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Abstract Selection from finite sets is a basic procedure of statistics and the partial
sum behavior of selected elements is completely known under the “uniform asymptotic
negligibility” condition of central limit theory. The purpose of the present paper is to
determine the asymptotic behavior of partial sums when the central limit theorem fails.
As an application, we describe the limiting properties of permutation and bootstrap
statistics in case of infinite variance.
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1 Introduction

Selection from a finite population is a basic procedure of statistics and large sam-
ple properties of many classical tests and estimators are closely connected with the
asymptotic behavior of sampling variables. Typical examples are bootstrap and per-
mutation statistics, both of which assume a sample X1, X2, . . . , Xn of i.i.d. random
variables with distribution function F and then drawing, with or without replacement,
m = m(n) elements from the finite set {X1, . . . , Xn}. The usefulness of this procedure
is due to the fact that the asymptotic properties of many important functionals of the
random variables X (n)

1 , . . . , X (n)
m obtained by resampling are similar to those of the

functionals of the original sample X1, . . . , Xn . Permutation and bootstrap statistics
can be used, for example, to simulate critical values in statistical tests where the limit
distribution of the test statistic contains unknown parameters or the convergence is
too slow to use asymptotic results.

In the case when the the random variables obtained in the selection procedure sat-
isfy the uniform asymptotic negligibility condition of classical central limit theory,
the limiting behavior of their partial sums can be described easily. For each n let

x1,n ≤ x2,n ≤ · · · ≤ xn,n

be a sequence of real numbers and denote by X (n)
1 , X (n)

2 , . . . , X (n)
m the random vari-

ables obtained by drawing, with or without replacement, m elements from the set
{x1,n, . . . ,xn,n}. Define the partial sum process

Zn,m(t) =
�mt�∑

j=1

X (n)
j for 0 ≤ t ≤ 1, (1.1)

where �·� denotes integral part. Let
D[0,1]−−−−→ denote convergence in the space D[0, 1] of

càdlàg functions equipped with the Skorokhod J1-topology. The following two results
are well known.

Theorem A Let

n∑

j=1

x j,n = 0,

n∑

j=1

x2
j,n = 1 (1.2)

and

max
1≤ j≤n

|x j,n| −→ 0 (1.3)

and draw m = m(n) elements from the set {x1,n, . . . ,xn,n} with replacement, where

m/n → c for some c > 0. (1.4)
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Then

Zn,m(t)
D[0,1]−−−−→ W (ct) for n → ∞,

where {W (t), 0 ≤ t ≤ 1} is a Wiener process.

Theorem B Assume (1.2) and (1.3) and draw m = m(n) elements from the set
{x1,n, . . . ,xn,n} without replacement, where m ≤ n and (1.4) holds. Then

Zn,m(t)
D[0,1]−−−−→ B(ct) for n → ∞,

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge.

In the case of Theorem A the random variables X (n)
1 , . . . , X (n)

m are i.i.d. with mean
0 and variance 1/n and they satisfy the Lindeberg condition

lim
n→∞

m∑

j=1

E[(X (n)
j )2 I {|X (n)

j | ≥ ε}] = 0 for any ε > 0, (1.5)

since the sum on the left hand side is 0 for n ≥ n0(ε) by the uniform asymptotic
negligibility condition (1.3). Thus Theorem A is an immediate consequence of the
classical functional central limit theorem for sums of independent random variables
(see [20]). Theorem B, due to Rosén [18], describes a different situation: if we sam-
ple without replacement, the r.v.’s X (n)

1 , . . . , X (n)
m are dependent and the partial sum

process Zn,m(t) converges weakly to a process with dependent (actually negatively
correlated) increments.

Typical applications of Theorems A and B include bootstrap and permutation sta-
tistics. Let X1, X2, . . . be i.i.d. random variables with distribution function F with
mean 0 and variance 1. Let {X (n)

1 , . . . , X (n)
m } be the bootstrap sample obtained by

drawing m = m(n) elements from the set {X1, . . . , Xn} with replacement. Clearly,
X (n)

1 , . . . , X (n)
m are independent random variables with common distribution Fn(t) =

n−1 ∑n
i=1 I {Xi ≤ t}, the empirical distribution function of the sample X1, . . . , Xn .

Define

Xn = 1

n

n∑

k=1

Xk and σ 2
n = 1

n

n∑

k=1

(Xk − Xn)
2

and apply Theorem A with the random finite set

{
X1 − Xn

σn
√

n
, . . . ,

Xn − Xn

σn
√

n

}
, (1.6)

where the selection process is independent of the sequence X1, X2, . . .. It is easily
checked that the conditions of Theorem A are satisfied and it follows that if (1.4)
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holds, then conditionally on X = (X1, X2, . . .), for almost all paths (X1, X2, . . .),

PX

⎧
⎨

⎩
1

σn
√

n

�mt�∑

k=1

(X (n)
k − Xn)

D[0,1]−−−−→ W (ct)

⎫
⎬

⎭ = 1.

