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Introduction

On July 19, 2006, Professor Walter Philipp passed away during a hike in the Aus-
trian Alps as a result of a sudden heart attack. By the time of his death, Walter
Philipp had been for almost 40 years on the faculty of the University of Illinois at
Urbana-Champaign, for the last couple of years as professoremeritus. He is sur-
vived by his wife Ariane and his four children, Petra, Robert, Anthony and André.
Walter Philipp is sorely missed by his family, but also by hismany colleagues, coau-
thors and former students all over the world, to whom he was a loyal and caring
friend for a long time, in some cases for several decades.

Walter Philipp was born on December 14, 1936 in Vienna, Austria, where he
grew up and lived for most of the first 30 years of his life. He studied mathematics
and physics at the University of Vienna, where he obtained his Ph.D. in 1960 and his
habilitation in 1967, both in mathematics. From 1961 until 1967 he was scientific
assistant at the University of Vienna. During this period, Walter Philipp spent two
years as a postdoc in the US, at the University of Montana in Missoula and at the
University of Illinois. In the fall of 1967 he joined the faculty of the University of
Illinois at Urbana-Champaign, where he would stay for the rest of his life. Initially,
Walter Philipp was on the faculty of the Mathematics Department, but in 1984 he
joined the newly created Department of Statistics at the University of Illinois. From
1990 until 1995 he was chairman of this Department. While on sabbatical leave
from the University of Illinois, Walter spent longer periods at the University of North
Carolina at Chapel Hill, at MIT, at Tufts University, at the University of Göttingen
and at Imperial College, London.

Walter Philipp received numerous recognitions for his work. Most outstanding
of these was his election to membership in the Austrian Academy of Sciences.

As a student and postdoc at the University of Vienna, Walter Philipp worked
under the guidance of Professor Edmund Hlawka, founder of the famous postwar
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Austrian school of analysis and number theory. Other formerstudents of Professor
Hlawka include Johann Cigler, Harald Niederreiter, Wolfgang M. Schmidt, Fritz
Schweiger and Robert Tichy. It was here that Walter Philipp got in touch with the
classical topics from analysis and number theory that wouldguide a large part of
his research for the rest of his life. Uniform distribution,discrepancy of sequences,
number-theoretic transformations associated with various expansions of real num-
bers, additive number-theoretic functions, Diophantine approximation, lacunary se-
ries became recurrent themes in Walter Philipp’s subsequent work. He studied these
themes using techniques from probability theory, e.g. for mixing processes, martin-
gales and empirical processes. He contributed greatly to the development of several
branches of probability theory and solved much investigated, difficult problems in
analysis and number theory with the help of the tools he developed.

Themes from analysis and number theory

A full understanding and appreciation of Walter Philipp’s research requires the back-
ground of some topics from analysis and number theory. In what follows we shall
briefly introduce the topics that were recurrent themes in Walter Philipp’s work.

Uniform distribution mod 1. A sequence(xn)n≥1 of real numbers is called uni-
formly distributed mod 1 if for allx∈ [0,1]

lim
N→∞

1
N

#{1≤ i ≤ N : {xi} ≤ x} = x,

where{x} denotes the fractional part ofx. More generally, a sequence(xn)n≥1 of
vectors inR

d is called uniformly distributed mod 1 if

lim
N→∞

1
N

#{1≤ i ≤ N : {xi} ∈ A} = λ(A)

for all rectanglesA⊂ [0,1]d, whereλ denotes Lebesgue measure and forx∈ R
d the

symbol{x} is interpreted coordinatewise. The famous Weyl criterion (1916) states
that a sequence(xn)n≥1 in R

d is uniformly distributed mod 1 iff

lim
N→∞

1
N

N

∑
n=1

e2πi〈k,xn〉 = 0

for all k ∈ Z
d \ {0}. An immediate consequence is the uniform distribution of the

sequence(nα)n≥1 ⊂ R for irrationalα, but with suitable methods this leads to the
uniform distribution of many other sequences in one and higher dimensions, for
example, a large class of sequences of the type{nkα} for increasing sequences
(nk)k≥1 of positive integers.
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Discrepancies. Given a sequence(xn)n≥1 of real numbers uniformly distributed
mod 1, one can study the discrepancy

DN := sup
0≤a<b<1

∣

∣

∣

∣

1
N

#{1≤ i ≤ N : a≤ {xi} < b}− (b−a)

∣

∣

∣

∣

.

