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Lacunary sequences and permutations

Christoph Aistleitner, István Berkes and Robert Tichy

Dedicated to the memory of Walter Philipp

Abstract By a classical principle of analysis, sufficiently thin subsequences of gen-
eral sequences of functions behave like sequences of independent random variables.
This observation not only explains the remarkable properties of lacunary trigono-
metric series, but also provides a powerful tool in many areas of analysis. In con-
trast to “true” random processes, however, the probabilistic structure of lacunary se-
quences is not permutation-invariant and the analytic properties of such sequences
can change radically after rearrangement. The purpose of this paper is to survey
some recent results of the authors on permuted function series. We will see that
rearrangement properties of lacunary trigonometric series ∑(ak cosnkx+bksinnkx)
and their nonharmonic analogues∑ck f (nkx) are intimately connected with the num-
ber theoretic properties of(nk)k≥1 and we will give a complete characterization of
permutational invariance in terms of the Diophantine properties of(nk)k≥1. We will
also see that in a certain statistical sense, permutationalinvariance is the “typical”
behavior of lacunary sequences.

1 Introduction

Let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard gap condition

nk+1/nk ≥ q > 1 (k = 1,2, . . .). (1.1)
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Salem and Zygmund [31] proved that if(ak)k≥1 is a sequence of real numbers sat-
isfying

AN → ∞ and aN = o(AN) with AN =

(

1
2

N

∑
k=1

a2
k

)1/2

, (1.2)

then(cos2πnkx)k≥1 obeys the central limit theorem

lim
N→∞

λ
{

x∈ (0,1) : A−1
N

N

∑
k=1

ak cos2πnkx≤ t

}

= (2π)−1/2
∫ t

−∞
e−u2/2du, (1.3)

whereλ denotes the Lebesgue measure. Under the same gap condition Weiss [40]
proved (cf. also Salem and Zygmund [32], Erdős and Gál [12]) that if (ak)k≥1 satis-
fies

AN → ∞ and aN = o
(

AN/(loglogAN)1/2) (1.4)

then(cos2πnkx)k≥1 obeys the law of the iterated logarithm

limsup
N→∞

(2A2
N loglogAN)−1/2

N

∑
k=1

ak cos2πnkx = 1 a.e. (1.5)

Comparing these results with the classical forms of the central limit theorem and
law of the iterated logarithm in probability theory, we see that under the gap condi-
tion (1.1) the functions cos2πnkx behave like independent random variables. Using
martingale techniques, Philipp and Stout [30] proved that if instead of (1.2) we as-
sumeaN = o(A1−δ

N ) for someδ > 0, then on the probability space([0,1],B ,λ) there
exists a Brownian motion process{W(t), t ≥ 0} such that

N

∑
k=1

ak cos2πnkx = W(A2
N)+O

(

A1−ρ
N

)

a.s. (1.6)

for someρ>0. The last relation implies not only the CLT and LIL for(cos2πnkx)k≥1,
but a whole class of further limit theorems for independent random variables; for ex-
amples and discussion we refer to [30].

The previous results extend, in a modified form, to lacunary subsequences of the
system{ f (nx)}n≥1 where f is a periodic measurable function, but the asymptotic
properties of this system are much more complicated than those of the trigonomet-
ric system. By a conjecture of Khinchin [23], iff has period 1 and is Lebesgue
integrable on(0,1), then

lim
N→∞

1
N

N

∑
k=1

f (kx) =

∫ 1

0
f (t)dt a.e. (1.7)

This remained open for almost 50 years until Marstrand [25] disproved it, but even
today, no precise condition for the validity of (1.7) is known. Similarly, there is no



Lacunary sequences and permutations 37

analogue of Carleson’s theorem [9] for the system( f (nx))n≥1 and we do not know
under what conditions the series∑∞

k=1ck f (kx) converges almost everywhere. In the
lacunary case, Kac [21] proved that iff satisfies a Lipschitz condition, thenf (2kx)
obeys a central limit theorem similar to (1.3) and not much later, Erdős and Fortet
(see [22], p. 646) showed that the CLT fails forf (nkx) for nk = 2k − 1 even for
some trigonometric polynomialsf . Gaposhkin [18] proved thatf (nkx) obeys the
CLT if nk+1/nk → α whereαr is irrational forr = 1,2. . . and the same holds if all
the fractionsnk+1/nk are integers. He also showed (see [19]) that the validity of
the CLT for f (nkx) is closely related to the number of solutions of the Diophantine
equation

ank +bnℓ = c, 1≤ k, ℓ ≤ N. (1.8)

