn| <∞.

For our first result, Theorem 1, we assume that y0 is uniformly distributed on the unit interval.
We define Yk(s) = I {yk ≤ s} − s, s ∈ [0, 1].

Theorem 1. Let {yk, k ∈ Z} be a stationary S-mixing sequence satisfying (A) with γm = δm =

m−A, A > 4. Assume further that y0 is uniformly distributed on the unit interval. Then the series

0(s, s′) =
∑

−∞<k<∞

E Y0(s)Yk(s
′) (5)

converges absolutely for every choice of parameters 0 ≤ s, s′ ≤ 1. Moreover, there exists a
two-parameter Gaussian process K (s, t) such that E K (s, t) = 0 and E K (s, t)K (s′, t ′) =
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(t ∧ t ′) 0(s, s′) and for some α > 0 we have

sup
0≤t≤n

sup
0≤s≤1

|R(s, t)− K (s, t)| = o(n1/2(log n)−α) a.s. (6)

In many applications y0 will not be uniformly distributed, but it has a continuous distribution
function F(s) = P(y0 ≤ s). Then we consider the random variables zk = F(yk), which are
uniformly distributed. To check S-mixing for the transformed sequence (zk) we assume that the
distribution function F(x) = P(y0 ≤ x) is Lipschitz continuous, i.e. P(y0 ∈ (r, s]) ≤ L ·(s−r)θ

for all −∞ < r < s <∞ and for some θ > 0. Then we have

P(|F(yk)− F(ykm)| > m−A) ≤ P
(
|yk − ykm |

θ > (1/L) · m−A
)
.

Thus if

P(|yk − ykm | > m−A/θ )� m−A with A > 4,

then Theorem 1 applies to the sequence {F(yk), k ≥ 1}. We put

Ŷk(s) = I {yk ≤ s} − P(y0 ≤ s), s ∈ R.

Theorem 2. Let {yk, k ∈ Z} be a stationary sequence such that P(y0 ≤ s) is Lipschitz
continuous of order θ > 0. Assume that {yk, k ∈ Z} is S-mixing and (A) holds with
γm = m−A/θ , δm = m−A for some A > 4. Then the series

0̂(s, s′) =
∑

−∞<k<∞

E Ŷ0(s)Ŷk(s
′) (7)

converges absolutely for every choice of parameters (s, s′) ∈ R2. Moreover, there exists a
two-parameter Gaussian process K̂ (s, t) such that E K̂ (s, t) = 0 and E K̂ (s, t)K̂ (s′, t ′) =
(t ∧ t ′) 0̂(s, s′) and for some α > 0

sup
0≤t≤n

sup
s∈R
|R̂(s, t)− K̂ (s, t)| = o

(
n1/2(log n)−α

)
a.s. (8)

For dependent sequences {yk} one cannot hope to obtain sharp error rates like in Komlós
et al. [45] since their quantile transformation techniques depend heavily on independence.
However, the rates in (6) and (8) are sufficient to obtain the corresponding weak convergence
result.

We formulate now a few corollaries of Theorem 1; analogous results can be obtained for
Theorem 2. Let D[0, 1]2 denote the Skorokhod space corresponding to functions defined on
[0, 1]2.

Corollary 1. Assume that the conditions of Theorem 1 hold and let (s, t) ∈ [0, 1]2. Then

1
√

n
R(s, nt)

converges weakly in D[0, 1]2 to some Gaussian process {K (s, t), (s, t) ∈ [0, 1]2} with
E K (s, t) = 0 and E K (s, t)K (s′, t ′) = (t ∧ t ′) 0(s, s′) with covariance function 0 given in
(5).
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We would like to point out that most of the weak invariance principles mentioned in the
Introduction deal only with the weak convergence of n−1/2 R(s, n) to some one-parameter
Gaussian process, which limits their scope of applications.

Combining (6) with Theorem 2 in Lai [47] we get the following two-dimensional functional
law of the iterated logarithm.

Corollary 2. Assume that the conditions of Theorem 1 hold. Then the sequence

{(2n log log n)−1/2 R(s, nt), n ≥ 3}

of random functions on [0, 1]2 is relatively compact in the supremum norm and has the unit ball
B in the reproducing kernel Hilbert space H(0∗) as its set of limits, where 0∗(s, s′, t, t ′) =
(t ∧ t ′)0(s, s′) with 0 as in (5).

Construction of the ykm
In order to apply Theorems 1 and 2 we have to find approximating random variables ykm

satisfying our S-mixing condition (A) + (B). Below we will discuss different construction
methods.

(I) Substitution: For j > k + m and j < k − m replace ε j with some fixed constant:

ykm = f (. . . , c, c, εk−m, . . . , εk, . . . , εk+m, c, c, . . .). (9)

For example, if yk =
∑

j∈Z a jεk− j is a linear process then taking c = 0 gives

ykm =

m∑
j=−m

a jεk− j . (10)

This substitution method is used by Doukhan and Louhichi [32] to estimate the decay rate of
some dependence coefficient in the definition of their weak dependence concept. It is important
to note that in general one has to be careful whether these random variables ykm are still well
defined. For example, the variables in an augmented GARCH(1, 1) model {yk, k ∈ Z} permit the
explicit representation

yk =

∞∑
l=1

g(εk−l)

l−1∏
i=1

h(εk−i ), (11)

where g and h are Borel measurable functions with E log h(ε0) = µ < 0 and E |g(ε0)| < ∞.
The series in (11) converges a.s. since by µ < 0 and the law of large numbers there exists an
a.s. finite random variable L > 0 such that

l−1∏
i=1

h(εk−i ) = exp

(
l−1∑
i=1

log h(εk−i )

)
< exp(µl/2)

for l ≥ L . However, if h(0) = 1, then replacing the random variables εk−i , i > m, with 0
will make the infinite series no longer convergent, since the product in (11) will not generally
converge to 0 as l → ∞. For the specific example this unpleasant consequence can be avoided
by choosing a constant c 6= 0 in (9) such that |h(c)| < 1. Nevertheless, if we do not have such a
simple explicit form for yk , it is desirable to have a construction method which assures that ykm
exists, whenever yk is well defined.
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(II) Truncation: Many important linear and nonlinear time series models (including linear
processes, ARCH/GARCH type models, etc.) can be represented in the form

yk = T

(
∞∑

l=1

gl(εk− j (l), . . . , εk)

)
,

where j : N → N is non-decreasing, gl and T are Borel measurable. Setting t (m) = 0 if
j (1) > m and t (m) = max{n ∈ N | j (n) ≤ m} otherwise, gives m-dependent random variables
by defining

ykm = T

(
t (m)∑
l=1

gl(εk− j (l), . . . , εk)

)
.

