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L acunary sequences and per mutations

Christoph Aistleitner, Istvan Berkes and Robert Tichy

Dedicated to the memory of Walter Philipp

Abstract By a classical principle of analysis, sufficiently thin sagaences of gen-
eral sequences of functions behave like sequences of indeptrandom variables.
This observation not only explains the remarkable propsrtif lacunary trigono-
metric series, but also provides a powerful tool in many sueaanalysis. In con-
trast to “true” random processes, however, the probaibibstucture of lacunary se-
qguences is not permutation-invariant and the analytic gntigs of such sequences
can change radically after rearrangement. The purposeop#per is to survey
some recent results of the authors on permuted functioessekiVe will see that
rearrangement properties of lacunary trigonometric s&t{@x cosngXx -+ by sinngx)
and their nonharmonic analogugsy f (nkx) are intimately connected with the num-
ber theoretic properties ¢hy)k>1 and we will give a complete characterization of
permutational invariance in terms of the Diophantine prtes of (ny )ik>1. We will
also see that in a certain statistical sense, permutatiovesliance is the “typical”
behavior of lacunary sequences.

1 Introduction

Let (nk)k>1 be a sequence of positive integers satisfying the Hadanagrdandition

Nkr1/Nk >qg>1 (k=1,2,...). 1.1)
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Salem and Zygmund [31] proved that(#y)x>1 is a sequence of real numbers sat-
isfying

NI =
z

Ay —o and ay=o0(Ay) with AN_<

k

1/2
a&) . @2
1

then(cos 2myx)x>1 obeys the central limit theorem
N t 2
im )\{xe (0,1): AV Y acosamx < t} - (211)*1/2/ e "/2du,  (1.3)
—00 K= —o00

whereA denotes the Lebesgue measure. Under the same gap condéiss [A0]
proved (cf. also Salem and Zygmund [32], Erd6s and Gal)[tt2jt if (ax)x>1 satis-
fies

Ay —o and an = 0o(An/(loglogAn)Y/?) (1.4)
then(cos 2myx)x>1 obeys the law of the iterated logarithm
N
lim sup(2A% loglogA) /2 Y acosamx=1  ae. (1.5)
N—oo K=1

Comparing these results with the classical forms of therakhimit theorem and
law of the iterated logarithm in probability theory, we sbattunder the gap condi-
tion (1.1) the functions cog®ix behave like independent random variables. Using
martingale techniques, Philipp and Stout [30] proved thitstead of (1.2) we as-
sumeay = o(A,{({’) for somed > 0, then on the probability spa¢f, 1], B,A) there
exists a Brownian motion proce§g/(t), t > 0} such that

N

S akCOSkaX:W(A,%I)—i—O(A,j\Tp) a.s. (1.6)
=}

for somep>0. The last relation implies not only the CLT and LIL f@os 2mX)k>1,
but a whole class of further limit theorems for independantiom variables; for ex-
amples and discussion we refer to [30].

The previous results extend, in a modified form, to lacunabgsequences of the
system{ f (nx) }n>1 wheref is a periodic measurable function, but the asymptotic
properties of this system are much more complicated thasetbbthe trigonomet-
ric system. By a conjecture of Khinchin [23], ff has period 1 and is Lebesgue
integrable on(0, 1), then

N—o0

.1 N 1
lim NkZlf(kx)_/o ft)dt ae. (L.7)

This remained open for almost 50 years until Marstrand [2&)mbved it, but even
today, no precise condition for the validity of (1.7) is knowSimilarly, there is no
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analogue of Carleson’s theorem [9] for the systernx))n>1 and we do not know
under what conditions the serigg_, ¢« f (kx) converges almost everywhere. In the
lacunary case, Kac [21] proved thaffifsatisfies a Lipschitz condition, thefi2¥x)
obeys a central limit theorem similar to (1.3) and not mudcerleErdds and Fortet
(see [22], p. 646) showed that the CLT fails fbnex) for ny = 2 — 1 even for
some trigonometric polynomials. Gaposhkin [18] proved thdat(ngx) obeys the
CLT if nky1/nk — o wherea' is irrational forr = 1,2... and the same holds if all
the fractionsng;1/nk are integers. He also showed (see [19]) that the validity of
the CLT for f (nkx) is closely related to the number of solutions of the Diopheant
equation

ang+bn,=c, 1<Kk, Z<N. (1.8)