A Glivenko–Cantelli type argument shows thatDN → 0, and one may then ask for
the exact rate of convergence ofDN to 0. In the case of ad-dimensional sequence
(xn)n≥1, one can define the discrepancy with respect to a classC of subsets of[0,1]d

by

DN(C ) := sup
A∈C

∣

∣

∣

∣

1
N

#{1≤ i ≤ N : {xi} ∈ A}−λ(A)

∣

∣

∣

∣

.

In this case, the additional issue of the choice of suitable classC arises. Note that
DN(C ) → 0 does not necessarily hold even if the sequence(xn)n≥1 is uniformly
distributed.

θ-adic expansion of real numbers. Let θ > 1, not necessarily an integer. Every
real numberω ∈ [0,1) can be written as an infinite series

ω =
∞

∑
n=1

θ−nxn

where 0≤ xn < θ are integers. Clearlyxn = [Tnω] where the transformationT :
[0,1] → [0,1] is defined byTω := {θω} and[x] denotes the integer part ofx. Also,
Tnω = ∑∞

k=1 θ−kxn+k. The basic asymptotic question here is the distribution of digits
in the expansion, for example, one can ask if the limits of relative frequencies

Fk := lim
N→∞

1
N

N

∑
n=1

1{xn=k}

exist. If θ is an integer, the transformationT is ergodic and has Lebesgue measure
as an invariant measure, thus the ergodic theorem implies that the limitsFk exist and
are equal toθ−1 for k = 0,1, . . . ,θ− 1 and almost every real numberω. With the
usual terminology, almost every real number is normal with respect to baseθ. This
statement, proved first by Borel in 1909, is a typical result in the metric theory of
numbers, stating that a certain property holds for almost every real number, without
specifying the exceptional set. In fact, to determine whether a given numberω
is normal is a very hard problem and only very few normal numbers are known
explicitly. We do not know, for example, if

√
2, eor π are normal in any base. Note

that the normality ofω in basea∈ N is equivalent to the statement that the sequence
(an ω)n≥1 is uniformly distributed mod 1.

If θ is not an integer, the transformationT is still ergodic, but Lebesgue measure
is not an invariant measure. It is known from work of Alfréd Rényi (1957) that there
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exists a unique invariant measureµ which is equivalent to Lebesgue measure. In
this case, the sequence(θnω)n≥1 is no longer uniformly distributed, but

lim
N→∞

1
N

#{1≤ n≤ N : Tnω ≤ x} = µ([0,x]),

for almost everyω.

Continued fraction expansion. Every real numberω ∈ (0,1] can be expressed as
an infinite continued fraction

ω =
1

x1 + 1
x2+

1
x3+...

= [x1,x2, . . .],

wherexi ∈ {1,2, . . .}. Closely related is the transformationT : (0,1] → (0,1], de-
fined by

Tω := {1/ω} .

Then-th digit in the continued fraction expansion is given byxn = [Tnω]. As in the
case of theθ-adic expansion,Tnω can be written as a function ofxn+1,xn+2, . . . by

Tnω = [xn+1,xn+2, . . .].

T is an ergodic transformation with invariant measure given by the Gauss measure

µ((a,b]) =
1

log2

∫ b

a

1
1+x

dx.

As a consequence, the asymptotic distribution of the sequence(Tnω)n≥1 is governed
by the Gauss measure, i.e.

lim
N→∞

1
N

#{1≤ n≤ N : Tnω ≤ x} =
1

log2

∫ x

0

1
1+ t

dt.

From here, one obtains that the integerk occurs in the continued fraction expan-
sion of a random numberω with relative frequency 1

log2

(

log k
k+1 − log k+1

k+2

)

, a fact
already conjectured by Gauss.

Additive functions in number theory. A function f : N −→ R is called additive
if

f (mn) = f (m)+ f (n),

wheneverm andn are coprimes. A simple example of an additive function isω(n),
the number of prime divisors ofn. Hardy and Ramanujan studied this function and
showed thatω(n) is of the order log logn. More precisely, ifPN denotes the uniform
distribution on the firstN integers, then

PN

(

n≤ N :

∣

∣

∣

∣

ω(n)

log logN
−1

∣

∣

∣

∣

≥ ε
)

−→ 0
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for anyε > 0. Turán observed that the Hardy–Ramanujan theorem is a simple conse-
quence of an easily verifiable inequality for the second moment of ω(n) and Cheby-
chev’s inequality and thus initiated the subject of probabilistic number theory. The
Hardy–Ramanujan theorem was later strengthened by Erdős and Kac, who proved
a central limit theorem

PN

(

n≤ N :
ω(n)− loglogN√

log logN
≤ x

)

−→
∫ x

−∞
e−y2/2dy.