Improving these results, Aistleitner and Berkes [1] recently gave a necessary and
sufficient Diophantine condition for the CLT forf (nkx). As the proofs of these
results show, the asymptotic behavior off (nkx) is determined by a complicated
interplay between the arithmetic properties of(nk)k≥1 and the Fourier coefficients
of f and the combination of probabilistic and number-theoreticeffects leads to a
unique, highly interesting asymptotic behavior. Let

DN(x1, . . . ,xN) := sup
0≤a<b<1

∣

∣

∣

∣

∣

∑N
k=11[a,b)(xk)

N
− (b−a)

∣

∣

∣

∣

∣

denote the discrepancy (mod 1) of the finite sequence(x1, . . . ,xN), where1[a,b) is
the indicator function of the interval[a,b), extended toR with period 1. Philipp
[27], [28] proved that if(nk)k≥1 satisfies the Hadamard gap condition (1.1), then the
discrepancyDN(nkx) of the sequence{nkx,1≤ k≤ N} obeys the LIL

1

4
√

2
≤ limsup

N→∞

NDN(nkx)√
2N loglogN

≤Cq a.e., (1.9)

whereCq is a number depending onq. Note that if(ξk)k≥1 is a sequence of inde-
pendent random variables with uniform distribution over(0,1), then

limsup
N→∞

NDN(ξk)√
2N loglogN

=
1
2

(1.10)

with probability one by the Chung–Smirnov LIL (see e.g. [33], p. 504). A com-
parison of (1.9) and (1.10) shows again that the sequence(nkx)k≥1 mod 1 behaves
like a sequence of i.i.d. random variables. Surprisingly, however, the limsup in (1.9)
can be different from the constant 1/2 in (1.10) and, as Fukuyama [14] showed, it
depends sensitively on(nk)k≥1. For example, fornk = ak, a ≥ 2 the limsupΣa in
(1.9) equals

Σa =
√

42/9 if a = 2,

Σa =

√

(a+1)a(a−2)

2
√

(a−1)3
if a≥ 4 is an even integer,
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Σa =

√
a+1

2
√

a−1
if a≥ 3 is an odd integer.

It is even more surprising that, as Fukuyama [15] showed, thelimsup in (1.9) is not
permutation-invariant and can change after a rearrangement of (nk)k≥1. Similarly,

limsup
N→∞

(N loglogN)−1/2
N

∑
k=1

f (nkx)

and the limiting variance in the CLT forN−1/2∑N
k=1 f (nkx) can change if we per-

mute the sequence(nk)k≥1. These results show that even though lacunary subse-
quences of( f (nx))n≥1 satisfy a large class of limit theorems for i.i.d. random vari-
ables and an i.i.d. sequence is a symmetric structure, the behavior of lacunary se-
quences is generally nonsymmetric. The purpose of the present paper is to give a
detailed analysis of the probabilistic structure off (nkx) and to clear up the effect of
permutations on its asymptotic properties. The proofs of our results will be given in
[3], [4], [5].

2 The trigonometric case

By Carleson’s theorem [9], iff ∈ L2(0,2π) then its Fourier series

f ∼ a0

2
+

∞

∑
k=1

(ak coskx+bksinkx) (2.1)

converges almost everywhere. However, as was noted by Kolmogorov (see [24]),
there exists anf ∈ L2(0,2π) whose Fourier series (2.1) diverges a.e. after a suitable
permutation of its terms. This shows that the asymptotic properties of the trigono-
metric system{coskx,sinkx}k≥1 are not permutation-invariant. On the other hand,
Erdős [10] proved (see also Zygmund [41]) that if(nk)k≥1 satisfies the Hadamard
gap condition (1.1) and

∞

∑
k=1

(

a2
k +b2

k

)