(III) Coupling: For each ` ≥ 1 we define an i.i.d. sequence {ε(`)k , k ∈ Z} with ε(`)0
L
= ε0 such

that the sequences (εk), (ε
(1)
k ), (ε(2)k ), . . . are mutually independent. This is always possible by

enlarging the original probability space. Now set

ykm = f (. . . , ε(k)k−m−1, εk−m, . . . , εk, . . . , εk+m, ε
(k)
k+m+1, . . .). (12)

The advantage of the coupling method is that the random variables ykm have the same marginal
distributions as the yk’s. Coupling conditions of this type were first used by Wu [69].

(IV) Smoothing: If yk is integrable, then a further construction for ykm is given by

ykm = E(yk | Fk−m,k+m),

where Fa,b denotes the σ -field generated by {ε j , a ≤ j ≤ b}. Clearly ykm is a function of
εk−m, . . . , εk+m and it provides the best L2 approximation of yk among such functions provided
Ey2

k < ∞. Condition (A) of S-mixing is then an ‘in probability’ version of the usual definition
of near-epoch dependence (NED), thus our method covers stationary sequences satisfying NED.
See for example Pötscher and Prucha [54].

3. Applications

In this section we apply our results to several important processes. For the construction of
the approximating random variables ykm we can now use the special structure of each process.
Since our S-mixing concept allows for a variety of construction methods, its verification will be
relatively simple in all cases.

3.1. Linear processes

Assume that yk =
∑
∞

j=−∞ a jεk− j with i.i.d. random variables εk . If a j = 0 for j < 0 (causal
case), weak invariance principles have been proved among others by Doukhan and Surgailis [34]
(in the short memory case) and by Surgailis [66].

Let ykm be given as in (10). Then an inequality of type (A) can easily be obtained. For

example, if we assume that E |ε0|
p < ∞ for some p > 0 and ak � |k|

−(A+ A
p+1) (k → ∞)

we get by the Markov and the Minkowski inequality

P(|yk − ykm | > m−A) ≤ E |ε0|
pm Ap

(∑
|k|≥m

|ak |

)p

� m−A.
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The assumption on the decay rate of ak is a little more restrictive than e.g. in [34] or in [70].
However, the results are not directly comparable since we obtain the strong convergence of the
two-parameter empirical process and our results apply to non-causal processes as well. In order to
apply Theorem 2 we need conditions ensuring that Fy(x) = P(y0 ≤ x) is Lipschitz continuous
of some order θ (Fy ∈ Lipθ ). A weak invariance principle without smoothness assumptions on
the innovations is provided in [25]. It can be easily shown that a sufficient condition for Fy ∈ Lipθ
is Fε ∈ Lipθ . In [34] a condition on the characteristic function of ε0 is required, implying
that Fε is Lipschitz continuous and infinitely often differentiable. Note however, that requiring
smoothness conditions for the ε’s is not necessary for obtaining Fy ∈ Lipθ . A simple example is
when εk = ±1, each with probability 1/2. In order that the series defining y0 converges a.s. we
have to require

∑
a2

n < ∞ and without loss of generality we can assume |an| ≤ 1. Assume
further that∫

|t |>1

∏
n:|an |<1/|t |

e−
t2
2 a2

n dt <∞.

Since

|Eeit y0 | =

∞∏
n=−∞

| cos(tan)| ≤ I {|t | ≤ 1} +
∏

n:|an |<1/|t |

e−
t2
2 a2

n I {|t | > 1},

we conclude that
∫
|Eeit y0 | dt <∞ and thus Fy has a continuous density (cf. [12, p. 347]). This

argument can be easily extended by requiring |Eeitε
| ≤ g(t) for |t | ≤ A, such that∫

∞

|t |>A

∏
n:|an |<A/|t |

g(tan) dt <∞.

With the exception of special cases one can say little about the shape of the distribution of y0
(see e.g. [19, Chapter 3.5]).

3.2. Nonlinear time series

Many important time series models {yk, k ∈ Z} satisfy a stochastic recurrence equation

yk = G(yk−1, εk), (13)

where G is a measurable function and {εk, k ∈ Z} is an i.i.d. sequence. A typical example is the
ARCH(1) model (see Engle [37]). Note that the GARCH(p, q) model is formally not covered
by (13), but it can be embedded into a p + q − 1 dimensional stationary process satisfying a
stochastic recurrence equation similar to (13) (see Bougerol and Picard [15,16]), and thus with
suitable changes, our method still works. For further examples, see the discussion in Wu [69] and
Shao and Wu [63]. Sufficient conditions for the existence of a stationary solution of (13) were
given e.g. by Diaconis and Freedman [29]. They showed that (13) has a unique and stationary
solution provided G satisfies the Lipschitz condition

|G(x2, u)− G(x1, u)| ≤ K (u)|x2 − x1|

and

E[K (ε0)] <∞, E[log K (ε0)] < 0 and E |G(x0, ε0)| <∞ (14)
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for some x0 ∈ R. Iterating (13) yields yk = f (. . . , εk−1, εk) for some measurable function f
and it is a natural idea to define ykm by truncation, i.e. replacing the ε j ’s with 0 for j < k − m.
However, similarly to the construction of the ykm by substitution, truncating the sequence ε j may
ruin the convergence of iterations in (13). To avoid this difficulty we can use the coupling method
introduced by Wu [69] and define ykm by

ykm = f (. . . , ε(k)k−m−2, ε
(k)
k−m−1, εk−m, . . . , εk),

where {ε(`)k , k ∈ Z}, ` = 1, 2, . . . are i.i.d. sequences, independent of each other and of the
εk’s, and having the same distribution as {εk, k ∈ Z}. Clearly, the r.v.’s ykm satisfy (B). From
the results of [63] it follows that under the conditions on G assumed by Diaconis and Freedman
there exist p > 0 and 0 < % < 1 such that

E |yk − ykm |
p
� %m .

Thus condition (A) is satisfied with exponentially decreasing γn and δn and consequently our
results hold in this case, too.