Diophantine approximation. Let f be a positive, continuous, nonincreasing func-
tion onR

+. By a classical result of Khinchin, for almost all realα the inequality

|qα− p| ≤ f (q)

q
(1)

has infinitely many or only finitely many solutions in integers p,q according as

∑ f (k)
k diverges or converges. Probabilistically, this is the Borel–Cantelli lemma for

certain dependent events; the main difficulty is to deal withthe dependence in the
case∑ f (k)

k = ∞. Khinchin’s result has been generalized and improved upon in many
directions by Cassels, W. M. Schmidt, Erdős, LeVeque, Szüsz, Gallagher, Ennola,
Billingsley and many others. The simplest proof depends on aconnection of the
problem with continued fraction theory. Call a fractionp/q a best approximation
to α if it minimizes |q′α− p′| over fractionsp′/q′ with denominatorq′ not exceed-
ing q. The successive best approximations toα are the convergentspn(α)/qn(α),
n= 1,2, . . . of its continued fraction expansion and thus the value of|qα− p| for the
n-th in the series of best approximation isdn(α) = |qn(α)α− pn(α)|. Thus the study
of number of solutions of (1) is equivalent to the study of growth of the sequence
dn(α). Khinchin proved that

1
n

logdn(α) →− π2

log2

for almost everyα.

Lacunary sequences. Probabilistic methods play an important role in harmonic
analysis and there is a profound connection between probability theory and trigono-
metric series. From a purely probabilistic point of view, the trigonometric sys-
tem (cos2πnx,sin2πnx)n≥1 is a sequence of orthogonal (i.e. uncorrelated) random
variables over[0,1], which, however, are strongly dependent. For example, the
r.v.’s sin2πnx have the same distribution, but their partial sums∑n≤N sin2πnx re-
main bounded for any fixedx, a behavior very different from that of i.i.d. random
variables. However, it has been known for a long time that forrapidly increasing
(nk)k≥1, the sequences(sin2πnkx)k≥1 and(cos2πnkx)k≥1 behave like sequences of
independent random variables. For example, Salem and Zygmund (1947) proved
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that if (nk)k≥1 satisfies the Hadamard gap conditionnk+1/nk ≥ q > 1 (k = 1,2, . . .),
then(sin2πnkx)k≥1 obeys the central limit theorem, i.e.

lim
N→∞

λ{x∈ (0,1) : ∑
k≤N

sin2πnkx < t
√

N/2} = (2π)−1/2
∫ t

−∞
e−u2/2du. (2)

Erdős (1962) proved that the CLT (2) remains valid if the Hadamard gap condition
is weakened tonk+1/nk ≥ 1+ck/

√
k, ck → ∞ and this result is sharp. Similar results

hold if sinnkx is replaced byf (nkx), wheref is a real measurable function satisfying

f (x+1) = f (x),
∫ 1

0
f (x)dx= 0,

∫ 1

0
f 2(x)dx< ∞.

For example, iff ∈ Lip (α), α > 0 andnk+1/nk → ∞, then the CLT and LIL hold
for f (nkx). (Takahashi (1961, 1963)). If we assume onlynk+1/nk ≥ q > 1, both
the CLT and LIL can fail, a fact discovered by Erdős and Fortet. Gaposhkin (1970)
showed that the validity of the CLT forf (nkx) is closely connected with the number
of solutions(k, l) of the Diophantine equation

ank +bnl = c, l ≤ k, l ≤ N.

Walter Philipp’s work

Given that Walter Philipp published close to 90 research papers, it is impossible to
mention every single result he ever obtained. We will instead try to focus on the
main lines of his research. Philipp’s earliest work, originating from his Ph.D. thesis,
concerns uniform distribution mod 1. Weyl (1916) had shown that the sequence
(an ω)n≥1 is uniformly distributed modulo 1 for almost allω ∈ [0,1], if (an)n≥1 ⊂ R

is a sequence of positive numbers satisfyingan+1−an ≥ δ > 0 (n = 1,2, . . .) for
someδ > 0. Walter Philipp studied this question ford-dimensional sequences,
i.e. for the sequence(Anω)n≥1 whereω ∈ R

d and (An)n≥1 is a sequence ofd-
dimensional matrices satisfying some growth condition. Asa corollary, uniform
distribution of the sequence(Anω)n≥1 for almost allω ∈ R

d can be obtained, pro-
vided the matrixA has all eigenvalues strictly larger than 1.