< ∞ (2.2)

then
∞

∑
k=1

(ak cosnkx+bksinnkx) (2.3)

converges almost everywhere after any rearrangement of itsterms, giving a per-
mutation-invariant property of lacunary trigonometric series. Our first result below
states that under (1.1) the systems(cosnkx)k≥1, (sinnkx)k≥1 satisfy also the central
limit theorem and law of the iterated logarithm in a permutation-invariant form.
More precisely, we have
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Theorem 2.1 Let (nk)k≥1 be a sequence of positive integers satisfying(1.1)and let
σ : N → N be a permutation of the positive integers. Then we have

lim
N→∞

λ
{

x∈ (0,1) :
N

∑
k=1

cos2πnσ(k)x≤ t
√

N/2

}

= (2π)−1/2
∫ t

−∞
e−u2/2du (2.4)

and

limsup
N→∞

(N log logN)−1/2
N

∑
k=1

cos2πnσ(k)x = 1 a.e. (2.5)

Note that for the unpermuted CLT and LIL we need much weaker gap conditions
than (1.1). In fact, Takahashi [36], [37], [38] (cf. also Erdős [11]) showed that if a
sequence(nk)k≥1 of integers satisfies

nk+1/nk ≥ 1+ck−α, 0≤ α < 1/2 (2.6)

then for any sequence(ak)k≥1 satisfying

AN → ∞ and aN = o(ANN−α) with AN =

(

1
2

N

∑
k=1

a2
k

)1/2

we have the CLT (1.3) and under a slightly stronger coefficient condition also the
LIL (1.5). Note, however, that (2.6) does not imply permutation-invariance and the
following result shows that permutation-invariance failsunder any gap condition
weaker than (1.1).

Theorem 2.2 For any positive sequence(εk)k≥1 tending to0, there exists a se-
quence(nk)k≥1 of positive integers satisfying

nk+1/nk ≥ 1+ εk, k≥ k0

and a permutationσ : N → N of the positive integers such that the permuted central
limit theorem(2.4)and the permuted law of the iterated logarithm(2.5)fail.

By a theorem of Erdős [10], if(nk)k≥1 is any (not necessarily increasing) se-
quence of different positive integers such that for any integerν > 0 the number of
solutions of the Diophantine equation

nk±nℓ = ν, k, ℓ ≥ 1

is bounded by a constantC independent ofν, then the series (2.3) converges a.e.
provided (2.2) holds. Since this Diophantine property is permutation-invariant, it
implies the a.e. unconditional convergence of (2.3) as well. Note that Erdős’ condi-
tion is much weaker than (1.1); in fact, it holds even for somepolynomially growing
sequences(nk)k≥1. How slowly a sequence(nk)k≥1 satisfying this condition can
grow is a well known open problem in number theory; see Halberstam and Roth
[20], pp. 84–97 and Ajtai et al. [6].
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3 The system f (nx)

Let f be a measurable function satisfying

f (x+1) = f (x),
∫ 1

0
f (x) dx= 0,

∫ 1

0
f 2(x)dx< ∞ (3.1)

and let(nk)k≥1 be a sequence of integers satisfying the Hadamard gap condition
(1.1). The central limit theorem forf (nkx) has a long history discussed in Section 1.
To formulate criteria for the permutation-invariant CLT and LIL, let us say that a
sequence(nk)k≥1 of positive integers satisfies

Condition D2, if for any fixed nonzero integersa,b,c the number of solutions of
the Diophantine equation

ank +bnl = c (3.2)

is bounded by a constantK(a,b), independent ofc.

Condition D(s)
2 (strongD2), if for any fixed integersa 6= 0, b 6= 0, c the number

of solutions of the Diophantine equation (3.2) is bounded bya constantK(a,b),
independent ofc, where forc = 0 we require alsok 6= l .

Condition D(w)
2 (weakD2), if for any fixed nonzero integersa,b,c the number of

solutions of the Diophantine equation

ank +bnl = c, 1≤ k, l ≤ N (3.3)

is o(N), uniformly in c.

ConditionD2 is a variant of Sidon’sB2 condition (see [34], [35]). Gaposhkin
[19] proved that under mild smoothness assumptions onf , conditionD2 implies
the CLT for f (nkx) and Berkes and Philipp [8] showed that the same condition also
implies a Wiener approximation for the partial sums off (nkx), similar to (1.6). Re-
cently, Aistleitner and Berkes [1] proved that the CLT holdsfor f (nkx) also under

D(w)
2 and this condition is necessary. This settles the CLT problem for f (nkx), but,

as we noted, the validity of the CLT does not imply permutation-invariant behav-
ior of f (nkx). The purpose of this section is to give a precise descriptionof the
CLT and LIL behavior of permuted sums∑N

k=1 f (nσ(k)x) and in particular, to obtain
characterizations of permutation-invariance.