3.3. Augmented GARCH sequences

Augmented GARCH sequences, introduced by Duan [35], have been applied with great
success in macroeconomics and finance. They include many popular models, for example
GARCH [13], AGARCH [30] or EGARCH models [51]. Consider the case of an augmented
GARCH(1, 1) sequence {yk, k ∈ Z} defined by

yk = σkεk (15)

with

Λ(σ 2
k ) = c(εk−1)Λ(σ 2

k−1)+ g(εk−1), (16)

where {εk, k ∈ Z} is an i.i.d. sequence and Λ(x), g(x) and c(x) are real-valued measurable
functions such that Λ−1(x) exists. Duan [35] and Aue et al. [1] gave necessary and sufficient
conditions for the existence of a unique strictly stationary solution of (15) and (16). If a unique
stationary solution exists, we can represent the conditional variance σ 2

k as

Λ(σ 2
k ) =

∞∑
j=1

j−1∏
i=1

c(εk−i ) g(εk− j ). (17)

We can construct the approximating r.v.’s ykm by defining

Λ(σ 2
km) =

m∑
j=1

j−1∏
i=1

c(εk−i ) g(εk− j ) (18)

and

ykm = σkmεk . (19)
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It is obvious that ykm satisfy relation (B). Hörmann [42] used the present dependence concept to
prove the functional CLT for the partial sum processes

Sn(t) =
[nt]∑
k=1

h(yk)

under the optimal condition E |h(y0)|
2 < ∞. Similar results can also be obtained for a general

class of polynomial GARCH(p, q) sequences (see Berkes et al. [5]).
Assume that the distribution function Fε of ε is Lipschitz continuous of order θ . Then we get

for s, t ∈ R

|Fy(t)− Fy(s)| = |P(y0 ≤ t)− P(y0 ≤ s)|

≤ E |Fε(t/σ0)− Fε(s/σ0)|

≤ C |t − s|θ E(σ−θ0 ).

Therefore we obtain Fy ∈ Lipθ if Fε ∈ Lipθ and E(σ−θ0 ) <∞.
The following lemma in Hörmann [42] shows that, under logarithmic moment conditions, a

polynomial GARCH(1, 1) sequence satisfies (A) with ykm defined as in (19). Similar estimates
apply for exponential GARCH sequences (see [42, Lemma 7]).

Lemma 1. Assume that Λ(x) = xδ with δ > 0 and a strictly stationary solution of (15)–(16)
exists. If furthermore

E(log+ |g(ε0)|)
µ <∞ and E(log+ |c(ε0)|)

µ <∞

hold for some µ > 2, then for sufficiently small α > 0 we have a C > 0 such that

P
(
|yk − ykm | > e−αm)

≤ P(|ε0| > eαm)+ C m(2−µ)/2.

3.4. Linear processes with dependent innovations

Let {yk, k ∈ Z} be a stationary sequence satisfying conditions (A) and (B) with γm = δm =

m−A1 , A1 > 1. Let

zk =

∞∑
i=−∞

ai yk−i

be the linear process generated by the yk and set

zkm =

m∑
i=−m

ai yk−i,m .

Assume that the following conditions hold:

E |y0|
p <∞ for some p > 0,

ak � |k|
−(A2+

A2
p +1) A2 > 0.

Then routine computations show that (A) holds with γm = δm = m−A where A = min (A1 − 1,
A2). Condition (B) is also satisfied with the modification that for the independence of the vectors
{y jm1 , j ∈ I1}, . . . , {y jmr , j ∈ Ir } the separation between Ik and Il has to be greater than
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4mk+4ml , a difference inconsequential for the validity of our theorems. This shows, for example,
that our results apply for an AR(1) processes with augmented GARCH innovations. Processes
with dependent innovations play an important role in modeling financial data. (See e.g. [3,40,
48].) Invariance principles for the partial sums of linear processes with dependent innovations
have been studied by Wu and Min [72].

4. Proofs

In this section we will prove Theorem 1. The concept of our proof is based on the method of
Berkes and Philipp [8]. Since the arguments are rather technical, we outline the main ideas.

Let t0 = 0 and tk = exp(k1−ε), k ≥ 1 and ε ∈ (0, 1) to be specified later. Further let

ski = i2−[log k/(2 log 2)] for 0 ≤ i ≤ dk = 2[log k/(2 log 2)] (k ≥ 1).

In addition set d0 = 0 and s00 = 0. Then

G =
⋃
k≥0

{(ski , tk), 0 ≤ i ≤ dk}

defines a set of points in [0, 1] × [0,∞), which we shall call grid. Note that this construction
implies {s`1 , . . . , s`d`

} ⊆ {sk1 , . . . , skdk
}, if ` ≤ k. Hence, for every point (s, t) on the grid G,

R(s, t) can be written as a telescoping sum of vertical increments R(ski , tk) − R(ski , tk−1) and
horizontal increments R(ski , tk) − R(ski−1 , tk), where the indices i depend on the point (s, t).
The segmentation can be carried out as follows supposing that (s, t) = (ski , tk). We show how
to move on the grid from (s, t) to (0, 0) using vertical and horizontal moves, then the increments
can easily be obtained. In the first step we want to move vertically on the grid, therefore we
check if (ski , tk−1) is also a grid point. If it is, we move there and repeat this step starting from
(ski , tk−1). If we cannot move vertically, we use step two that moves us horizontally from (s jl , t j )

to (s jl−1 , t j ). Then we continue with step one starting from (s jl−1 , t j ). Repeating the two steps
will lead us to (0, 0).

Of course, the decomposition of (s, t) can also be used to write K (s, t) as sum of increments.
Using our dependence condition and a blocking method we get for k sufficiently large, that the
distribution of the Rdk+1 valued vector

Zk = (tk − tk−1)
−1/2(R(ski , tk)− R(ski , tk−1))

dk
i=0

is close in distribution to

Vk = (tk − tk−1)
−1/2(K (ski , tk)− K (ski , tk−1))

dk
i=0.

This distributional closeness is shown in terms of closeness of the corresponding characteristic
functions (Lemma 9). A well known result of Berkes and Philipp [9, Theorem 1] allows us to

construct a sequence of independent vectors V̂k with V̂k
L
= Vk on the same space with the

sequence Zk , such that ‖Zk − V̂k‖ is small with high probability. By Lemma 2.11 of Philipp and
Dudley [36] we can assume without loss of generality that V̂k = Vk , i.e. the sequence V̂k can
be extended to a process K . Since it also turns out that the horizontal increments are negligible,
this implies that we can construct the processes K and R in such a way that they are sufficiently
close on the grid G. These results will be derived in Section 3.2. Hence we have to show that the
fluctuation of both processes on the rectangles [ski , ski+1 ] × [tk, tk+1] is sufficiently small. The
latter issue is treated in the following subsection.
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4.1. Increments of the empirical process

Let {yk, k ∈ Z} be an S-mixing sequence with approximating random variables ykm . We put
Ykm(s) = I {ykm ≤ s} − s, s ∈ (0, 1).

Lemma 2. Assume that the conditions of Theorem 1 hold. Then there is a constant C2 such that
for any k ≥ 1 and 0 ≤ s, t ≤ 1

|EY0(s)Yk(t)| ≤ C2k−A. (20)

Proof. For some natural number m ≤ k/2 write

Y0(s)Yk(t) = (Y0(s)Yk(t)− Y0m(s)Ykm(t))+ Y0m(s)Ykm(t).