This fundamental limit theorem for the bootstrap is due to Bickel and Freedman [5]. On
the other hand, drawing n elements from the set {X1, . . . , Xn} without replacement,
we get a random permutation of X1, . . . , Xn which we denote by Xπ(1), . . . , Xπ(n).
Again we assume that the selection process is independent of X1, X2, . . .. It is clear
that all n! permutations of (1, 2, . . . , n) are equally likely. Applying now Theorem B
with the set (1.6), we get that for almost all paths X = (X1, X2, . . .),

PX

⎧
⎨

⎩
1

σn
√

n

�nt�∑

k=1

(Xπ(k) − Xn)
D[0,1]−−−−→ B(t)

⎫
⎬

⎭ = 1,

an important fact about permutation statistics.
The aim of the present paper is to prove analogues of Theorems A and B in the case

when the uniform asymptotic negligibility condition (1.3) does not hold, i.e. the ele-
ments of the set {x1,n, . . . ,xn,n} are not any more ”small”. This happens in statistical
inference if the underlying distribution has infinite variance. Clearly, in this case the
limiting behavior of the partial sums of the selected elements will be quite different.
If, for example, the largest element xn,n of the set {x1,n, . . . ,xn,n} does not tend to
0 as n → ∞, then the contribution of xn,n in the partial sums of a sample of size n
taken from this set clearly will not be negligible and thus the limit distribution of such
sums (if it exists) will depend on this largest element. A similar effect is well known
in classical central limit theory (see e.g. Bergström [4]), but the present situation will
exhibit substantial additional difficulties. To simplify the formulas, we will assume
throughout this paper that

n∑

j=1

x j,n = 0, (1.7)

x j,n −→ y j and xn− j+1,n −→ z j for any fixed j as n → ∞ (1.8)

for some numbers y j , z j , j = 1, 2, . . .. We will also require that

lim
K→∞ lim sup

n→∞

n−K∑

j=K+1

x2
j,n = 0. (1.9)

Condition (1.8) is no essential restriction of generality: if we assume only that the
sequences {x j,n, n ≥ 1}, {xn− j+1,n, n ≥ 1} are bounded for any fixed j , then by a
diagonal argument we can find a subsequence of n’s along which (1.8) holds. Then
along this subsequence our theorems will apply and if the limiting numbers y j , z j are
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different along different subsequences, the processes Zn,m(t) will also have different
limits along different subsequences. This seems to be rather pathological behavior,
but it can happen even in simple i.i.d. situations, see Corollary 1.4 below.

The role of condition (1.9) is to exclude a Wiener or Brownian bridge component
in the limiting process, as it occurs in Theorems A and B. To see this more clearly, let
r = r(n) denote the median of the set {1, 2, . . . , n} and assume that x j,n = 1/

√
n for

[log n] < j < r , x j,n = −1/
√

n for r < j ≤ n − [log n] and otherwise x j,n = 0.
Then (1.7) and (1.8) are valid with y j = z j = 0, j = 1, 2, . . ., but from Theorem A
it follows that if we select with replacement, Zn,n(t) converges weakly to the Wiener
process.

We are now ready to formulate our results. We start with the case of selection
without replacement, since the limiting process is simpler in this case.

Theorem 1.1 Let, for each n = 1, 2, . . . ,

x1,n ≤ x2,n ≤ · · · ≤ xn,n (1.10)

be a finite set satisfying (1.7)–(1.9) and

∞∑

j=1

y2
j < ∞ and

∞∑

j=1

z2
j < ∞. (1.11)

Let X (n)
1 , . . . , X (n)

m be the random elements obtained by drawing m = m(n) ≤ n
elements from the set (1.10) without replacement, where (1.4) holds. Then for the
processes Zn,m(t) defined by (1.1) we have

Zn,m(t)
D[0,1]−−−−→ R(ct) for n → ∞

where

R(t) =
∞∑

j=1

y j (δ j (t) − t) +
∞∑

j=1

z j (δ
∗
j (t) − t)

and {δ j (t), 0 ≤ t ≤ 1}, {δ∗
j (t), 0 ≤ t ≤ 1}, j = 1, 2, . . . are independent jump pro-

cesses, each making a single jump from 0 to 1 at a random point uniformly distributed
in (0, 1).

Theorem 1.2 Let, for each n = 1, 2, . . . ,

x1,n ≤ x2,n ≤ · · · ≤ xn,n (1.12)

be a finite set satisfying (1.7)–(1.9) and (1.11). Let X (n)
1 , . . . , X (n)

m be the random ele-
ments obtained by drawing m = m(n) elements from the set (1.12) with replacement,
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where (1.4) holds. Then for the processes Zn,m(t) defined by (1.1) we have

Zn,m(t)
D[0,1]−−−−→ R(ct) for n → ∞

where

R(t) =
∞∑

j=1

y j (δ j (t) − t) +
∞∑

j=1

z j (δ
∗
j (t) − t)

and {δ j (t), t ≥ 0}, {δ∗
j (t), t ≥ 0}, j = 1, 2, . . . are independent Poisson processes

with parameter 1.

We now give several applications of Theorems 1.1 and 1.2. Let X1, X2, . . . belong
to the domain of attraction of a stable r.v. ξα with parameter 0 < α < 2. That is, letting
Sn = ∑n

k=1 Xk , we have

(Sn − an)/bn
d−→ ξα (1.13)

for some numerical sequences (an), (bn). The necessary and sufficient condition for
this is

P(X1 > t) ∼ p L(t) t−α, P(X1 < −t) ∼ q L(t) t−α as t → ∞ (1.14)

for some numbers p ≥ 0, q ≥ 0, p + q = 1 and a slowly varying function L .
Let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be the ordered sample of {X1, . . . , Xn} and apply
Theorems 1.1 and 1.2 for the random set

{
X1,n − Xn

Tn
, . . . ,

Xn,n − Xn

Tn

}
, (1.15)

where Xn = 1
n

∑n
k=1 Xk is the sample mean and Tn = max1≤k≤n |Xk |. The normali-

zation Tn is due to the fact that the random variables X j are outside of the domain of
attraction of the normal law. Then we get