Our first result shows that if we assume the slightly strongergap condition

nk+1/nk → ∞ (3.4)

then the behavior off (nkx) is permutation-invariant, regardless the number theoretic
structure of(nk)k≥1. In what follows, let‖ · ‖ denote theL2(0,1) norm.
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Theorem 3.1 Let (nk)k≥1 be a sequence of positive integers satisfying the gap con-
dition (3.4). Then for any permutationσ : N → N of the integers and for any mea-
surable function f: R → R satisfying

f (x+1) = f (x),
∫ 1

0
f (x) dx= 0, Var[0,1] f < +∞ (3.5)

we have
1√
N

N

∑
k=1

f (nσ(k)x) −→d N (0,‖ f‖2) (3.6)

and

limsup
N→∞

1√
2N loglogN

N

∑
k=1

f (nσ(k)x) = ‖ f‖ a.e. (3.7)

Moreover, for any permutationσ of N we have

limsup
N→∞

NDN(nσ(k)x)√
2N log logN

=
1
2

a.e. (3.8)

Our next theorem shows that if we slightly strengthen (3.4),then not only the
CLT and LIL, but a much larger class of limit theorems becomespermutation-
invariant.

Theorem 3.2 Let f be a function satisfying(3.1) and the Lipschitzα condition
(0 < α ≤ 1). Let(nk)k≥1 be an increasing sequence of positive integers such that

∞

∑
k=1

(nk/nk+1)
α < ∞. (3.9)

Then there exists a bounded i.i.d. sequence(gk)k≥1 of functions on(0,1) such that

∞

∑
k=1

| f (nkx)−gk(x)| < ∞ a.e. (3.10)

Let σ be a permutation ofN. Relation (3.10) implies that

∞

∑
k=1

∣

∣ f (nσ(k)x)−gσ(k)(x)
∣

∣< ∞ a.e.

and consequently

N

∑
k=1

f (nσ(k)x)−
N

∑
k=1

gσ(k)(x) = O(1) a.e. (3.11)

Since the i.i.d. sequences(gk)k≥1 and (gσ(k))k≥1 are probabilistically equivalent,
relation (3.11) implies that, up to an error termO(1), the asymptotic properties of
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the partial sums∑N
k=1 f (nσ(k)x) are the same for allσ. Thus Theorem 3.2 expresses

a very strong form of permutation-invariance of the sequence f (nkx). Condition
(3.9) is satisfied e.g. ifnk = 2[cklog2k] with c > 1/α; here log2 denotes logarithm
with base 2.

The proof of Theorem 3.2 shows that the approximating i.i.d.sequence(gk)k≥1

can be chosen to satisfy

µ
{

x∈ (0,1) : | f (nkx)−gk(x)| ≥ εk
}

≤ εk, k = 1,2, . . . (3.12)

with εk = (nk/nk+1)
α. This gives more precise information than (3.10) if(nk)k≥1

grows very rapidly. Actually, the approximation given by (3.12) is best possible.
Let f (x) = cos2πx and let(nk)k≥1 be an increasing sequence of positive integers
such that the ratiosnk+1/nk are integers and∑∞

k=1(nk/nk+1) = ∞. Then there exists
no i.i.d. sequence(gn)n≥1 of functions on[0,1] such that

µ
{

x∈ (0,1) : |cos2πnkx−gk(x)| ≥ εk
}

≤ εk, k = 1,2, . . . . (3.13)

with ∑∞
k=1 εk < ∞.

So far, we investigated the permutational invariance off (nkx) under the growth
conditionnk+1/nk → ∞. Assuming only the Hadamard gap condition (1.1), the sit-
uation becomes more complex and the number theoretic structure of(nk)k≥1 comes
into play. Our first result gives a necessary and sufficient condition for the permuted
partial sums∑N

k=1 f (nσ(k)x) to have only Gaussian limit distributions and gives pre-
cise criteria this to happen for a specific permutationσ.