By assumption Y0m and Ykm are independent. Since all the random variables |Yk(t)| ≤ 1 and
|Ykm(t)| ≤ 1 we get

|EY0(s)Yk(t)| ≤ |E(Y0(s)Yk(t)− Y0m(s)Ykm(t))| + |EY0m(s)||EYkm(t)|

≤ E |Y0(s)− Y0m(s)| + E |Yk(t)− Ykm(t)| + |EY0m(s)|. (21)

Next observe that

E |Y0(s)− Y0m(s)| = P(Y0(s) 6= Y0m(s)). (22)

Note that P(Y0(s) 6= Y0m(s)) is the probability that y0 and y0m are on different sides of s. Hence
by our assumptions we get

P(Y0(s) 6= Y0m(s))

≤ P(y0 ∈ [s − m−A, s + m−A
])+ P(|y0 − y0m | > m−A) ≤ C2,1m−A. (23)

Also we have by (22), (23) and EY0(s) = 0

|EY0m(s)| ≤ |EY0m(s)− Y0(s)| + |EY0(s)| ≤ C2,1m−A. (24)

Now combine (21)–(23) and take m = bk/2c. (As usual bxc denotes the integer part of the real
number x .) �

Remark 1. Lemma 2 implies that the series in (5) converges absolutely.

We define for 0 ≤ s ≤ s′ ≤ 1 the basic increments

Ȳk(s, s′) = Yk(s
′)− Yk(s) = I {s < yk ≤ s′} − (s′ − s) and

Ȳ ′k(s, s′) = Ykm(s
′)− Ykm(s) = I {s < ykm ≤ s′} − (s′ − s) with m = bkρ/2c,

where 0 < ρ < 1/2 will be specified later. Our goal is to estimate the increments

R(s′, t ′)− R(s, t) =
∑

1≤k≤t

Ȳk(s, s′)+
∑

t<k≤t ′
Yk(s

′) for t ′ > t. (25)

Lemma 3. Assume that the conditions of Theorem 1 are satisfied. Then for 0 ≤ s ≤ s′ ≤ 1 there
are constants C3, τ > 0 such that

E

∣∣∣∣∣ N∑
k=1

Ȳk(s, s′)

∣∣∣∣∣
2

≤ C3 N (s′ − s)τ ,

where C3, τ do not depend on N , s, s′.
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Proof. The stationarity of {yk, k ∈ Z} implies that

EȲk(s, s′)Ȳl(s, s′) = EȲ1(s, s′)Ȳl−k+1(s, s′).

Using Ȳk = Ȳk(s, s′) for notational simplicity we obtain

E

∣∣∣∣∣ N∑
k=1

Ȳk

∣∣∣∣∣
2

= N

(
EȲ 2

1 + 2
N∑

k=2

EȲ1Ȳk −
2
N

N∑
k=2

(k − 1)EȲ1Ȳk

)
. (26)

Following the proof of Lemma 2 we get that

|EȲ0(s, s′)Ȳk(s, s′)| ≤ C3,1k−A for all 0 ≤ s ≤ s′ ≤ 1 (27)

and some C3,1 > 0. On the other hand the Cauchy–Schwarz inequality gives

|EȲ0(s, s′)Ȳk(s, s′)| ≤ EȲ 2
0 (s, s′) = (s′ − s)

(
1− (s′ − s)

)
≤ (s′ − s). (28)

Putting together (27) and (28) we see that

|EȲ0(s, s′)Ȳk(s, s′)| ≤ C3,2k−A(1−τ)(s′ − s)τ (29)

for some C3,2 > 0. Choose τ > 0 such that A(1− τ) > 1. Then the desired result follows using
(26) and (29) with standard analysis. �

Lemma 4. Assume that the conditions of Theorem 1 hold. Then there are constants
C4,1,C4,2,C4,3, η > 0 and ρ ∈ (0, 1/2) such that for all x > 1 and for any 0 ≤ s ≤ s′ ≤ 1

P

(∣∣∣∣∣ N∑
k=1

Ȳk(s, s′)

∣∣∣∣∣ > x

)
≤ C4,1

(
exp

(
−C4,2

x2

N (s′ − s)η

)

+ exp
(
−C4,3

x

Nρ

)
+ x−(2+η)

)
.

Proof. We set

SN =

N∑
k=1

Ȳk(s, s′) and S′N =
N∑

k=1

Ȳ ′k(s, s′).

Again we use Ȳk = Ȳk(s, s′) and similarly Ȳ ′k = Ȳ ′k(s, s′). Then the Markov and the Minkowski
inequalities give for κ ≥ 1

P
(
|SN − S′N | > x

)
≤ x−κE |SN − S′N |

κ

≤ x−κ
(

N∑
k=1

(
E |Ȳk − Ȳ ′k |

κ
)1/κ)κ

.

Observe that |Ȳk − Ȳ ′k | ∈ {0, 1}. Consequently by (23) we have

E |Ȳk − Ȳ ′k |
κ
= E |Ȳk − Ȳ ′k | = P(Ȳk 6= Ȳ ′k) ≤ C4,4k−ρA. (30)

Since A > 4 we can choose ρ close to 1/2 and η > 0 such that ρA > 2+ η. Then we get

P
(
|SN − S′N | > x

)
≤ C4,5x−(2+η). (31)
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We know that by definition the variables Ȳ ′k , k = 1, . . . , N , are bNρ
c-dependent. We now define

Z (1)l =

(2l+1)bNρ
c∧N∑

k=2lbNρc+1

Ȳ ′k 0 ≤ l ≤ m,

where m is the largest integer such that 2mbNρ
c < N . Consequently the variables Z (1)l ,

0 ≤ l ≤ m, are independent. Furthermore we define

Z (2)l =

(2l+2)bNρ
c∧N∑

k=(2l+1)bNρc+1

Ȳ ′k 0 ≤ l ≤ m.

If (2m + 1)bNρ
c ≥ N then Z (2)m is 0. Also define X (1)l just like Z (1)l with Ȳk replacing Ȳ ′k .

Remember that we chose Aρ > 2, hence we have Aρ/2 = 1 + δ with δ > 0. The inequality in
(30) now implies(

E |Z (1)l − X (1)l |
2
)1/2
≤

(2l+1)bNρ
c∧N∑

k=2lbNρc+1

(
E |Ȳ ′k − Ȳk |

2
)1/2

≤

(2l+1)bNρ
c∧N∑

k=2lbNρc+1

C1/2
4,4 k−ρA/2

≤ C4,5 N−ρδ(2l)−(1+δ).

By using the Minkowski inequality and Lemma 3 we obtain

E |Z (1)l |
2
≤

((
E |X (1)l |

2
)1/2
+

(
E |Z (1)l − X (1)l |

2
)1/2

)2

≤

((
C3 Nρ(s′ − s)τ

)1/2
+ C4,6 N−ρδl−(1+δ)

)2
.