Improving these results, Aistleitner and Berkes [1] relyegave a necessary and
sufficient Diophantine condition for the CLT fd(ngx). As the proofs of these
results show, the asymptotic behavior ffnkx) is determined by a complicated
interplay between the arithmetic properties(nf)x>1 and the Fourier coefficients
of f and the combination of probabilistic and number-theoretiects leads to a
unique, highly interesting asymptotic behavior. Let

N
1 1
Dn(X1,...,XN) == Sup 2ic1liab %) ﬁ’b)(xk) —(b—a)

O<a<b<1

denote the discrepancy (mod 1) of the finite sequérge..,xn), wherel |y, is

the indicator function of the intervah, b), extended tdR with period 1. Philipp
[27], [28] proved that if nk)k>1 satisfies the Hadamard gap condition (1.1), then the
discrepancyn (nkx) of the sequencénix,1 < k < N} obeys the LIL

i <limsup ND(nex)

4y2 7 Now +/2NloglogN

whereCy is a number depending anp Note that if (§k)k>1 is a sequence of inde-
pendent random variables with uniform distribution o@@rl), then

lim supm _1 (2.10)

New +/2NloglogN 2
with probability one by the Chung—Smirnov LIL (see e.g. [38] 504). A com-
parison of (1.9) and (1.10) shows again that the sequémeg>1 mod 1 behaves
like a sequence of i.i.d. random variables. Surprisingbyyéver, the limsup in (1.9)
can be different from the constant2in (1.10) and, as Fukuyama [14] showed, it
depends sensitively ofny)x>1. For example, fon, = ak, a> 2 the limsupZ, in
(1.9) equals

<Cq a.e, (1.9)

Sa=V42/9 if a=2,
(a+l)a(a—2)

z =
T 2/@-13

if a>4 isaneven integer
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s _ va+1
8T 2/a-1

It is even more surprising that, as Fukuyama [15] showedijit&up in (1.9) is not
permutation-invariantand can change after a rearrangeshém)i>1. Similarly,

if a> 3 isan odd integer

N
limsup(NloglogN) /2 " f(nx)
N—oo k=1

and the limiting variance in the CLT fd\:l*l/ziwzl f(nkx) can change if we per-
mute the sequende)k>1. These results show that even though lacunary subse-
guences of f (nx))n>1 satisfy a large class of limit theorems for i.i.d. randomivar
ables and an i.i.d. sequence is a symmetric structure, thavie of lacunary se-
quences is generally nonsymmetric. The purpose of the presger is to give a
detailed analysis of the probabilistic structuref@fixx) and to clear up the effect of
permutations on its asymptotic properties. The proofs ofesults will be given in

(3], [4], [5]-

2 Thetrigonometric case

By Carleson’s theorem [9], if € L»(0,2m) then its Fourier series

8

f + Y (akcoskx+ bysinkx) (2.2)

L2
2 &

converges almost everywhere. However, as was noted by Kmnwe (see [24]),
there exists arf € L(0,2m) whose Fourier series (2.1) diverges a.e. after a suitable
permutation of its terms. This shows that the asymptotiperties of the trigono-
metric systen{ coskx, sinkx}y>1 are not permutation-invariant. On the other hand,
Erd6s [10] proved (see also Zygmund [41]) thatnf)y>1 satisfies the Hadamard
gap condition (1.1) and