Corollary 1.1 Let X1, X2, . . . be i.i.d. random variables with partial sums Sn satis-
fying (1.13) with some (an), (bn) and a stable random variable ξα, 0 < α < 2. Let
X (n)

1 , . . . , X (n)
m be the variables obtained by drawing m = m(n) ≤ n times without

replacement from the set {X1, . . . , Xn} such that the selection process is independent
of X1, X2, . . . and (1.4) holds. Let

Z∗
n,m(t) = 1

Tn

�mt�∑

j=1

(X (n)
j − Xn) for t ∈ [0, 1]. (1.16)
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Then

PX
(
Z∗

n,m(t) ≤ x
) d−→ PZ(R(ct) ≤ x) for n → ∞ (1.17)

for any real x, where

R(t) = 1

M

⎡

⎣−q1/α
∞∑

j=1

1

Z1/α
j

(δ j (t) − t) + p1/α
∞∑

j=1

1

(Z∗
j )

1/α
(δ∗

j (t) − t)

⎤

⎦.

Here Z j = η1 +· · ·+η j , Z∗
j = η∗

1 +· · ·+η∗
j , where {η j , η∗

j , j ∈ N} are independent
exp(1) random variables, Z = (Z1, Z∗

1 , Z2, Z∗
2 , . . .),

M = max
{
(q/Z1)

1/α, (p/Z∗
1)1/α

}
(1.18)

and {δ j (t), 0 ≤ t ≤ 1}, {δ∗
j (t), 0 ≤ t ≤ 1}, j = 1, 2, . . . are independent jump pro-

cesses, each making a single jump from 0 to 1 at a random point uniformly distributed
in (0, 1), also independent of {Z j , Z∗

j , j ∈ N}.

Corollary 1.2 Corollary 1.1 remains valid if X (n)
1 , . . . , X (n)

m are obtained by drawing
with replacement from the set {X1, . . . , Xn}. In this case {δ j (t), t ≥ 0}, {δ∗

j (t), t ≥ 0},
j = 1, 2, . . . will be independent Poisson processes with parameter 1.

Note that the right hand side of (1.17) is a random variable, defined on a possibly
different probability space than the r.v.’s X1, X2, . . .. In other words, the limit dis-
tribution in Corollaries 1.1 and 1.2 is random. In case of the bootstrap statistics, this
phenomenon was first noted by Athreya [1], who proved Corollary 1.2 in the case
m = n, t = 1 (with a different representation of the limit). Another representation of
the limit in the bootstrap case (still different from ours) was given by Hall [13]. In the
case m = n and under additional regularity assumptions on the centering sequence an ,
Corollary 1.1 was obtained in Aue et al. [2]. Note that the process {R(t), 0 ≤ t ≤ 1}
obtained in the case of selection without replacement satisfies R(0) = R(1) = 0 and
thus it gives a nongaussian “bridge”, having the same covariance (up to a constant)
as Brownian bridge. Similarly, in the case of selection with replacement, R(t) has the
same covariance as a constant multiple of W (t).

Corollaries 1.1 and 1.2 determine the limit of PX{Z∗
n,m(t) ≤ x} computed con-

ditionally on X, i.e. under fixed sample elements X1, X2, . . .. It is natural to ask
if Z∗

n,m(t) converges unconditionally as well. In case of selection without replace-
ment, the answer is obvious: continuing the selection until all elements of the set
are drawn (i.e. m = n), the vector (X (n)

1 , . . . , X (n)
n ) is a random permutation of the

vector (X1, X2, . . . , Xn) and thus its distribution is the same as that of (X1, . . . , Xn).
Consequently, T −1

n
∑

k≤nt (X (n)
k − Xn) converges weakly to a stable process, more

precisely to the α-stable analogue of the Brownian bridge. In the bootstrap case the
unconditional limit process of the normalized partial sums is an α-stable process with
independent stationary increments. This can be proved by direct calculations using
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characteristic functions; an elegant proof follows from the theory of infinite dimen-
sional stable distributions, see Ledoux and Talagrand [15, Chapter 5]. The authors
thank Professor Thomas Mikosch for this observation.

It is worth mentioning that Corollaries 1.1 and 1.2 remain valid in the limiting case
α = 0, i.e. when X1 has slowly varying tails. Let X1, X2, . . . be i.i.d. random variables
satisfying

P(X1 > t) ∼ p L(t) and P(X1 ≤ −t) ∼ (1 − p) L(t) (1.19)

for t → ∞ and some nonincreasing slowly varying function L(t) with limt→∞ L(t) =
0. Using Theorems 1.1 and 1.2 we get the following:

Corollary 1.3 Let X1, X2, . . . be i.i.d. random variables with slowly varying tails sat-
isfying (1.19). Let X (n)

1 , . . . , X (n)
m be the variables obtained by drawing m = m(n) ≤

n times without replacement from the set {X1, . . . , Xn}, where (1.4) holds. Define
Z∗

n,m(t) by (1.16). Then

PX(Z∗
n,m(t) ≤ x)

d−→ PU (R(ct) ≤ x)

for any real x with

R(t) = −I {U > p}(δ(t) − t) + I {U ≤ p}(δ∗(t) − t).

Here U is a uniform r.v. on (0, 1) and {δ(t), 0 ≤ t ≤ 1} and {δ∗(t), 0 ≤ t ≤ 1} are
independent jump processes, both making a single jump from 0 to 1 at a uniformly
distributed point on (0, 1), independent of U.