As we use approximately 2m intervals of length around bNρ
c we get m ∼ 1

2 N 1−ρ . Thus we can
show

m∑
l=0

E |Z (1)l |
2
≤ C4,7

(
N (s′ − s)τ + Nρ/2−ρδ(s′ − s)τ/2 + N−2ρδ

)
≤ C4,8 N

(
(s′ − s)τ/2 + N−(1+2ρδ)

)
. (32)

Further it is clear that

|Z (1)l | ≤ Nρ for 0 ≤ l ≤ m. (33)

With (32) and (33) we can now apply Kolmogorov’s exponential bound ([52], Lemma 7.1) to get

P

(
m∑

l=0

Z (1)l > x

)
≤ exp

(
−

C4,9x2

N (s′ − s)τ/2 + N−2ρδ

)
+ exp

(
−

C4,10x

Nρ

)
.

It can be verified that an analogue inequality holds for
∑m

l=0 Z (2)l . As S′N =
∑m

l=0(Z
(1)
l + Z (2)l )

we have shown, using (31), that

P(SN > x) ≤ 2 exp
(
−

C4,9x2

N (s′ − s)τ/2 + N−2ρδ

)
+ 2 exp

(
−

C4,10x

Nρ

)
+ C4,5x−(2+η).

(34)
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If N (s′ − s)τ/2 ≥ N−2ρδ the lemma is proven. Otherwise the first term on the right-hand side of
(34) is dominated by 2x−(2+η) which completes the proof. �

Lemma 5. If the conditions of Theorem 1 are satisfied, then we have for any 0 ≤ z0 < z ≤ 1,
T > 1 and λ > max{(z − z0)

η/2, 1/ log T } positive constants C5,1,C5,2, α > 0 such that

P

 sup
z0≤s≤z
0≤t≤T

∣∣∣∣∣∑
k≤t

Ȳk(zo, s)

∣∣∣∣∣ ≥ λT 1/2

 ≤ C5,1

(
exp

(
−C5,2

λ2

(z − z0)η

)
+ T−α

)
,

where η comes from Lemma 4.

Proof. We use a chaining argument to prove the lemma. We assume without loss of generality
that z0 = 0. Let (s, t) be an element in the rectangle X = [0, z] × [0, T ]. Then we can write

s = z
∞∑

i=1

ζi 2−i for ζi ∈ {0, 1} and thus define sv = z
v∑

i=1

ζi 2−i .

In the same way we use

t = T
∞∑

i=1

ξi 2−i for ξi ∈ {0, 1} and define tu = T
u∑

i=1

ξi 2−i .

Furthermore we set s0 = t0 = 0. Observe that

(sv−1, sv] × (tu−1, tu] ⊆ (z j2−v, z( j + 1)2−v] × (T i2−u, T (i + 1)2−u
],

where ( j, i) ∈ {0, 1, . . . , 2v − 1} × {0, 1, . . . , 2u
− 1} depend on (s, t). Let for any integers

u, v ≥ 1

Mu,v = max
0≤i≤2u−1
0≤ j≤2v−1

∣∣∣∣∣∣
∑

T i2−u<k≤T (i+1)2−u

Ȳk(z j2−v, z( j + 1)2−v)

∣∣∣∣∣∣ .
Then we obtain for any m ∈ N∣∣∣∣∣ ∑

0<k≤t

Ȳk(0, s)

∣∣∣∣∣ =
∣∣∣∣∣∣

m∑
u,v=1

∑
tu−1<k≤tu

Ȳk(sv−1, sv)+
∑

tm<k≤t

Ȳk(0, s)+
∑

0<k≤tm

Ȳk(sm, s)

∣∣∣∣∣∣
≤

m∑
u,v=1

Mu,v + (t − tm)+

∣∣∣∣∣ ∑
0<k≤tm

Ȳk(sm, s)

∣∣∣∣∣
≤

m∑
u,v=1

Mu,v +
T

2m +

∣∣∣∣∣ ∑
0<k≤tm

Ȳk(sm, s)

∣∣∣∣∣ .
For any x ≥ 0 we have Ȳk(s, s′) ≤ Ȳk(s, s′ + x)+ x and since s − sm ≤ z2−m we get∣∣∣∣∣ ∑

0<k≤tm

Ȳk(sm, s)

∣∣∣∣∣ ≤ m∑
u=1

∣∣∣∣∣∣
∑

tu−1<k≤tu

Ȳk(sm, sm + z2−m)

∣∣∣∣∣∣+
∑

tu−1<k≤tu

z

2m


≤

m∑
u=1

Mu,m +
T

2m .
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Altogether this implies that for every m ≥ 1∣∣∣∣∣ ∑
0<k≤t

Ȳk(0, s)

∣∣∣∣∣ ≤ 2

(
m∑

u,v=1

Mu,v +
T

2m

)
.

For T > 1 and λ > 0 we can choose an m ∈ N (dependent on T and λ) such that

max{1, λ/2}2m−1
≤ T 1/2

≤ λ2m−1. (35)

We now use xβ :=
∑
∞

u,v=0 2−β(u+v) with β > 0. Consequently we get

P

(
m∑

u,v=1

Mu,v +
T

2m > λT 1/2

)
≤ P

(
m∑

u,v=1

Mu,v >
λ

2
T 1/2

)

≤ P

(
m∑

u,v=1

Mu,v >
λ

2xβ
T 1/2

m∑
u,v=1

2−β(u+v)
)

≤

m∑
u,v=1

P

(
Mu,v >

λ

2xβ
T 1/22−β(u+v)

)
.

By Lemma 4 we have

P

(
Mu,v >

λ

2xβ
T 1/22−β(u+v)

)

≤ C5,32u+v

exp
(
−C5,4λ

22−2β(u+v)+u+vηz−η
)
+ exp

(
−C5,5λT 1/2−ρ2−β(u+v)+uρ

)

+

(
λT 1/22−β(u+v)

2xβ

)−(2+η)
= C5,32u+v (s1(u, v)+ s2(u, v)+ s3(u, v)) .

We fix a small β. Then if 2β < min{η, 1} we can find a δ1 > 0 such that

m∑
u,v=1

2u+vs1(u, v) ≤
m∑

u,v=1

2u+v exp
(
−C5,6λ

2 (2δ1u
+ 2δ1v

)
z−η

)

=

(
m∑

u=1

2u exp
(
−C5,6λ

22δ1uz−η
))2

≤ C5,7 exp
(
−C5,8λ

2z−η
)
.

To drop the dependence of C5,7 and C5,8 on λ and z we used the property that λ2z−η ≥ 1.