Theorem 3.3 Let(nk)k≥1 be a sequence of positive integers satisfying the Hadamard
gap condition(1.1)and conditionD2. Let f satisfy(3.5)and letσ be a permutation
of N. Then N−1/2 ∑N

k=1 f (nσ(k)x) has a limit distribution iff

γ = lim
N→∞

N−1
∫ 1

0

(

N

∑
k=1

f (nσ(k)x)

)2

dx (3.14)

exists, and then

N−1/2
N

∑
k=1

f (nσ(k)x) →d N(0,γ). (3.15)

(If γ = 0 then the limit distribution is degenerate.)

Theorem 3.3 is best possible in the following sense:

Theorem 3.4 If (nk)k≥1 satisfies(1.1), but conditionD2 fails, then there exists a
function f satisfying(3.5)and a permutationσ of N such that the limit in(3.14)ex-
ists, but the normed partial sums in(3.15)do not have a Gaussian limit distribution.



Lacunary sequences and permutations 43

In other words, under the Hadamard gap condition and condition D2, the limit
distribution ofN−1/2∑N

k=1 f (nσ(k)x) can only be Gaussian, but the variance of the
limit distribution depends on the constantγ in (3.14) which, as simple examples
show, is not permutation-invariant. For example, ifnk = 2k andσ is the identity
permutation, then (3.14) holds with

γ = γ f =

∫ 1

0
f 2(x)dx+2

∞

∑
k=1

∫ 1

0
f (x) f (2kx)dx (3.16)

(see Kac [21]). Using an idea of Fukuyama [15], one can construct permutationsσ
of N such that

lim
N→∞

1
N

∫ 1

0

(

N

∑
k=1

f (nσ(k)x)

)2

dx= γσ, f (3.17)

with γσ, f 6= γ f . If the Fourier coefficients off are nonnegative, thenγ f ≥ ‖ f‖2 and
the set of possible valuesγσ, f belonging to all permutationsσ is identical with the
interval[‖ f‖2,γ f ], see Aistleitner, Berkes and Tichy [2]. For generalf it can happen
thatγ f < ‖ f‖2 and the set of limiting variances contains points outside of[γ f ,‖ f‖2],
see again [2].

Under the slightly stronger conditionD(s)
2 we have permutation-invariance:

Theorem 3.5 Let(nk)k≥1 be a sequence of positive integers satisfying the Hadamard

gap condition(1.1)and conditionD(s)
2 . Let f satisfy(3.5)and letσ be a permutation

of N. Then the central limit theorem(3.15)holds withγ = ‖ f‖2.

We now pass to the problem of the LIL.

Theorem 3.6 Let(nk)k≥1 be a sequence of positive integers satisfying the Hadamard
gap condition(1.1) and conditionD2. Let f be a measurable function satisfying
(3.5), let σ be a permutation ofN and assume that the limit(3.14)exists. Then we
have

limsup
N→∞

∑N
k=1 f (nσ(k)x)√
2N loglogN

= γ1/2 a.e. (3.18)

Theorem 3.7 Let(nk)k≥1 be a sequence of positive integers satisfying the Hadamard

gap condition(1.1)and conditionD(s)
2 . Then for any measurable function f satisfy-

ing (3.5)and any permutationσ of N we have

limsup
N→∞

∑N
k=1 f (nσ(k)x)√
2N loglogN

= ‖ f‖ a.e.

The proofs of Theorems 3.3–3.7 show that iff is a trigonometric polynomial

of degreed, then in conditionsD2 resp.D(s)
2 it suffices to assume the bound for the

number of solutions of (3.2) for coefficientsa,b satisfying|a| ≤ d, |b| ≤ d. Applying
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this with d = 1 and using the obvious fact that for a Hadamard lacunary sequence
(nk)k≥1 andc∈ Z the number of solutions of

nk±nl = c (k 6= l)

is bounded by a constant which is independent ofc, we get Theorem 2.1 of the
previous section.

Theorem 3.4 shows that conditionD2 is best possible in Theorem 3.3. We were
not able to decide whether this condition is also best possible in Theorem 3.6, but
conditionD2 is nearly best possible in Theorem 3.6 in the following sense: if there
exist nonzero integersa,b,c such that the Diophantine equation

ank +bnl = c

has infinitely many solutions withk 6= l , then the LIL for f (nσ(k)x) fails to hold for
a suitable permutationσ and a suitable trigonometric polynomialf .