Here again, as throughout in our paper, the selection process is independent of the
sample (X1, . . . , Xn).

Corollary 1.3 remains valid if we sample with replacement. Then, however, δ(t)
and δ∗(t) are independent Poisson processes with parameter 1, independent of the
uniform r.v. U .

Our next corollary describes a situation when relation (1.8) fails, i.e. the sequences
x j,n and xn− j+1,n do not converge for fixed j . Let X1, X2, . . . be i.i.d. symmetric
random variables with the distribution

P(X1 = ±2k) = 2−(k+1) k = 1, 2, . . . (1.20)

This is the two-sided version of the St. Petersburg distribution. The distribution func-
tion F(x) of X1 satisfies

1 − F(x) = 2−k for 2k−1 ≤ x < 2k

which shows that G(x) = x(1 − F(x)) is logarithmically periodic: if x runs through
the interval [2k, 2k+1), then G(x) runs through all values in [1/2, 1) and G(log2 x) is
periodic with period 1. Thus (1.14) fails and consequently F does not belong to the

123



Non-central limit theorems for random selections 457

domain of attraction of a stable law. The partial sums Sk = ∑n
k=1 Xk have a remarkable

behavior: for any fixed 1 ≤ c < 2, the normed sums n−1Sn converge weakly along the
subsequence nk = �c2k� to an infinitely divisible distribution Fc such that Fc = F∗c

1
and F2 = F1. The class F = {Fc, 1 ≤ c ≤ 2}, can be considered a ‘circle’, and in
each interval [2k, 2k+1), the distribution of n−1Sn essentially runs around this circle
in the sense that n−1Sn is close in distribution to Fc with c = n/2k . This phenomenon
was discovered by Csörgő [10], who called this quasiperiodic behavior ‘merging’. As
the following corollary shows, merging will also take place in the behavior of permu-
tation and bootstrap statistics. For simplicity, we consider the case when we draw n
elements from the sample (X1, . . . , Xn). Let �(x), 0 < x < ∞ denote the function
which increases linearly from 1/2 to 1 on each interval (2 j , 2 j+1], j = 0,±1,±2, . . ..

Corollary 1.4 Let X1, X2, . . . be i.i.d. random variables with the distribution (1.20).
Let X (n)

1 , . . . , X (n)
n be the elements obtained by drawing n times with replacement from

the set {X1, . . . , Xn} and let Z∗
n(t) be defined by (1.16) with m = n. Let 1 ≤ c < 2.

Then for nk = �c 2k� we have

PX(Z∗
nk

(t) ≤ x)
d−→ PZ(Rc(t) ≤ x)

for any real x, where

Rc(t) = 1

M

⎡

⎣−
∞∑

j=1

1

Z j
�

(
Z j

c

)
(δ j (t) − t) +

∞∑

j=1

1

Z∗
j
�

(
Z∗

j

c

)
(δ∗

j (t) − t)

⎤

⎦

with

M = max

{
� (Z1/c)

Z1
,
�

(
Z∗

1/c
)

Z∗
1

}
.

Here Z j = η1 + · · · + η j and Z∗
j = η∗

1 + · · · + η∗
j , where {η j , η∗

j , j ∈ N} are i.i.d.
exp(1) random variables and {δ j (t), 0 ≤ t ≤ 1}, {δ∗

j (t), 0 ≤ t ≤ 1}, j = 1, 2, . . . are
independent jump processes, each making a single jump from 0 to 1 at a uniformly
distributed point in (0, 1).

Just like in the case of partial sums, the class Rc of limiting processes is logarithmi-
cally periodic, namely R2c = Rc and for a fixed n with 2k ≤ n < 2k+1 the conditional
distribution of Z∗

n(t) is close to that of Rc(t) with c = n/2k .

Corollary 1.4 remains valid if we draw X (n)
1 , . . . , X (n)

n without replacement from
the set {X1, . . . , Xn}. Then δ j (t) and δ∗

j (t) are independent Poisson processes with
parameter 1.

2 Proofs

We will prove Theorems 1.1 and 1.2 in the case m = n; the proofs in the general case
require only trivial changes. For studying the sample (X (n)

1 , . . . , X (n)
n ) we introduce
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random variables {ε(n)
1 (t), . . . , ε(n)

n (t)}, where ε
(n)
j (t) counts how many times x j,n has

been chosen among the first �nt� sampled elements:

ε
(n)
j (t) = k if x j,n is chosen k times among the first �nt� elements

for j = 1, . . . , n and k ∈ {0, 1, . . . , �nt�} when drawing with replacement and
k ∈ {0, 1} when drawing without replacement. Obviously the distribution of the ε

(n)
j (t)

depends on the selection method. If we draw without replacement, the ε
(n)
j (t) only

take the values 0 or 1, as an element can be chosen at most once during some time
interval. Clearly

Zn(t) =
�nt�∑

j=1

X (n)
j =

n∑

j=1

x j,nε
(n)
j (t) =

n∑

j=1

x j,n ε̄
(n)
j (t), (2.1)

as
∑n

j=1 x j,n = 0 and the ε
(n)
j are equidistributed. Here ε̄

(n)
j (t) = ε

(n)
j (t) − Eε

(n)
j (t)

is the centered version of ε
(n)
j (t).

Note that in Theorems 1.1 and 1.2 we did not assume that the elements of the set
(1.10) are different. If, e.g. x1,n = x2,n , in the selection procedure x1,n,x2,n should
be considered different elements of the set (1.10) and ε

(n)
1 (t) and ε

(n)
2 (t) denote how

many times these (otherwise equal) elements were selected in the first �nt� steps.
Clearly, the representation (2.1) remains valid in this case.