In 1967 Walter Philipp published the first in a series of papers on the asymptotic
behavior of weakly dependent stochastic processes. This topic would dominate his
research interests for the next 15 years and keep his close attention for the rest
of his life. In the second half of the 1960s and during all of the 1970s Walter
Philipp was internationally recognized as a leader in the development of new limit
theory for weakly dependent processes and their applications to problems in analysis
and number theory. In this period the focus of his research changed substantially:
instead of an analyst and number theorist using tools from probability theory he
became a probabilist applying his results to problems in analysis and number theory.

In all of the topics from analysis and number theory mentioned above, there are
sequences of random variables in the background, most of them defined on the prob-
ability space[0,1], equipped with some measure equivalent to Lebesgue measure. In
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Weyl’s almost sure equidistribution theory, we have the random variablesω 7→ an ω.
In each of the different expansions of real numbersω ∈ (0,1], then-th digit maps
ω → xn = xn(ω) are random variables, and so are then-th iteratesω 7→ Tnω. With
the notable exception of the digits in the expansion to an integer basea, none of
these random variables are independent. But the dependenceis weak, in some sense
yet to be defined. Walter Philipp soon realized that the theory of weakly depen-
dent stochastic processes, then only recently created by publications of Rosenblatt
(1956), Ibragimov (1962) and Billingsley (1968), providesthe right framework for
the problems he wanted to attack.

There is no such thing as a universal definition of weak dependence that would
imply the validity of all limit theorems known for independent processes. There are
many notions, each of them allowing, under additional technical assumptions, the
proof of some of the classical limit theorems of probabilitytheory. The stronger
the notion, the more limit theorems can be established, but at the same time fewer
examples satisfy the conditions. The earliest and most classical notions of weak
dependence areα-mixing (also called strong mixing, but not to be confused with
the same notion in ergodic theory) andφ-mixing (also called uniform mixing). Let
(Xn)n≥1 be a stochastic process, and define for integersk, l with k ≤ l the σ-fields
F l

k = σ(Xk, . . . ,Xl ). We then define the mixing coefficients

α(k) := sup
n≥1

sup
A∈F n

1 , B∈F ∞
n+k

|P(A∩B)−P(A)P(B)|,

φ(k) := sup
n≥1

sup
A∈F n

1 ,B∈F ∞
n+k,P(A)>0

|P(A∩B)−P(A)P(B)|
P(A)

.

The process(Xn)n≥1 is called α-mixing if limn→∞ α(n) = 0 and φ-mixing if
limn→∞ φ(n) = 0. Rosenblatt (1956) and Ibragimov (1962) established central limit
theorems forα- andφ-mixing random variables, requiring a combination of mo-
ment conditions and conditions on the speed at which the mixing rates converge to
zero. Later, several other related mixing concepts (ψ, ρ mixing, absolute regular-
ity, etc.) were introduced and studied in detail. For stationaryφ-mixing processes
(Xn)n≥1, Ibragimov conjectured that the central limit theorem holds if EX2

1 < ∞
and Var(∑n

k=1 Xk) → ∞, but until today this conjecture has not been verified. This
conjecture inspired some of Walter Philipp’s deepest results in the field of mixing
random variables: his 1986 joint paper with Dehling and Denker, giving a neces-
sary and sufficient condition for the CLT forρ-mixing sequences without any rate
or moment conditions and his 1998 joint paper with Berkes, giving a complete char-
acterization of the law of the iterated logarithm and the domain of partial attraction
of the Gaussian law forφ-mixing sequences, again without any moment or rate con-
ditions.

In his first papers on limit theorems for weakly dependent processes, culminating
his 1975 AMS memoir with William Stout, Philipp solved the central limit problem
(characterizing the limit distributions of arrays with corresponding criteria for con-
vergence to specific limits) in the case of bounded variances, proved Berry–Esseen
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bounds for the speed of convergence in the CLT and obtained laws of the iterated
logarithm under various weak dependence conditions. In addition to the mixing
conditions already mentioned, he studied theψ-mixing coefficients defined by

ψ(k) := sup
n≥1

sup
A∈F n

1 ,B∈F ∞
n+k

|P(A∩B)−P(A)P(B)|
P(A)P(B)