8

(a+bg) <o (2.2)

k=1

then

Z (a cosngx + by sinngx) (2.3)
K=1
converges almost everywhere after any rearrangement téritss, giving a per-
mutation-invariant property of lacunary trigonometricies. Our first result below
states that under (1.1) the systefoesnX)k>1, (Sinnkx)k>1 satisfy also the central
limit theorem and law of the iterated logarithm in a permiotainvariant form.
More precisely, we have
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Theorem 2.1 Let (nk)k>1 be a sequence of positive integers satisfyihd)and let
o : N — N be a permutation of the positive integers. Then we have

N 't
’\Ilim )\{xe (0,1): z COS AMNg(j)X < t\/N/z} = (211)*1/2/ e /24y (2.4)
—00 K= —00

and N
limsup(NloglogN)~/2 Y cosAmgx=1  ae. (2.5)
=

N—oo

Note that for the unpermuted CLT and LIL we need much weakpicgaditions
than (1.1). In fact, Takahashi [36], [37], [38] (cf. also Bed11]) showed that if a
sequencéng)y>1 of integers satisfies

Mky1/Nk > 14+ck 9, 0<a<1/2 (2.6)

then for any sequendey )x>1 satisfying

N 1/2
5 <)
k=1

we have the CLT (1.3) and under a slightly stronger coeffiotemdition also the
LIL (1.5). Note, however, that (2.6) does not imply permigtatinvariance and the
following result shows that permutation-invariance faitsder any gap condition
weaker than (1.1).

Ay —c and ay=o0(AyN"%) with AN:<

NI =

Theorem 2.2 For any positive sequendex)k>1 tending toO, there exists a se-
quence(ng)k>1 of positive integers satisfying

Mir1/Nk > 14 &, k> ko

and a permutatiow : N — N of the positive integers such that the permuted central
limit theorem(2.4) and the permuted law of the iterated logarittign5)fail.

By a theorem of Erdés [10], ifnk)k>1 is any (not necessarily increasing) se-
quence of different positive integers such that for anygat® > 0 the number of
solutions of the Diophantine equation

n+n,=v, k,¢>1

is bounded by a constaftindependent of, then the series (2.3) converges a.e.
provided (2.2) holds. Since this Diophantine property isypgation-invariant, it
implies the a.e. unconditional convergence of (2.3) as.Walte that Erdés’ condi-
tion is much weaker than (1.1); in fact, it holds even for sqrolynomially growing
sequencesny)k>1. How slowly a sequencén)i>1 satisfying this condition can
grow is a well known open problem in number theory; see Hallben and Roth
[20], pp. 84-97 and Ajtai et al. [6].
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3 Thesystem f(nx)

Let f be a measurable function satisfying
1 1
F(x+1) = f(x), / f(x) dx=0, / £2(x) dx < o0 (3.1)
Jo Jo

and let(ny)k>1 be a sequence of integers satisfying the Hadamard gap mondit
(1.1). The central limit theorem fdr(nkx) has a long history discussed in Section 1.
To formulate criteria for the permutation-invariant CLTdahlL, let us say that a
sequencéng)x>1 of positive integers satisfies

Condition Do, if for any fixed nonzero integeis b, c the number of solutions of
the Diophantine equation
anc+bn =c (3.2)

is bounded by a constakt(a, b), independent of.

Condition D<2S> (strongDy), if for any fixed integersa # 0, b # 0, ¢ the number
of solutions of the Diophantine equation (3.2) is boundedalgonstanK (a,b),
independent of, where forc = 0 we require alsé # 1.

Condition Dgw) (weakDy), if for any fixed nonzero integeis b, c the number of
solutions of the Diophantine equation

ang+bn =c, 1<kI<N 3.3)
is o(N), uniformly inc.