The following two subsections cover the two different sampling methods.

2.1 Selection with replacement

Since we draw �nt� times with replacement from a set with n elements, the vec-
tor {ε(n)

1 (t), . . . , ε(n)
n (t)} follows a multinomial distribution with p j = 1/n for j =

1, . . . , n and �nt� draws. Obviously the marginal distribution of ε
(n)
j (t) is binomial

with parameters 1/n and �nt�. In particular, this implies Eε
(n)
j (t) = �nt�/n.

In order to prove Theorem 1.2 we need several lemmas, which will be stated next.
We first show that under the assumptions of Theorem 1.2 only the very small and very
large order statistics will contribute asymptotically to Zn(t). This will be shown in
Lemmas 2.1 and 2.5.

Lemma 2.1 If (1.9) holds, then

lim
K→∞ lim sup

n→∞
P

⎛

⎝

∣∣∣∣∣∣

n−K∑

j=K+1

x j,n ε̄
(n)
j (t)

∣∣∣∣∣∣
≥ δ

⎞

⎠ = 0

for all δ > 0 and 0 ≤ t ≤ 1.
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Proof We get, using the properties of the binomial and multinomial distribution,

E

((
ε̄
(n)
j (t)

)2
)

= Var
(
ε
(n)
j (t)

)
= �nt�n − 1

n2 for j = 1, . . . , n

and

E
(
ε̄
(n)
j (t)ε̄(n)

k (t)
)

= Cov
(
ε
(n)
j (t)ε(n)

k (t)
)

= −�nt�
n2 for 1 ≤ j < k ≤ n.

Furthermore we have

E

⎛

⎝
n−K∑

j=K+1

x j,n ε̄
(n)
j (t)

⎞

⎠ = 0

and

Var

⎛

⎝
n−K∑

j=K+1

x j,n ε̄
(n)
j (t)

⎞

⎠ =
n−K∑

j,k=K+1

x j,nxk,n E
(
ε̄
(n)
j (t)ε̄(n)

k (t)
)

= �nt�n − 1

n2

n−K∑

j=K+1

x2
j,n − �nt�

n2

n−K∑

j,k=K+1
k �= j

x j,nxk,n

= �nt�
n

n−K∑

j=K+1

x2
j,n − �nt�

n2

n−K∑

j,k=K+1

x j,nxk,n

= �nt�
n

n−K∑

j=K+1

x2
j,n − �nt�

n2

⎛

⎝
n−K∑

j=K+1

x j,n

⎞

⎠
2

≤
n−K∑

j=K+1

x2
j,n .

The statement of Lemma 2.1 now follows using the Markov inequality and (1.9). �
The following consequence of the proof of Lemma 2.1 and relation (2.1) will be

convenient in applications of our theorems.

Corollary 2.1 Let Z̃n(t) denote the analogue of Zn(t) when the set {x1,n, . . . ,xn,n}
is replaced by another set {x̃1,n, . . . , x̃n,n}. Then assuming (1.7) for both sets (but
without assuming (1.8) or (1.9)), we have for any 0 ≤ t ≤ 1

E(Z̃n(t) − Zn(t))2 ≤
n∑

j=1

(x j,n − x̃ j,n)2.
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An analogous statement holds in the case of selection without replacement.
In what follows, let dist(X) and dist(X |Y ) denote, respectively, the distribution

of the random vector X and its conditional distribution relative to the random vec-
tor Y . The following lemma, due to Berkes and Philipp [3], will be crucial for our
approximation argument.

Lemma 2.2 Let {Xk, k ≥ 1} be a sequence of random vectors with values in Z
d

defined on an atomless probability space. Suppose that

P(ρ(dist(Xk |X1, . . . , Xk−1), dist(Xk)) ≥ εk) ≤ εk for all k ≥ 1, (2.2)

where ρ denotes the Prokhorov distance. Then there exist independent random vectors

{Yk, k ≥ 1} with values in Z
d such that Xk

d= Yk and

P (|Xk − Yk | > 6εk) < 6εk for all k ≥ 1.

Lemma 2.2 is implicit in Theorem 2 of Berkes and Philipp [3], which assumes a
mixing condition, but the proof uses only (2.2).

The following lemma shows that in the index range j ∈ {1, . . . , K , n − K +
1, . . . , n} for K “not too large” (roughly for K ≤ √

n) the dependent random vari-
ables ε

(n)
j (t) can be approximated by independent binomial random variables.

Lemma 2.3 If (1.9) holds, then for every 0 < t < 1 and n ≥ 2/t there exist
independent random variables δ

(n)
j (t), j = 1, 2, . . . n, with binomial distribution

B(�nt�, 1/n), such that

P

⎛

⎝
K∑

j=1

x j,n(ε
(n)
j (t) − δ

(n)
j (t)) �= 0

⎞

⎠ ≤ Ct−1 K 2 (log n)3

n
(2.3)

and

P

⎛

⎝
n∑

j=n−K+1

x j,n

(
ε
(n)
j (t) − δ

(n)
j (t)

)
�= 0

⎞

⎠ ≤ Ct−1 K 2 (log n)3

n
(2.4)

for all K = 1, . . . , �n/4�, where C is an absolute constant.

Technically, relations (2.3) and (2.4) are valid for 1 ≤ K ≤ �n/4�, but they give a
trivial bound for K ≥ const

√
n/(log n)3/2. We will use the lemma for constant K .