Theorem 3.8 Let (nk)k≥1 be a sequence of positive integers satisfying(1.1) and

conditionD(s)
2 . Then for any permutationσ : N → N we have

limsup
N→∞

NDN(nσ(k)x)√
2N log logN

=
1
2

a.e. (3.19)

All the results formulated so far assumed the Hadamard gap condition (1.1) or the
stronger condition (3.4). If we weaken (1.1), i.e. we allow subexponential sequences
(nk)k≥1, we need much stronger Diophantine conditions even for the unpermuted
CLT and LIL for f (nkx). Specifically, we need uniform bounds for the number of
solutions of Diophantine equations of the type

a1nk1 + . . .+apnkp = b. (3.20)

Call a solution of (3.20)nondegenerateif no subsum of the left hand side equals 0.
Let us say that a sequence(nk)k≥1 of positive integers satisfies

Condition Ap, if there exists a constantCp ≥ 1 such that for any integerb 6= 0
and any nonzero integersa1, . . . ,ap the number of nondegenerate solutions of the
Diophantine equation (3.20) is at mostCp.

The following results are the analogues of Theorems 3.3–3.7without growth
conditions on(nk)k≥1.

Theorem 3.9 Let (nk)k≥1 be an increasing sequence of positive integers satisfying
conditionAp for all p ≥ 2. Let f satisfy(3.5), let σ be a permutation ofN and
assume that the limit(3.14)exists. Then the permuted CLT(3.15)is valid.
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Theorem 3.10 Let(nk)k≥1 be an increasing sequence of positive integers satisfying
conditionAp for all p ≥ 2 with Cp ≤ exp(Cpα) for someα > 0. Moreover, assume
that f satisfies(3.5), σ is a permutation ofN and(3.14)holds. Then the permuted
LIL (3.18)is valid.

Note that for the validity of the LIL we require a specific bound for the constants
Cp in conditionAp. For subexponentially growing(nk)k≥1, verifying propertyAp is
a difficult number-theoretic problem. Classical examples of such sequences are the
Hardy–Littlewood–Pólya sequences, i.e. increasing sequences(nk)k≥1 consisting of
all positive integers of the formqα1

1 · · ·qατ
τ (α1, . . .ατ ≥ 0), where{q1, . . . ,qτ} is a

fixed set of coprime integers. Clearly, forτ ≥ 2 such sequences grow subexponen-
tially; Tijdeman [39] proved that

nk+1−nk ≥
nk

(lognk)α (3.21)

for someα > 0, i.e. the growth of(nk)k≥1 is almost exponential. Hardy–Littlewood–
Pólya sequences have remarkable probabilistic and ergodic properties. Nair [26]
proved that iff is 1-periodic and integrable in(0,1), then

lim
N→∞

1
N

N

∑
k=1

f (nkx) =

∫ 1

0
f (t)dt a.e.

Philipp [29] showed that the discrepancy of{nkx} satisfies the law of the iterated
logarithm

1

4
√

2
≤ limsup

N→∞

NDN(nkx)√
2N loglogN

≤C a.e. (3.22)

whereC is a constant depending on the number of generators of(nk)k≥1. Recently,
Fukuyama and Nakata [16] succeeded in computing the limsup in (3.22). Fukuyama
and Petit [17] also showed that the central limit theorem

N−1/2
N

∑
k=1

f (nkx) →d N(0,γ∗f )

holds with

γ∗f = ∑
k,l :(nk,nl )=1

∫ 1

0
f (nkx) f (nl x)dx. (3.23)

The Diophantine properties of(nk)k≥1 have been studied in great detail in recent
years; Amoroso and Viada [7] showed that Hardy–Littlewood–Pólya sequences sat-
isfy conditionAp for any p ≥ 2 with Cp = exp(p6). This is a very deep result,
involving a substantial sharpening of the subspace theoremof Evertse, Schlickewei
and Schmidt (see [13]). Again, the limitγ in (3.14) depends on the permutationσ.