,

andψ-mixing processes. The notion ofψ-mixing is stronger than any of the other
mixing conditions andψ-mixing processes satisfy most of the classical i.i.d. limit
theorems. The digits of a random numberω∈ (0,1] in the continued fraction expan-
sion form aψ-mixing process. A second weak dependence condition investigated
by Walter Philipp is a correlation condition for mixed products, requiring that for
all integers 0≤ i1 < .. . < ir , 1≤ j ≤ r, pν ≥ 0

∣

∣

∣
E

(

Xp1
i1

· . . . ·Xpr
ir

)

−E
(

Xp1
i1

· . . . ·Xp j
i j

)

E
(

X
p j+1
i j+1

· . . . ·Xpr
ir

)∣

∣

∣

≤ L( j)c(i j+1− i j) sup
1≤i≤ir

E|Xi |∑ pν .

The standard method to prove limit theorems for mixing processes, employed in
the pioneering works of Rosenblatt (1956) and Ibragimov (1962), was the Bernstein
blocking technique, giving an approximation of the characteristic function of par-
tial sums of mixing sequences by the characteristic function of sums of independent
random variables via suitable correlation inequalities. This method leads to sharp
results in the case of the CLT and LIL, but its applicability beyond them is rather
limited: for example, upper-lower class refinements of the LIL require delicate tail
estimates for the considered r.v.’s which are beyond the scope of the method. In
his 1975 AMS Memoir with William Stout, Walter Philipp showed that sufficiently
separated block sums of weakly dependent sequences are, after suitable centering,
close to a martingale difference sequence, and thus using Skorohod embedding and
Strassen’s strong approximation technique, the partial sums of such sequences can
be closely approximated by a Wiener process. This observation not only opens the
way to prove a vast class of refined asymptotic results for mixing sequences, but
the near martingale property can be easily verified for several other types of weak
dependent processes for which the previous theory does not work, or leads to great
difficulties: Markov processes, retarded mixing sequences, Gaussian processes, la-
cunary series, etc. Note that a different type of martingaleapproximation was used
earlier by Gordin (1969) in case of stationary sequences; the two methods comple-
ment each other and lead to sharp asymptotic results in many important situations.
In his 1979 joint paper with Berkes, Philipp made a further important step in the
study of weak dependent behavior, showing that block sums ofweakly dependent
processes can be directly approximated by independent random variables, via the
Strassen–Dudley existence theorem. This observation frees the investigations from
moment conditions and works not only for real valued random variables, but for
random variables taking values in abstract spaces. In the context of Banach space
valued random variables, this method yields new results even for i.i.d. random vari-
ables, as a 1980 joint paper of Philipp and Kuelbs shows. Thispaper was the first
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in a long series of papers of Walter Philipp dealing with limit theorems of inde-
pendent and weakly dependentB-valued random variables and Hilbert space valued
martingales. The infinite dimensional setup also opens the way to study unform
Glivenko–Cantelli type results and uniform limit theoremsfor random variables in-
dexed by sets, a popular and much studied topic in the 1970’s and 1980’s. Walter
Philipp’s contribution in this field is very substantial; see e.g. his profound joint
paper with Dudley (1983). In his last papers, Walter Philippreturned again to this
topic, showing that metric entropy can be used to provide deep information on pseu-
dorandom behavior and in the theory of uniform distribution. This completes a long
circle in Philipp’s mathematical work and at the same time opens a new direction in
the study of weakly dependent behavior.

The importance of Walter Philipp’s contributions to the asymptotic theory for
weakly dependent processes can only be appreciated in the light of the many ap-
plications to problems in analysis and number theory. Some early applications are
given in two papers entitledSome metrical theorems in number theorywhich are
entirely devoted to such applications. In these papers Walter Philipp investigated
the distribution of the sequence(Tnω)n≥1 for the mapsT : (0,1] → (0,1] associ-
ated with theθ-adic expansion and the continued fraction expansion. If(In)n≥1 is a
sequence of intervals,In ⊂ (0,1], one can study the quantity

A(N,ω) :=
N

∑
n=1

1{Tnω∈In}.

If µ denotes the invariant measure associated withT, then the expected value of
A(N,ω) becomes

φ(N) =
N

∑
n=1

µ(In).