Proof Let, for j ≥ 1, γ2 j−1 = ε
(n)
j (t) and γ2 j = ε

(n)
n− j+1(t). To approximate the

dependent ε
(n)
j (t) with the independent δ

(n)
j (t), we use Lemma 2.2 and thus we need

an estimate for the difference

|P(γk+1 = ak+1|γ1 = a1, . . . , γk = ak) − P(γk+1 = ak+1)|.
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We are drawing �nt� times with replacement from the set (1.10) and γk (k = 1, . . . , n)
counts how many times the corresponding element was drawn from the set and follows
a binomial distribution:

P(γk = ak) =
(�nt�

ak

)(
1

n

)ak
(

n − 1

n

)�nt�−ak

for 0 ≤ ak ≤ �nt�.

On the other hand, letting a(k) = ∑k
i=1 ai we see that

P(γk+1 = ak+1|γ1 = a1, . . . , γk = ak)

=
(�nt� − a(k)

ak+1

)(
1

n − k

)ak+1
(

n − k − 1

n − k

)�nt�−a(k)−ak+1

for 0 ≤ ak+1 ≤ �nt� − a(k). Obviously γk+1 = 0 in the case of a(k) = �nt�.
Consider first the case ai ≤ C1 log n, 1 ≤ i ≤ n for some positive constant C1. By

the assumption 1 ≤ K ≤ n/4 of the lemma, it suffices to consider the case k ≤ n/2.
Letting

T = (�nt� − a(k)) · · · (�nt� − a(k) − ak+1 + 1)

�nt� · · · (�nt� − ak+1 + 1)

we get

|P(γk+1 = ak+1|γ1 = a1, . . . , γk = ak) − P(γk+1 = ak+1)|

=
∣∣∣∣∣

(�nt� − a(k)

ak+1

)(
1

n − k

)ak+1
(

n − k − 1

n − k

)�nt�−a(k)−ak+1

−
(�nt�

ak+1

)(
1

n

)ak+1
(

n − 1

n

)�nt�−ak+1
∣∣∣∣∣

=
(�nt�

ak+1

) ∣∣∣∣∣T
(

1

n − k

)ak+1
(

n − k − 1

n − k

)�nt�−a(k)−ak+1

−
(

1

n

)ak+1
(

n − 1

n

)�nt�−ak+1
∣∣∣∣∣

≤
(�nt�

ak+1

)(
n − k − 1

n − k

)�nt�−a(k)−ak+1
∣∣∣∣T

1

(n − k)ak+1
− 1

nak+1

∣∣∣∣

+
(�nt�

ak+1

)(
1

n

)ak+1
∣∣∣∣∣

(
n − k − 1

n − k

)�nt�−a(k)−ak+1

−
(

n − 1

n

)�nt�−ak+1
∣∣∣∣∣ .
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Using the mean value theorem, we get

∣∣∣∣T
1

(n − k)ak+1
− 1

nak+1

∣∣∣∣ ≤ 1

(n − k)ak+1
|T − 1| +

∣∣∣∣
1

(n − k)ak+1
− 1

nak+1

∣∣∣∣

≤ 1

(n − k)ak+1

(
1 −

(
�nt� − a(k) − ak+1 + 1

�nt�

)ak+1
)

+ |nak+1 − (n − k)ak+1 |
(n − k)ak+1nak+1

≤ 1

(n − k)ak+1

(
1−

(�nt� − (k + 1) C1 log n

�nt�
)C1 log n

)

+ ak+1nak+1−1k

(n − k)ak+1nak+1

≤ 1

(n − k)ak+1
C1 log n

(k + 1) C1 log n

�nt� + k C1 log n

n(n − k)ak+1

≤ 1

(n/2)ak+1

6k C2
1 (log n)2

nt
.

Similarly, we get

∣∣∣∣∣

(
n − k − 1

n − k

)�nt�−a(k)−ak+1

−
(

n − 1

n

)�nt�−ak+1
∣∣∣∣∣

≤
∣∣∣∣∣

(
n − k − 1

n − k

)�nt�−a(k)−ak+1

−
(

n − 1

n

)�nt�−a(k)−ak+1
∣∣∣∣∣

+
∣∣∣∣∣

(
n − 1

n

)�nt�−a(k)−ak+1

−
(

n − 1

n

)�nt�−ak+1
∣∣∣∣∣

≤ (�nt� − a(k) − ak+1)

(
1

n − k
− 1

n

)
+
(

n − 1

n

)�nt�−a(k)−ak+1
(

1 −
(

n − 1

n

)a(k)
)

≤ (�nt� − a(k) − ak+1)
k

n(n − k)
+ a(k)

n
.

Putting together the previous estimates and using

(�nt�
ak+1

)
≤ nak+1/ak+1! ≤ 2(n/2)ak+1

we obtain for k ≤ n/2, ai ≤ C1 log n, 1 ≤ i ≤ n

|P(γk+1 =ak+1|γ1 =a1, . . . , γk =ak) − P(γk+1 =ak+1)|≤C2 t−1k
(log n)2

n
. (2.5)
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Observe now that

P (γk+1 > C1 log n|γ1 = a1, . . . , γk = ak)

=
∑

j>C1 log n

(�nt� − a(k)

j

)(
1

n − k

) j (n − k − 1

n − k

)�nt�−a(k)− j

≤
∑

j>C1 log n

n j

j !
1

(n/2) j
≤

∑

j>C1 log n

2− j ≤ n−2 (2.6)

provided the constant C1 is large enough. Similarly we get

P(γ j > C1 log n) ≤ n−2 1 ≤ j ≤ n. (2.7)

Putting together (2.5)–(2.7) we obtain

∑

j

|P(γk+1 = j |γ1 = a1, . . . , γk = ak) − P(γk+1 = j)|

=
∑

j≤C1 log n

+
∑

j>C1 log n

≤ C3 t−1k
(log n)3

n
+ n−2 ≤ C4 t−1k

(log n)3

n
.