Since verifying conditionAp for a concrete subexponential sequence(nk)k≥1 is
difficult, it is worth looking for Diophantine conditions which are strong enough
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to imply the permutation-invariant CLT and LIL, but which hold for a sufficiently
large class of subexponential sequences. Such a Diophantine conditionAω will be
given below. Actually, we will see that in a certain statistical sense,Aω is satisfied
for “almost all” sequences(nk)k≥1 growing faster than polynomially and thus the
permutation-invariant CLT and LIL are the “typical” behavior of sequencesf (nkx)
with superpolynomially growing(nk)k≥1. Given a nondecreasing sequenceω =
(ω1,ω2, . . .) of positive numbers tending to+∞, let us say that a sequence(nk)k≥1

of different positive integers satisfies

Condition Aω, if for any N ≥ N0 the Diophantine equation

a1nk1 + . . .+arnkr = 0, 2≤ r ≤ ωN, 0 < |a1|, . . . , |ar | ≤ NωN (3.24)

with different indicesk j and nonzero integer coefficientsa j has only such solutions
where allnkj belong to the smallestN elements of the sequence(nk)k≥1.

Clearly, this property is permutation-invariant and it implies that for any fixed
nonzero integer coefficientsa j the number of solutions of (3.24) with different in-
dicesk j is at mostNr .

Theorem 3.11 Letω=(ω1,ω2, . . .) be a nondecreasing sequence tending to+∞ and
let (nk)k≥1 be a sequence of different positive integers satisfying condition Aω. Then
for any f satisfying(3.5)we have

N−1/2
N

∑
k=1

f (nkx) −→d N (0,‖ f‖2). (3.25)

If ωk ≥ (logk)α for someα > 0 and k≥ k0, then we also have

limsup
N→∞

∑N
k=1 f (nkx)

(2N loglogN)1/2
= ‖ f‖ a.e. (3.26)

ConditionAω is different from the usual Diophantine conditions in lacunarity
theory, which typically involve 4 or less terms. In contrast, Aω is an ’infinite order’
condition, namely it involves equations with arbitrary large order. As is shown in
[3], the usual Diophantine conditions do not suffice in Theorem 3.11. Given any
ωk ↑ ∞, it is not hard to see that any sufficiently rapidly growing sequence(nk)k≥1

satisfiesAω; on the other hand, we do not have any “concrete” subexponential ex-
amples forAω. However, such examples not only exist, but we will show that, in
a certain statistical sense, almost all sequences(nk)k≥1 growing faster than polyno-
mially satisfy conditionAω for some appropriateω. To make this precise requires
defining a probability measure over the set of such sequences, or, equivalently, a
natural random procedure to generate such sequences. A simple procedure is to
choosenk independently and uniformly from the integers in the interval

Ik = [a(k−1)ωk−1,akωk), k = 1,2, . . . . (3.27)
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Note that the length ofIk is at leastaωk(k−1)ωk−1 ≥ aω1 for k = 2,3, . . . and equals
a for k = 1, and thus choosinga large enough, eachIk contains at least one integer.
Let µω be the distribution of the random sequence(nk)k≥1 in the product space
I1× I2× . . ..

Theorem 3.12 Letωk ↑ ∞ and let f be a function satisfying(3.5). Then with proba-
bility one with respect to µω the sequence( f (nkx))k≥1 satisfies the CLT(3.25)after
any permutation of its terms, and ifωk ≥ (logk)α for someα > 0 and k≥ k0, then
( f (nkx))k≥1 also satisfies the LIL(3.26)after any permutation of its terms.

The sequences(nk)k≥1 provided byµω satisfynk = O(kωk); for slowly increas-
ing ωk the so obtained sequences grow much slower than exponentially, in fact
they grow barely faster than with polynomial speed. Ifωk grows so slowly that
ωk −ωk−1 = o((logk)−1), then the so obtained sequence(nk)k≥1 has the precise
speednk ∼ kωk . We do not know if there exist polynomially growing sequences
(nk)k≥1 satisfying the permutation-invariant CLT or LIL. As a simple combinato-
rial argument shows, sequences(nk)k≥1 satisfyingAp for all p ≥ 2 cannot grow
polynomially.

References

[1] C. Aistleitner and I. Berkes, On the central limit theorem for f (nkx), Prob.
Theory Rel. Fields146 (2010), 267–289.

[2] C. Aistleitner, I. Berkes, and R. Tichy, On permutationsof Hardy–Littlewood–
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