If all the intervals are identical, i.e.In = I , we obtain from the ergodic theorem that
A(N,ω) = φ(N) + o(N) a.s. Walter Philipp sharpened this result considerably by
showing that for anyε > 0,

A(N,ω) = φ(N)+O(φ1/2(N) log3/2+ε φ(N)), (3)

for almost allω ∈ (0,1]. While the accuracy of this approximation is limited by the
second order method used in the proof, shortly thereafter Philipp went much further:
he observed that the considered sequences(Tnω)n≥1 areφ-mixing with exponential
rate and thus using blocking techniques and applying some ofhis asymptotic theo-
rems obtained earlier, one can prove a whole series of highlyattracting limit theo-
rems for the digits in various expansions and Diophantine approximation. These not
only improve several earlier results in the literature, butactually provide the precise
asymptotics in a number of important questions of metric number theory. Let us for-
mulate a few such results here. Letx = [a1(x),a2(x), . . .] be the continued fraction
expansion ofx∈ (0,1) and letϕ(n) → ∞ be a sequence of integers with∑ 1

ϕ(n)
= ∞.
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Denote byA(N,x) the number of integersn≤ N with an(x) ≥ ϕ(n) and put

φ(N) =
1

log2 ∑
n≤N

log

(

1+
1

ϕ(n)

)

.

Then

λ

{

x :
A(N,x)−φ(N)

√

φ(N)
< z

}

→ 1√
2π

∫ z

−∞
exp(−t2/2)dt

and for almost allx

limsup
N→∞

|A(N,x)−φ(N)|
√

2φ(N) log logφ(N)
= 1.

Also, lettingLN(x) = max1≤k≤N an(x), Philipp proved

liminf
N→∞

loglogN
N

LN(x) =
1

log2

for almost allx, verifying an old conjecture of Erdős. Further, letf be a continuous,
positive, nonincreasing function onR+ such that

φ(n) = 2 ∑
k≤n

f (k)
k

→ ∞

and letNα, f (n) denote the number of solutions(p,q) of (1) in integersq≤ n andp.
Then under mild additional regularity conditions onf , Walter Philipp proved

λ

{

α :
Nα, f (n)−φ(n)

√

φ(n)
< z

}

→ 1√
2π

∫ z

−∞
exp(−t2/2)dt

and for almost allα
limsup

n→∞

|Nα, f (n)−φ(n)|
√

2φ(n) loglogφ(n)
= 1.

A further much studied connection between probability theory and number the-
ory is the distribution of values of additive functions. Walter Philipp’s contribution
in his field can be found in his 1971 AMS Memoir written with theambitious goal
to unify probabilistic number theory and to deduce at least the most typical results
as special cases of limit theorems for mixing random variables. Because of the very
different type of weak dependence conditions in number theory, there is little hope
that all applications of probability to number theory couldbe put in a general frame-
work. But at least for applications in Diophantine approximation, continued frac-
tion and related expansions, discrepancies and the distribution of additive functions,
Walter Philipp succeeded in this program to a remarkable degree. He also studied
weak convergence of additive function paths to Brownian motion, extending earlier
results of Billingsley.
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The basic motivation for the introduction of mixing conditions was to understand
the asymptotic properties of weakly dependent structures in stochastics and driven
by its intrinsic needs, the theory made a tremendous progress starting from the 60’s
and by now it is a closed, complete and beautiful theory, giving a nearly complete
answer for the basic asymptotic questions connected with mixing structures. For a
comprehensive treatise of the theory see the recent monograph of R. Bradley (2007).

While questions on weak dependence kept Walter Philipp’s attention in his whole
career, this did not prevent him from making fundamental contributions in other
areas of probability theory, e.g. in the classical theory ofindependent random vari-
ables. In a short paper with M. Lacey in 1990 he proved that if(Xn)n≥1 is a sequence
of i.i.d. random variables with mean 0 and variance 1 then letting Sn = ∑n

k=1Xk we
have

lim
N→∞

1
logN

N

∑
k=1

1
k

I

{

Sk√
k
≤ x

}

=
1√
2π

∫ x

−∞
e−t2/2dt

with probability 1 for allx ∈ R. This remarkable ‘pathwise’ form of the central
limit theorem was already stated (without proof and withoutspecifying conditions)
by Lévy in 1937 and was proved independently by Brosamler (1988), Fisher (1987)
and Schatte (1988) under the assumption of higher moments. Due to these papers,
almost sure central limit theory became extremely popular overnight and has not lost
its attraction until today. The paper of Philipp and Lacey not only yields the final,
optimal form of this theorem, but the method they used becamethe basic method in
this field.

In a series of three papers, published in the mid 1980s jointly with Dehling
and Denker, Walter Philipp investigated the asymptotic behavior of degenerateU-
statistics. Given a symmetric functionh : R

m → R and an i.i.d. process(Xn)n≥1, the
m-variateU-statistic with kernelh is defined as

Un(h) = ∑
1≤i1<...<im≤n

h(Xi1, . . . ,Xim).