This implies that for any atom A = {γ1 = a1, . . . , γk = ak} with ai ≤ C1 log n
(1 ≤ i ≤ k), the Prokhorov distance of dist(γk+1|A) and dist(γk+1) is at most
C4 t−1k(log n)3n−1. Letting B denote the union of such atoms, by (2.7) we have

P(Bc) ≤ P (max(γ1, . . . , γk) > C1 log n) ≤ kn−2 ≤ t−1k
(log n)3

n
.

Thus we proved that for k ≤ n/2

P

(
ρ (dist(γk+1|γk, . . . , γ1), dist(γk+1)) ≥ C5t−1 k

(log n)3

n

)
≤ C5t−1 k

(log n)3

n
.

Clearly, for n/2 < k ≤ n − 1 we have

ρ (dist(γk+1|γk, . . . , γ1), dist(γk+1)) ≤ 1

and thus applying Lemma 2.2 we get that there exist independent random variables

γ ∗
k , k = 1, . . . , n, such that γ ∗

k
d= γk and

P

(
|γk − γ ∗

k | > C6 t−1k
(log n)3

n

)
≤ C6t−1 k

(log n)3

n
1 ≤ k ≤ n/2.
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Since the variables γk and γ ∗
k take only nonnegative integer values, the last relation

implies

P(γk �= γ ∗
k ) ≤ C6t−1 k

(log n)3

n
1 ≤ k ≤ n/2,

as one can see separately in the cases when C6t−1k(log n)3n−1 is < 1 or not. Letting
δ
(n)
j (t) = γ ∗

2 j−1 and δ
(n)
n− j+1(t) = γ ∗

2 j , we get the statement of the lemma. �
The next lemma is a generalization of Lemma 2.3 for the finite dimensional distri-

butions of ε
(n)
j (t). We will formulate it in the simpler form that will be needed in the

proof of Theorem 1.2.

Lemma 2.4 If (1.9) holds, then for every n and all 0 < t1 < · · · < td < 1 there exist

independent, identically distributed random vectors
(
δ
(n)
j (t1), . . . , δ

(n)
j (td)

)
,

j = 1, . . . , n such that
(
δ
(n)
j (t1), . . . , δ

(n)
j (td)

)
d= (Q(U, n, t1), . . . , Q(U, n, td))

and

P

⎛

⎝ max
1≤l≤d

∣∣∣∣∣∣

K∑

j=1

x j,n

(
ε
(n)
j (tl) − δ

(n)
j (tl)

)
∣∣∣∣∣∣
≥ δ

⎞

⎠ → 0

P

⎛

⎝ max
1≤l≤d

∣∣∣∣∣∣

n∑

j=n−K+1

x j,n

(
ε
(n)
j (tl) − δ

(n)
j (tl)

)
∣∣∣∣∣∣
≥ δ

⎞

⎠ → 0

for all δ > 0, K ≥ 1 and n → ∞. Here U is a uniform random variable on [0, 1] and
Q(u, n, t) is the quantile function of the B(�nt�, 1/n) distribution.

An explicit formula for Q(u, n, t) is

Q(u, n, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if u ≤ p0(n, t)

1 if p0(n, t) < u ≤ p1(n, t)
...

...

�nt� if p�nt�−1(n, t) < u

with pk(n, t) = ∑k
j=0

(�nt�
j

) ( 1
n

) j ( n−1
n

)�nt�− j
, but we will not need this fact.

Proof By applying the same procedure as in Lemma 2.3 to the random vector
(ε

(n)
j (t1), . . . , ε

(n)
j (td)) instead of ε

(n)
j (t), Lemma 2.4 can be proven with some minor

changes. �

Let δ̄
(n)
j (t) = δ

(n)
j (t) − Eδ

(n)
j (t). The following lemma is the equivalent of

Lemma 2.1 for the δ̄
(n)
j (t) (instead of the ε̄

(n)
j (t)).
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Lemma 2.5 If (1.9) holds, then

lim
K→∞ lim sup

n→∞
P

⎛

⎝

∣∣∣∣∣∣

n−K∑

j=K+1

x j,n δ̄
(n)
j (t)

∣∣∣∣∣∣
≥ δ

⎞

⎠ = 0

for all δ > 0 and 0 ≤ t ≤ 1.