We now choose β and n such that n(β − ρ) < −1 and n(β/2 + ρ − 1/2) < −1/2. We use
(35) and 1/λ ≤ log T to get 2m

≤ 4T 1/2/λ ≤ 4T 1/2 log T . This together with e−x
≤ c(n)x−n
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for any x > 0 implies
m∑

u,v=1

2u+vs2(u, v) ≤
m∑

u,v=1

C5,9λ
−n2n(β(u+v)−uρ)+u+vT−n(1/2−ρ)

≤ C5,9λ
−n2m(βn+1)T−n(1/2−ρ)m

∞∑
u=1

2u(nβ−nρ+1)

≤ C5,10λ
−n2m(βn+1)T−n(1/2−ρ)m

≤ C5,11(log T )n4βn+1T 1/2(βn+1)(log T )βn+1T−n(1/2−ρ) log T

= C5,12(log T )n(1+β)+2T n(β/2+ρ−1/2)+1/2

≤ C5,13T−δ2

for some positive δ2. Moreover we observe that for β < 1/2− 1/(2+ η)
m∑

u,v=1

2u+vs3(u, v) ≤
m∑

u,v=1

2u+v
(
λ−(2+η)T−(2+η)/22(β(u+v)+1)(2+η)x2+η

β

)
≤ C5,14(log T )2+ηm222m+(2βm+1)(2+η)T−(2+η)/2

≤ C5,15T−δ3

for some δ3 > 0. This completes the proof. �

We now turn to estimating the increments of the Gaussian process K (s, t).

Lemma 6. Let K (s, t) be a two-parameter Gaussian process with E K (s, t) = 0 and
E K (s, t)K (s′, t ′) = (t ∧ t ′)0(s, s′), where 0(s, s′) is defined as in Theorem 1. Then there exist
constants C6,1,C6,2 > 0 such that for all x ≥ x0, any 0 ≤ z0 ≤ z ≤ 1 and 0 ≤ T0 ≤ T

P

(
sup
(s,t)∈I

|K (s, t)− K (z0, T0)| ≥ x
(

T 1/2(z − z0)
τ/2
+ |T − T0|

1/2
))

≤ C6,1 exp(−C6,2x2),

where I = [z0, z] × [T0, T ] and τ stems from Lemma 3.

Proof. We define Z(s, t) := K (z0 + s(z − z0), T0 + t (T − T0))−K (z0, T0) for (s, t) ∈ [0, 1]2.
Then clearly

sup
(s,t)∈I

|K (s, t)− K (z0, T0)| = sup
(s,t)∈[0,1]2

|Z(s, t)|.

We observe that 0(s, s′) = 0(s′, s) and thus

E |K (s, t)− K (s′, t)|2 = t
(
0(s, s)+ 0(s′, s′)− 20(s, s′)

)
= t

∑
k∈Z

EȲ0(s, s′)Ȳk(s, s′).

Hence by (29) we get

E |K (s, t)− K (s′, t)|2 ≤ C6,3t |s′ − s|τ .

Combining this observation with the definition of Z(s, t) we infer that

E |Z(s, t)− Z(s′, t)|2 ≤ C6,3T |s′ − s|τ (z − z0)
τ . (36)
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Lemma 2 shows that 0(s, s′) is uniformly bounded. Thus

E |Z(s, t)− Z(s, t ′)|2 ≤ C6,4|t
′
− t |(T − T0). (37)

Next observe that by the Minkowski inequality

E |Z(s, t)|2 ≤
(

E1/2
|Z(s, t)− Z(0, t)|2 + E1/2

|Z(0, t)− Z(0, 0)|2
)2
.

Together with (36) and (37) this implies

sup
(s,t)∈[0,1]2

E |Z(s, t)|2 ≤ C6,5

(
T 1/2(z − z0)

τ/2
+ (T − T0)

1/2
)2
. (38)

Combining (36)–(38) with Lemma 2 in Lai [47] completes the proof. �

We partition the set [0, 1] × [0,∞) in rectangles [ski , ski+1 ] × [tk, tk+1] where (ski , tk) ∈ G,
where G is the grid defined at the beginning of Section 4.

Lemma 7 shows that in order to prove Theorem 1 it suffices to construct a Gaussian process
K (s, t) with the covariance function given in Theorem 1 which satisfies for some γ1 > 0

max
0≤i≤dk−1

|R(ski , tk)− K (ski , tk)|
a.s.
= O

(
t1/2
k (log tk)

−γ1
)
. (39)

That is, it suffices to show that K (s, t) and R(s, t) are close to each other on the grid G.

Lemma 7. Let R̂(i, k) denote the maximal fluctuation of R(s, t) over the rectangle [ski , ski+1 ]×

[tk, tk+1]. Similarly define for K (s, t) the random variable K̂ (i, k). Then there is a γ0 > 0 such
that

max
0≤i≤dk−1

R̂(i, k)
a.s.
= O

(
t1/2
k (log tk)

−γ0
)
.

The same estimate applies for K̂ (i, k).

Proof. Observe that (25) implies

max
0≤i≤dk−1

R̂(i, k) ≤ 2 max
0≤i≤dk−1

sup
ski
≤s≤ski+1

tk≤t≤tk+1

|R(s, t)− R(ski , tk)|

≤ 2 max
0≤i≤dk−1

sup
ski≤s≤ski+1

∣∣∣∣∣ ∑
1≤l≤tk

Ȳl(sk, s)

∣∣∣∣∣+ 2 sup
s∈[0,1]

tk≤t≤tk+1

∣∣∣∣∣ ∑
tk<l≤t

Ȳl(0, s)

∣∣∣∣∣ .
By Lemma 5 we obtain

P

(
max

0≤i≤dk−1
sup

ski≤s≤ski+1

∣∣∣∣∣ ∑
1≤l≤tk

Ȳl(ski , s)

∣∣∣∣∣ ≥ t1/2
k (log tk)

−η/8

)

≤ C7,1k1/2
(

exp
(
−C7,2

(log tk)−η/4

k−η/2

)
+ t−αk

)
≤ C7,4k−2, (40)

where we used dk ∼ k1/2. Using

tk+1 − tk ∼ (1− ε)(log tk)
−ε/(1−ε)tk (41)
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which follows from the mean-value theorem we get from some easy estimates

P

 sup
s∈[0,1]

tk≤t≤tk+1

∣∣∣∣∣ ∑
tk<l≤t

Ȳl(0, s)

∣∣∣∣∣ ≥ t1/2
k (log tk)

−ε/4

 ≤ C7,5k−2.

Application of the Borel–Cantelli lemma finishes the proof of the first proposition. The second
part of the lemma can be tackled similarly by using Lemma 6. �

4.2. Construction of the approximating Gaussian process

We define the following increments in the parameters s and t :

∆( j)
l = R(sl j , tl)− R(sl j , tl−1) for l ≥ 1 and

B( j)
l = R(sl j , tl)− R(slm , tl) for l ≥ 1, m = max{ j − 1, 0}.