ConditionD> is a variant of Sidon'®, condition (see [34], [35]). Gaposhkin
[19] proved that under mild smoothness assumptiond ,oconditionD, implies
the CLT for f (nkx) and Berkes and Philipp [8] showed that the same conditian als
implies a Wiener approximation for the partial sumg @fiyx), similar to (1.6). Re-
cently, Aistleitner and Berkes [1] proved that the CLT hdids f (ngx) also under
D(ZW) and this condition is necessary. This settles the CLT prolite f (ncx), but,
as we noted, the validity of the CLT does not imply permutatiovariant behav-
ior of f(nkx). The purpose of this section is to give a precise descripfotihe
CLT and LIL behavior of permuted sunzﬁz‘:1 f(ng(xX) and in particular, to obtain
characterizations of permutation-invariance.

Ouir first result shows that if we assume the slightly stromyggr condition
Niy1/Ni — @ (3.4)

then the behavior of (nx) is permutation-invariant, regardless the number theoreti
structure of(nk)k>1. In what follows, let|| - || denote the.»(0,1) norm.
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Theorem 3.1 Let(nk)k>1 be a sequence of positive integers satisfying the gap con-
dition (3.4). Then for any permutatioa : N — N of the integers and for any mea-
surable function f R — R satisfying

1
F(x+1) = f(x), / f(x) dx=0, Vargy f <+ (3.5)
JO '
we have
1 X 2
=3 (o) —a (O] 3:6)
K=1
and N
limsup z f(NoaoX) =[] a.e. (3.7)

N—wo +/2NloglogN &

Moreover, for any permutatioa of N we have

. NDN(no(k)x) 1
I ———— =_ ae. 3.8
Irrxlsoljp\/ZN loglogN 2 ae (3.8)

Our next theorem shows that if we slightly strengthen (3tH@n not only the
CLT and LIL, but a much larger class of limit theorems becomesmutation-
invariant.

Theorem 3.2 Let f be a function satisfyinB.1) and the Lipschitzx condition
(0< a <1). Let(n)k>1 be an increasing sequence of positive integers such that

i (Nie/Ni1)® < co. (3.9)
k=1

Then there exists a bounded i.i.d. sequefmgé-1 of functions orn(0,1) such that

8

| (nX) — g(X)| < oo a.e. (3.10)

k=1

Let o be a permutation ai. Relation (3.10) implies that

0

> [f(NowX) — Qo (V)| < ae.

K=1
and consequently
N N
Z f(nc(k)x) — Z gc(k) (X) = O(l) a.e. (311)
K=1 k=1

Since the i.i.d. sequencégk)k>1 and (go(k))k>1 are probabilistically equivalent,
relation (3.11) implies that, up to an error tefl1), the asymptotic properties of
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the partial sumiE:l f(ng(X) are the same for ati. Thus Theorem 3.2 expresses
a very strong form of permutation-invariance of the seqaeinogx). Condition
(3.9) is satisfied e.g. if = 2/°K°%K with ¢ > 1/a; here log denotes logarithm
with base 2.

The proof of Theorem 3.2 shows that the approximating isefjuencégy)k>1
can be chosen to satisfy

H{x € (0,1) : | f(nex) — gk(X)| > &} < &, k=1,2,... (3.12)

with & = (ng/nk+1)®. This gives more precise information than (3.10§nf)k>1
grows very rapidly. Actually, the approximation given by X2) is best possible.
Let f(x) = cos2x and let(nk)k>1 be an increasing sequence of positive integers
such that the ratiosg;1/nk are integers any_; (nk/nk+1) = . Then there exists
no i.i.d. sequencéyn)n>1 of functions on[0, 1] such that

H{x € (0,1) : | cos 2mix — gk(X)| > &} < &, k=1,2,.... (3.13)
with 30 4 & < 0.