The kernel is called degenerate ifE(h(X,x2, . . . ,xm)) = 0 for almost allx2, . . . ,xm.
Dehling, Denker and Philipp proved a strong approximation of Un(h) by m-fold
Wiener–Itô integrals

In(h) =

∫

. . .

∫

h(x1, . . . ,xm)dW(x1) . . .dW(xm),

whereW(t) is a mean-zero Gaussian process. The results of this research enabled
Dehling in a subsequent paper to establish the functional law of the iterated log-
arithm for degenerateU-statistics and for multiple Wiener–Ito integrals. In the
course of their work, Dehling, Denker and Philipp also investigated the empirical
U-process, defined by

√
n

1
(n

m

)

(

#{1≤ i1 < .. . < im ≤ n : h(Xi1, . . . ,Xim) ≤ t}−P(h(X1, . . . ,Xm) ≤ t)
)

t∈R
,
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and established an almost sure invariance principle for this process.

The investigations on the asymptotic behavior of degenerate U-statistics lead
directly to questions concerning the asymptotic behavior of certain Hilbert space
valued martingales. For theU-statistic applications, a bounded law of the iterated
logarithm was sufficient. In later work, carried out jointlywith Monrad, Walter
Philipp established a Skorohod embedding of Hilbert space valued martingales.

Another favorite topic of Walter Philipp’s research was lacunary series: he inves-
tigated such series already in his early papers in the 1960’sand in his very last pa-
pers in 2006 he returned once more to this topic. By Weyl’s (1916) theorem quoted
above, given any sequence(nk)k≥1 of positive numbers withnk+1 − nk ≥ δ > 0
(k = 1,2, . . .), the sequence{nkω} is uniformly distributed mod 1 for almost allω.
In contrast to the simplicity of this result, proving sharp bounds for the discrepancy
of {nkω} is very difficult, and the only precise results known before 1970 were the
results of Khinchin (1924) and Kesten’s (1964) for the casenk = k. Kesten’s result
states that the discrepancyDN(ω) of the sequence{kω} satisfies

lim
N→∞

logN loglogN
N

DN(ω) =
2
π2 in probability.

In 1975 Walter Philipp proved that if(nk)k≥1 is a sequence of integers satisfying
the Hadamard gap conditionnk+1/nk ≥ q > 1 (k = 1,2, . . .), then the discrepancy
DN(ω) of the sequence{nkω} satisfies the law of the iterated logarithm, i.e.

1

4
√

2
≤ limsup

N→∞

√

N
log logN

DN(ω) ≤C (4)

for almost allω, whereC = C(q) = 166+664(q1/2−1)−1. This remarkable result
verified a long standing conjecture of Erdős and Gál, and showed that, as far as its
discrepancies are concerned,{nkω} behaves like a sequence of independent ran-
dom variables. For the partial sums of sinnkx such phenomena have already been
observed by Salem and Zygmund in 1947, but the discrepancy situation is much
more delicate: as in a later paper Philipp (1994) showed, fora suitable sequence
(nk)k≥1 the limsup in (4) is greater thanC loglog 1

q with an absolute constantC and
thus forq close to 1 the limsup can be as large as we wish. Very recently,Fukuyama
(2008) succeeded in computing the limsup for the sequencesnk = θk, θ > 1.

For sequences(nk)k≥1 growing slower than exponentially, the LIL (4) is gen-
erally false, and the behavior of the discrepancy of{nkω} becomes very compli-
cated. R. C. Baker (1981) proved that for anynk, NDN(ω) = O((logN)3/2+ε) for
almost allω and Philipp and Berkes (1994) showed that the constant 3/2 here can-
not be replaced by any number less than 1/2. Despite these fairly precise results on
the extremal behavior of discrepancies, the exact order of magnitude ofDN(ω) for
“concrete”nk remains open. In one of his last papers, written jointly withBerkes
and Tichy, Walter Philipp made a substantial step in clearing up this phenomenon
as well: he showed that the asymptotic behavior of the discrepancy of{nkω} is in-
timately connected with the number of solutions of Diophantine equations of the
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type a1nk1 + · · ·+ apnkp = b. The discovery of this remarkable arithmetical con-
nection is again a characteristic achievement of Walter Philipp, linking probabilistic
phenomena with asymptotic results in analysis and number theory.