If (s, tk) is an element of the grid G, R(s, tk) can be represented as a sum of the above defined
increments, i.e. there are constants ml , jl depending on s such that

R(s, tk) =
k∑

l=1

(
δl B( jl )

l +∆(ml )
l

)
, (42)

where δl = δl(s) ∈ {0, 1}. Similarly to ∆( j)
l and B( j)

l we define the increments of K (s, t) as ∆̂( j)
l

and B̂( j)
l . Thus we get a representation for K (s, tk) analogous to (42):

K (s, tk) =
k∑

l=1

(
δl B̂( jl )

l + ∆̂(ml )
l

)
. (43)

Choosing ε/(1− ε) smaller than η/8 we get by (40) and the Borel–Cantelli lemma some γ2 > 0
such that for k →∞∣∣∣∣∣ k∑

l=1

δl B( jl )
l

∣∣∣∣∣ ≤ k∑
l=1

max
0≤i≤dl−1

sup
sli≤s≤sli+1

∣∣∣∣∣ ∑
1≤ j≤tl

Ȳ j (sli , s)

∣∣∣∣∣
�

k∑
l=1

t1/2
l (log tl)

−η/8 a.s.

� t1/2
k (log tk)

−γ2 .

By similar arguments we can show an analogous result for the process K (s, t). Consequently
in view of (39) the representations in (42) and (43) imply that Theorem 1 will be proved if
we succeed in constructing the approximating Gaussian process such that for any s = ski ,
i = 1, . . . , dk the sum of t-increments∣∣∣∣∣ k∑

l=1

(
∆(ml )

l − ∆̂(ml )
l

)∣∣∣∣∣
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is not too large. Specifically Theorem 1 follows from

k∑
l=1

max
0≤i≤dl

∣∣(R(sli , tl)− R(sli , tl−1)
)
−
(
K (sli , tl)− K (sli , tl−1)

)∣∣
≤ c6t1/2

k (log tk)
−γ3 a.s. (44)

for some γ3 > 0 for k →∞. To show (44) we need some more lemmas.
If j ∈ {tl−1 + 1, . . . , tl} we define the random variables

ŷ j = y jm, with m = btρl /2c (45)

for some 0 < ρ < 1/2. Additionally we set

Ŷ j (s) = I {ŷ j ≤ s} − P(ŷ j ≤ s)

and for pl−1 = bt
ρ
l c we divide the interval Il = {tl−1 + pl−1 + 1, . . . , tl} into blocks

Il1 , Jl1 , Il2 , Jl2 , . . . , Iln , Jln , where |Ilk | = b|Il |
ρ∗
c for some ρ < ρ∗ < 1/2 and |Jlk | = bt

ρ
l c.

The last blocks may be incomplete and of course n = n(l). Then we get

tl∑
j=tl−1+pl−1+1

Ŷ j (s) =
n∑

k=1

∑
j∈Ilk

Ŷ j (s)+
n∑

k=1

∑
j∈Jlk

Ŷ j (s) =:
n∑

k=1

Tlk (s)+
n∑

k=1

T ′lk (s).

We now introduce the vector

Tlk :=

(
Tlk (sl0), . . . , Tlk (sldl

)
)
.

Observe that n is proportional to |Il |
1−ρ∗ and by definition Tl1 ,Tl2 . . . ,Tln is an Rdl+1 valued

independent sequence with ETl1 = 0. We also set

ξ lk =
Tlk

|Il1 |
1/2 k = 1, . . . , n.

Lemma 8. We set Var ξ l1 = 6l =
(
6l(sli , sl j )

)dl

i, j=0
. Under the conditions of Theorem 1 there

exists a constant C8 such that

sup
0≤i, j≤dl

∣∣6l(sli , sl j )− 0(sli , sl j )
∣∣ ≤ C8|Il1 |

−1 for l ≥ 1.

Proof. Using the stationarity of {Yk(s), k ∈ Z} little algebra shows that

1
N − M

E

( ∑
M<k,m≤N

Yk(s)Ym(s
′)

)
=

∑
|k|<(N−M)

E Y0(s)Yk(s
′)

−
1

N − M

(N−M)−1∑
k=1

k(E Y0(s)Yk(s
′)+ E Yk(s)Y0(s

′)) (M < N ).

Hence we may write

0(s, s′) =
1
|Il1 |

E

 ∑
k,m∈Il1

Yk(s)Ym(s
′)
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+
1
|Il1 |

|Il1 |−1∑
k=1

k(E Y0(s)Yk(s
′)+ E Yk(s)Y0(s

′))+

∞∑
|k|=|Il1 |

E Y0(s)Yk(s
′)

=
1
|Il1 |

E

 ∑
k,m∈Il1

Yk(s)Ym(s
′)

+ O
(
|Il1 |
−1
)

(l →∞), (46)

where (46) follows from Lemma 2. (Note that O is uniformly in 0 ≤ s, s′ ≤ 1.) Consequently
we have

|6l(sli , sl j )− 0(sli , sl j )|

≤
1
|Il1 |

∑
k,m∈Il1

E |Ŷk(sli )Ŷm(sl j )− Yk(sli )Ym(sl j )| + O
(
|Il1 |
−1
)
.

By (24) and (45) we infer for k,m ∈ Il1

E |Ŷk(s)Ŷm(s
′)− Yk(s)Ym(s

′)| ≤ E |Ŷm(s
′)− Ym(s

′)| + E |Ŷk(s)− Yk(s)|

≤ C8,1t−Aρ
l .

Eq. (41) yields |Il1 | = O
(

tρ
∗

l l−ερ
∗
)

and this finishes the proof. �

We set 0l = ((0(sli , sl j )))
dl
i, j=0 and denote ‖A‖∞ = supi, j |ai j | for some matrix A = ((ai j )).

Since 0(s, s′) is a bounded function we infer by the last lemma that supl ‖6l‖∞ <∞.
Set

Xl = n−1/2
n∑

k=1

ξ lk

and denote by 〈· | ·〉 the inner product. Further let ‖ · ‖ denote the Euclidian norm.

Lemma 9. Let ‖u‖ ≤ K exp
(
l1/2

)
for some absolute number K . Then there exist constants C9,1,

C9,2 such that

|E exp (i〈u,Xl〉)− exp (−1/2〈u,0lu〉)| ≤ C9,1 exp
(
−C9,2l1−ε

)
‖u‖2,

where ε comes from the definition of tl .

Proof. For a matrix A ∈ Rd×d and u ∈ Rd we get

|〈u, Au〉| ≤ ‖u‖‖Au‖ ≤ ‖u‖2‖A‖ ≤ d‖u‖2‖A‖∞.