So far, we investigated the permutational invariancé(ofx) under the growth
conditionny1/ng — co. Assuming only the Hadamard gap condition (1.1), the sit-
uation becomes more complex and the number theoretic steuat(ny)x>1 comes
into play. Our first result gives a necessary and sufficientld@on for the permuted
partial sumiwzl f(Ng(k)X) to have only Gaussian limit distributions and gives pre-
cise criteria this to happen for a specific permutation

Theorem 3.3 Let(nyk>1 be a sequence of positive integers satisfying the Hadamard
gap condition(1.1)and conditiorD,. Let f satisfy(3.5)and letc be a permutation
of N. Then N'¥/25} | f(ngX) has a limit distribution iff

2
1 N

_ i -1

y—l\lllinmN A (kzlf(no(k>x)> dx (3.14)
exists, and then

N
N"Y2'S f(ng9X) —a N(O,y). (3.15)

K=1

(If y=0then the limit distribution is degenerate.)
Theorem 3.3 is best possible in the following sense:
Theorem 3.4 If (ny)x>1 satisfies(1.1), but conditionD; fails, then there exists a

function f satisfying3.5)and a permutatiomw of N such that the limit i(3.14)ex-
ists, but the normed partial sums(8.15)do not have a Gaussian limit distribution.
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In other words, under the Hadamard gap condition and camdip, the limit
distribution ofN*l/ZzE:1 f(ngX) can only be Gaussian, but the variance of the
limit distribution depends on the constantn (3.14) which, as simple examples
show, is not permutation-invariant. For examplenif= 2 and o is the identity
permutation, then (3.14) holds with

—yi= [ Pxdxt2Y [ %0 3.16
v=vi= [ Podx2y [CHoT2ds (3.16)

(see Kac [21]). Using an idea of Fukuyama [15], one can coospermutations
of N such that

1 N ?
im 5 [ 3 fow0) | dx=ve (3.17)

with yg ¢ # ys. If the Fourier coefficients of are nonnegative, then > | f||2 and
the set of possible valugg s belonging to all permutations is identical with the
interval[|| f |2, y¢], see Aistleitner, Berkes and Tichy [2]. For gendfritlcan happen
thatys < || f||? and the set of limiting variances contains points outsidgof|  ||2],
see again [2].

Under the slightly stronger conditid])fzs) we have permutation-invariance:

Theorem 3.5Let(nyk>1 be a sequence of positive integers satisfying the Hadamard
gap condition(1.1)and conditiorD(zs). Let f satisfy(3.5)and letc be a permutation

of N. Then the central limit theorei8.15)holds withy = || f||2.
We now pass to the problem of the LIL.

Theorem 3.6 Let (nyk>1 be a sequence of positive integers satisfying the Hadamard
gap condition(1.1) and conditionD,. Let f be a measurable function satisfying
(3.5), let 0 be a permutation oN and assume that the lim{8.14)exists. Then we
have

Iimsupwzyl/2 a.e. (3.18)
Noow +/2NToglogN

Theorem 3.7 Let (nyk>1 be a sequence of positive integers satisfying the Hadamard
gap condition(1.1)and conditiorD<25). Then for any measurable function f satisfy-

ing (3.5)and any permutation of N we have

N _f(n
lim Supikfl (No(k)X)

Now +/2NToglogN

The proofs of Theorems 3.3-3.7 show thaf ifs a trigonometric polynomial

of degreed, then in condition®, resp.D(ZS) it suffices to assume the bound for the
number of solutions of (3.2) for coefficierdasb satisfying|a] < d, |b| < d. Applying

=|If|| ae.
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this with d = 1 and using the obvious fact that for a Hadamard lacunaryesezgu
(nk)k>1 andc € Z the number of solutions of

ntn=c (k#£1)

is bounded by a constant which is independent,ofve get Theorem 2.1 of the
previous section.