In conclusion we mention an interesting result of Philipp onthe extremal behav-
ior of exponential sums. From the Carleson convergence theorem for Fourier series
in L2 it follows that if f is a nondecreasing positive function onR

+ satisfying

∞

∑
k=1

1
k f(k)2 < ∞ (5)

then for any increasing sequence(nk)k≥1 of positive integers we have
∣

∣

∣

∣

∣

N

∑
k=1

e2πinkx

∣

∣

∣

∣

∣

= O(N1/2 f (N)) a.e. (6)

In particular, we have for any(nk)k≥1

∣

∣

∣

∣

∣

N

∑
k=1

e2πinkx

∣

∣

∣

∣

∣

= O(N1/2(logN)1/2+ε) a.e.

for anyε > 0. As early as 1930, Walfisz proved that fornk = k2 the left hand side of
(6) exceedsN1/2(logN)1/4 for infinitely manyN, but this does not reach Carleson’s
upper bound. Walter Philipp proved that iff is a nondecreasing positive function
on R

+ satisfying mild regularity conditions such that the sum in (5) diverges, then
the exponential sum in (6) exceedsN1/2 f (N) a.e. for infinitely manyN. This pro-
vides a complete solution of the problem of extremal speed ofexponential sums
and provides yet another example for the power of weak dependence techniques in
problems of classical analysis.

Physics

In the last years of his life, Walter Philipp became interested in certain problems
concerning the foundation of physics. Nearly 100 years after the birth of quantum
mechanics, the problem of existence of “hidden parameters”in the theory (a ques-
tion first investigated in depth by John von Neumann in 1932) is still not settled, due
to unsatisfactory probabilistic models traditionally used to disprove the existence of
such parameters. In a series of papers written jointly with Karl Hess, Walter Philipp
provided refreshing new ideas in this field, inevitably causing great controversy in
physics circles. It is a great loss to science that Walter Philipp’s death in 2006 put
an end to these investigations, leaving the solution of thisimportant problem to the
future.



14 I. Berkes and H. Dehling

References

[1] R. C. Baker, Metric number theory and the large sieve,J. London Math. Soc.
24 (1981), 34–40.

[2] P. Billingsley,Convergence of Probability Measures, Wiley, New York, 1968.
[3] R. C. Bradley, Introduction to Strong Mixing Conditions, Volumes 1–3,

Kendrick Press, 2007.
[4] G. Brosamler, An almost everywhere central limit theorem,Math. Proc. Cam-

bridge Philos. Soc.104(1988), 561–574.
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gaps,Tôhoku Math. J.15 (1963), 281–288.
[20] A. Walfisz, Ein metrischer Satz über diophantische Approximationen,Fund.

Math.16 (1930), 361–385.
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3. Über die Einfachheit von Funktionenalgebren über Verbänden, Monatsh. Math.67

(1963), 259–268.
4. Die Einfachheit der mehrdimensionalen Funktionenalgebren,Arch. Math.15 (1964),

1–5 (with Wilfried Nöbauer).
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1992 (with Ditlev Monrad).

62. Empirical distribution functions and strong approximation theorems for dependent
random variables. A problem of Baker in probabilistic number theory,Trans. Amer.
Math. Soc.345(1994), 705–727.



18 I. Berkes and H. Dehling

63. The size of trigonometric and Walsh series and uniform distribution mod 1,J. London
Math. Soc.50 (1994), 454–464 (with István Berkes).

64. Trigonometric series and uniform distribution mod 1,Studia Sci. Math. Hungar.31
(1996), 15–25 (with István Berkes).

65. Limit theorems for mixing sequences without rate assumptions, Ann. Probability26
(1998), 805–831 (with István Berkes).

66. A limit theorem for lacunary series∑ f (nk x), Studia Sci. Math. Hungar.34 (1998),
1–13 (with István Berkes).

67. Pair correlations andU-statistics for independent and weakly dependent random vari-
ables,Illinois J. Math.45 (2001), 559–580 (with István Berkes and Robert Tichy).

68. Bell’s theorem and the problem of decidability between the views of Einstein and
Bohr,Proc. Nat. Acad. Sci. USA98 (2001), 14228–14233 (with K. Hess).

69. A possible loophole in the theorem of Bell,Proc. Nat. Acad. Sci. USA98 (2001),
14224–14227 (with K. Hess).

70. Metric theorems for distribution measures of pseudorandom sequences, Dedicated to
Edmund Hlawka on the occasion of his 85th birthday.Monatsh. Math.135 (2002),
321–326 (with Robert Tichy).
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