Consequently we get by Lemma 8 and the mean-value theorem that

| exp (−1/2〈u,0lu〉)− exp (−1/2〈u,6lu〉) | ≤ |〈u, (0l −6l)u〉|

≤ C9,3|Il1 |
−1
‖u‖2dl

≤ C9,4 exp(−C9,5l1−ε)‖u‖2. (47)
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Assume for the moment that the vectors ξ lk =

(
ξlk (sl0), . . . , ξlk (sldl

)
)

for 1 ≤ k ≤ n are not

only independent but also have the same distribution, then we get

E exp (i〈u,Xl〉) =

(
E exp

(
in−1/2

dl∑
j=0

u jξl1(sl j )

))n

.

Some routine analysis shows that | exp(i x)− (1+ i x − x2/2)| ≤ |x |3/6. Thus there exists some
Θ = Θ(u, l) with |Θ | ≤ 1 such that

E exp

(
in−1/2

dl∑
j=0

u jξl1(sl j )

)
= 1−

1
2n
〈u,6lu〉 +

Θ
6n3/2 E

∣∣∣∣∣ dl∑
j=0

u jξl1(sl j )

∣∣∣∣∣
3

.

From the Cauchy–Schwarz inequality and from |ξlk (s)| ≤ |Il1 |
1/2 we infer that

E

∣∣∣∣∣ dl∑
j=0

u jξl1(sl j )

∣∣∣∣∣
3

≤ |Il1 |
1/2(dl + 1)1/2‖u‖E

∣∣∣∣∣ dl∑
j=0

u jξl1(sl j )

∣∣∣∣∣
2

≤ |Il1 |
1/2(dl + 1)1/2‖u‖〈u,6lu〉

≤ C9,6|Il |
ρ∗/2d3/2

l ‖u‖
3.

Since n ∼ |Il |
1−ρ∗ we can find a Θ ′ = Θ ′(u, l) within the complex unit circle such that

E exp

(
in−1/2

dl∑
j=0

u jξl1(sl j )

)
= 1−

1
2n
〈u,6lu〉 +Θ ′

C9,7

6
|Il |

2ρ∗−3/2d3/2
l ‖u‖

3

=: 1−
1

2n
〈u,6lu〉 + r(l,u).

The relation |(1− t)r − exp(−r t)| ≤ t/2 holds for 0 ≤ t ≤ 1 and r ≥ 1. For 〈u,6lu〉 ≤ 2n we
then get∣∣∣∣exp(−1/2〈u,6lu〉)−

(
1−

1
2n
〈u,6lu〉

)n∣∣∣∣ ≤ 1
4n
〈u,6lu〉. (48)

Again assuming 〈u,6lu〉 ≤ 2n we obtain using |zn
−wn
| ≤ n|z−w| for z, w ∈ C, |z|, |w| ≤ 1,∣∣∣∣(1−

1
2n
〈u,6lu〉

)n

−

(
1−

1
2n
〈u,6lu〉 + r(l,u)

)n∣∣∣∣ ≤ n|r(l,u)|, (49)

because both terms on the left-hand side are within the complex unit circle (one according to our
assumptions, the other as it is a characteristic function).

If the ξ lk =

(
ξlk (sl0), . . . , ξlk (sldl

)
)

are not identically distributed, the estimates used for the

first block Il1 in Lemmas 8 and 9 are still valid for the blocks Il2 , . . . , Iln . Replacing the inequality
|zn
−wn

| ≤ n|z −w| by |
∏n

j=1 z j −
∏n

j=1w j | ≤
∑n

j=1 |z j −w j |, we get the statement in the
general case.

Putting together Eqs. (47)–(49) with respect to the restrictions for ‖u‖ and the value of n we
conclude the proof. �

To complete the proof of Theorem 1, we need the following result of Berkes and Philipp [9].
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Lemma 10. Let {Xl , l ≥ 1} be a sequence of independent Rdl , dl ≥ 1, valued random vectors
with characteristic functions fl(u), u ∈ Rdl , and let {Gl , l ≥ 1} be a sequence of probability
distributions on Rdl with characteristic functions gl(u), u ∈ Rdl . Suppose that for some non-
negative numbers λl , δl and Wl ≥ 108dl

| fl(u)− gl(u)| ≤ λl

for all u with ‖u‖ ≤ Wl and

Gl (u : ‖u‖ > Wl/4) ≤ δl .

Then without changing its distribution we can redefine the sequence {Xl , l ≥ 1} on a richer
probability space together with a sequence {Yl , l ≥ 1} of independent random variables such

that Yl
L
=Gl and

P (‖Xl − Yl‖ ≥ αl) ≤ αl for l ∈ N,

where α1 = 1 and

αl = 16dl W
−1
l log Wl + 4λ1/2

l W dl
l + δl for l ≥ 2.

Proof of Theorem 1. Let fl(u) be the characteristic function of Xl and gl(u) the characteristic
function of a dl -dimensional Gaussian vector Gl = (Gl(1), . . . ,Gl(dl)) with covariance matrix
Var(Gl) = 0. As 0(s, s′) is a bounded function we get by choosing Wl = exp(c1lε) with some
positive constant c1 that

P (‖Gl‖ > Wl/4) ≤ P

(
max

1≤i≤dl
|Gl(i)| > Wl/(4dl)

)
≤ c2dl exp

(
−c3(Wl/dl)

2
)

≤ c4 exp(−c5l−ε). (50)

With the help of Lemmas 9, 10 and (50) we can redefine the sequence {Xl} on a richer
probability space together with a sequence of independent Gaussian vectors {Yl}with covariance
matrix Var(Yl) = 0l such that

P
(
‖Xl − Yl‖ ≥ c6 exp(−c7lε)

)
≤ c6 exp(−c7lε).

We set

Zl = (tl − tl−1)
−1/2 (R(sli , tl)− R(sli , tl−1)

)dl
i=0 and

Vl = (tl − tl−1)
−1/2 (K (sli , tl)− K (sli , tl−1)

)dl
i=0 .

The definition of the Xl assures that ‖Xl − Zl‖ is small. In fact, using arguments akin to our
previous considerations, we can show that

P
(
‖Xl − Zl‖ ≥ exp(−c8lε)

)
≤ c9l−2. (51)

The Borel–Cantelli lemma then implies that for some constant c10 > 0 and for all l ≥ l0(ω)

‖Xl − Zl‖ ≤ c10 exp(−c8lε).

By the definition of Vl we have

{Yl , l ≥ 1}
L
={Vl , l ≥ 1}.
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By enlarging the probability space (see Lemma 2.11 in [36]) we can get

{Yl , l ≥ 1} = {Vl , l ≥ 1}.

Altogether we have shown that

max
0≤i≤dl

∣∣(R(sli , tl)− R(sli , tl−1)
)
−
(
K (sli , tl)− K (sli , tl−1)

)∣∣
≤ c11(tl − tl−1)

1/2 exp(−c12lε) a.s. for l →∞.

This shows (44) and thus completes the proof of Theorem 1. �

References
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