Theorem 3.4 shows that conditi@ is best possible in Theorem 3.3. We were
not able to decide whether this condition is also best ptesgibTheorem 3.6, but
conditionD> is nearly best possible in Theorem 3.6 in the following seifd@ere
exist nonzero integeia b, ¢ such that the Diophantine equation

ang+bn =c

has infinitely many solutions witk # |, then the LIL forf (ng ) X) fails to hold for
a suitable permutation and a suitable trigonometric polynomifl

Theorem 3.8 Let (nk)k>1 be a sequence of positive integers satisfyihd) and

conditionD<25). Then for any permutatioa : N — N we have

. NDn(NggX) 1
I ————— = - ae. 3.19
Irl\ﬁ]jol:p\/ZN loglogN 2 a-e ( )

All the results formulated so far assumed the Hadamard gagiitton (1.1) or the
stronger condition (3.4). If we weaken (1.1), i.e. we allabexponential sequences
(nk)k>1, we need much stronger Diophantine conditions even for tiermuted
CLT and LIL for f(nkx). Specifically, we need uniform bounds for the number of
solutions of Diophantine equations of the type

N + ...+ aphk, = b. (3.20)

Call a solution of (3.20hondegeneratié no subsum of the left hand side equals 0.
Let us say that a sequen@®)x>1 of positive integers satisfies

Condition Ap, if there exists a constai@, > 1 such that for any integdy # 0
and any nonzero integess, ..., ap the number of nondegenerate solutions of the
Diophantine equation (3.20) is at m@y.

The following results are the analogues of Theorems 3.3w@hout growth
conditions on(N)k>1.

Theorem 3.9 Let (nk)k>1 be an increasing sequence of positive integers satisfying
conditionAp for all p > 2. Let f satisfy(3.5), let o be a permutation ofN and
assume that the lim{B.14)exists. Then the permuted C[3.15)is valid.
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Theorem 3.10 Let(ny)k>1 be an increasing sequence of positive integers satisfying
conditionAy, for all p > 2 with C, < exp(Cp”) for somea > 0. Moreover, assume
that f satisfie€3.5), g is a permutation ofN and(3.14)holds. Then the permuted
LIL (3.18)is valid.

Note that for the validity of the LIL we require a specific balfior the constants
Cp in conditionA . For subexponentially growingn )1, verifying propertyA is
a difficult number-theoretic problem. Classical examplesuzh sequences are the
Hardy-Littlewood—Pblya sequences, i.e. increasingseces Nk )k>1 consisting of
all positive integers of the forrq(i‘1 Q8T (ay,...0¢ > 0), where{qy,...,q} is a
fixed set of coprime integers. Clearly, foi> 2 such sequences grow subexponen-
tially; Tijdeman [39] proved that

Nk
—ng > 3.21
M1 — Nk > (Togn)a (3.21)

for somea > 0, i.e. the growth ofng)k>1 is almost exponential. Hardy-Littlewood—
Pblya sequences have remarkable probabilistic and ergwdperties. Nair [26]
proved that iff is 1-periodic and integrable if®, 1), then

im L3 f )
N@mﬁgl (nkx):'/o (t)dt a.e.
Philipp [29] showed that the discrepancy{ofix} satisfies the law of the iterated

logarithm
1 . NDN(nkx)
—— <limsup————-—-=-=<C a.e. 3.22
42~ Nﬂmp\/ZN oglogN — ( )
whereC is a constant depending on the number of generatofisdf-1. Recently,
Fukuyama and Nakata [16] succeeded in computing the lims(§22). Fukuyama
and Petit [17] also showed that the central limit theorem

N—1/2 % f(nex) —a N(O, V)
&

holds with J
yi= Y / F(nex) f (nx)dx (3.23)
1 0

K,z (ng,np)=
The Diophantine properties ¢hy)x>1 have been studied in great detail in recent
years; Amoroso and Viada [7] showed that Hardy—Littlewd®dlya sequences sat-
isfy conditionA,, for any p > 2 with C, = exp(p®). This is a very deep result,
involving a substantial sharpening of the subspace theofdfnertse, Schlickewei
and Schmidt (see [13]). Again, the limyiin (3.14) depends on the permutation

Since verifying conditiorA , for a concrete subexponential seque(ggi1 is
difficult, it is worth looking for Diophantine conditions vi¢h are strong enough
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to imply the permutation-invariant CLT and LIL, but whichlddor a sufficiently
large class of subexponential sequences. Such a DiopkamtirditionA, will be
given below. Actually, we will see that in a certain statiatisenseA,, is satisfied
for “almost all” sequenceény)k>1 growing faster than polynomially and thus the
permutation-invariant CLT and LIL are the “typical” behavibf sequence$(nkx)
with superpolynomially growingn)x>1. Given a nondecreasing sequence=
(wq, )y, ...) of positive numbers tending te, let us say that a sequen@®)k>1

of different positive integers satisfies

Condition A, if for any N > Np the Diophantine equation
aig +...+ang =0, 2<r<awn, 0<|a,...,|ar| < NN (3.24)

with different indicesk; and nonzero integer coefficiersighas only such solutions
where allnkj belong to the smalledt elements of the sequen@)k>1.

Clearly, this property is permutation-invariant and it irep that for any fixed
nonzero integer coefficients the number of solutions of (3.24) with different in-
dicesk; is at mosiN'.

Theorem 3.11 Letw=(wy,wy,...) be anondecreasing sequence tending¢oand
let (nk)k>1 be a sequence of different positive integers satisfyinditiom A,. Then
for any f satisfyingd3.5)we have

N
N2 S f(mex) —a AO,|F]1%). (3.25)
K=1
If x> (logk)® for somea > 0 and k> ko, then we also have

- S F(ex)
| —=t== - ——_ —||f .e. 3.26
IrI\TJLS::'O(ZNIoglogN)l/2 It ae (3.26)

Condition A, is different from the usual Diophantine conditions in laatity
theory, which typically involve 4 or less terms. In contrast, is an 'infinite order’
condition, namely it involves equations with arbitrarygarorder. As is shown in
[3], the usual Diophantine conditions do not suffice in Tleor3.11. Given any
wx T oo, it is not hard to see that any sufficiently rapidly growingsence(ny)k>1
satisfiesA; on the other hand, we do not have any “concrete” subexp@ient
amples forA,. However, such examples not only exist, but we will show,tivat
a certain statistical sense, almost all sequefimgg-1 growing faster than polyno-
mially satisfy conditiorA, for some appropriate®. To make this precise requires
defining a probability measure over the set of such sequencesquivalently, a
natural random procedure to generate such sequences. Aegimgzedure is to
choose independently and uniformly from the integers in the ingérv

= [ak— 1)1 ak*),  k=12,.... (3.27)
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Note that the length df; is at leastoy (k— 1)‘*’(1 >aw fork=2,3,... and equals
afor k=1, and thus choosinglarge enough, eadh contains at least one integer.
Let |, be the distribution of the random sequer{cg)k>1 in the product space
lixlax....

Theorem 3.12 Letux T o and let f be a function satisfyin@.5). Then with proba-
bility one with respect to gtthe sequencéf (ngx) )k>1 Satisfies the CLT3.25)after

any permutation of its terms, anddi; > (logk)® for somea > 0 and k> ko, then

(f(nkXx))k>1 also satisfies the LI3.26)after any permutation of its terms.

The sequence@i)k>1 provided bypy, satisfyn, = O(k*x); for slowly increas-
ing wx the so obtained sequences grow much slower than expomgnitiafact
they grow barely faster than with polynomial speed.wlf grows so slowly that
W — 1 = o((Iogk)*l), then the so obtained sequer(cg)k>1 has the precise
speedng ~ k. We do not know if there exist polynomially growing sequesce
(nk)k>1 satisfying the permutation-invariant CLT or LIL. As a siraptombinato-
rial argument shows, sequende®)k-1 satisfyingA, for all p > 2 cannot grow
polynomially.
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