Proof The proof can be carried out as in the case of Lemma 2.1. �
We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 We first prove the convergence of the finite dimensional distri-
butions. To simplify the formulas, we consider the one-dimensional case; the changes
needed for the d-dimensional case will be stated at the end of the proof. By Lemma 2.1
we have

lim sup
n→∞

L
⎛

⎝dist
n∑

j=1

x j,n ε̄
(n)
j (t), dist

∑

j∈[1,K ]∪[n−K+1,n]
x j,n ε̄

(n)
j (t)

⎞

⎠ = B(K ) (2.8)

with B(K ) −→ 0 as K → ∞, where L denotes the Lévy distance. We used the fact
that if for two random variables ξ and η we have P(|ξ − η| ≥ ε) ≤ ε, then we also
have L(dist ξ, dist η) ≤ ε. Lemma 2.5 furthermore tells us that (2.8) remains valid if
we replace ε̄

(n)
j (t) with δ̄

(n)
j (t). We know that ε̄

(n)
j (t) − δ̄

(n)
j (t) = ε

(n)
j (t) − δ

(n)
j (t),

therefore Lemma 2.3 implies that for any fixed K

L
⎛

⎝dist
∑

j∈[1,K ]∪[n−K+1,n]
x j,n ε̄

(n)
j (t), dist

∑

j∈[1,K ]∪[n−K+1,n]
x j,n δ̄

(n)
j (t)

⎞

⎠−→0 (2.9)

as n → ∞. Observe that for any real sequences {c j }, {c′
j } and any λ > 0

P

⎛

⎝

∣∣∣∣∣∣

∑

j∈[1,K ]∪[n−K+1,n]
(c j −c′

j )δ̄
(n)
j (t)

∣∣∣∣∣∣
≥λ

⎞

⎠≤ 1

λ

∑

j∈[1,K ]∪[n−K+1,n]
|c j −c′

j | E
∣∣∣δ̄(n)

j (t)
∣∣∣

≤ 1

λ

∑

j∈[1,K ]∪[n−K+1,n]
2|c j − c′

j |

whence by a proper choice of λ we get

L
⎛

⎝dist
∑

j∈[1,K ]∪[n−K+1,n]
c j δ̄

(n)
j (t), dist

∑

j∈[1,K ]∪[n−K+1,n]
c′

j δ̄
(n)
j (t)

⎞

⎠

≤ √
2

⎛

⎝
∑

j∈[1,K ]∪[n−K+1,n]
|c j − c′

j |
⎞

⎠
1/2

.
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Consequently, by (1.8)

L
⎛

⎝dist
∑

j∈[1,K ]∪[n−K+1,n]
x j,n δ̄

(n)
j (t),

dist

⎡

⎣
K∑

j=1

y j δ̄
(n)
j (t) +

K∑

j=1

z j δ̄
(n)
n− j+1(t)

⎤

⎦

⎞

⎠ −→ 0 (2.10)

as n → ∞. Hence, letting δ j (t), δ∗
j (t), j = 1, 2, . . . denote independent Poisson

processes with parameter 1, it suffices to show that

L
⎛

⎝dist

⎡

⎣
K∑

j=1

y j δ̄
(n)
j (t) +

K∑

j=1

z j δ̄
(n)
n− j+1(t)

⎤

⎦ ,

dist

⎡

⎣
K∑

j=1

y j (δ j (t) − t) +
K∑

j=1

z j (δ
∗
j (t) − t)

⎤

⎦

⎞

⎠ −→ 0 (2.11)

as n → ∞ for any fixed K and that the second distribution in (2.11) converges to the
same expression with K = ∞. To prove the first statement let us note that a sharpened
form of the Poisson approximation of the binomial due to Le Cam [14, p. 187] implies
that

∞∑

l=0

|P(δ
(n)
j (t) = l) − P(δ j (t) = l)| ≤ C7n−1 (2.12)

for any j ≥ 1, n ≥ 1 with an absolute constant C7. This implies that

|P(δ
(n)
j (t) ∈ A) − P(δ j (t) ∈ A)| ≤ C7n−1

for any set A ⊂ {0, 1, . . .} and therefore

ρ(dist δ(n)
j (t), dist δ j (t)) ≤ C7n−1,

proving (2.11). The convergence of the distributions in the second line of (2.11) is an
immediate consequence of condition (1.11), E(δ j (t) − t)2 = E(δ∗

j (t) − t)2 = t and
the Kolmogorov two series theorem, implying the a.s. convergence of the series

∞∑

j=1

[
y j (δ j (t) − t) + z j (δ

∗
j (t) − t)

]
.

By a theorem of Lévy (see e.g. Breiman [8, p. 51, Problem 16]), the distribution of
the last sum is actually continuous. As weak convergence of distributions to a contin-
uous limit implies that the corresponding distribution functions converge pointwise,
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we have proved the convergence of the one-dimensional distributions in Theorem 1.2.
The proof of the corresponding statement for the multi-dimensional distributions uses
the same arguments, we just need Lemma 2.4 instead of Lemma 2.3. Therefore we
omit the details. �

So far we proved the convergence of finite dimensional distributions of Zn(t). To
prove the tightness of Zn(t) in D[0, 1] it suffices, in view of Theorem 15.6 on p. 128
in Billingsley [6], to show that

E(Zn(s) − Zn(t1))
2(Zn(t2) − Zn(s))2 ≤ C(t2 − t1)

2 for all t1 ≤ s ≤ t2. (2.13)

To prove (2.13) we first observe that by (1.8) and (1.9) we can find a constant c > 0
such that

∑n
j=1 x2

j,n ≤ c for all n. Letting l1 := �ns�− �nt1� and l2 := �nt2�− �ns�,

we get [recall E X (n)
j = 0 by (1.2)],

E(Zn(s) − Zn(t1))
2 = E

⎛

⎝
�ns�∑

j=�nt1�+1

X (n)
j

⎞

⎠
2

= l1 E
(
(X (n)

j )2
)

+ l1(l1 − 1)(E X (n)
j )2

= l1
n

n∑

j=1

x2
j,n ≤ l1

n
c.

A similar inequality holds for E(Zn(t2) − Zn(s))2 and thus by the independence of
the two differences on the left hand side of (2.13) we get

E (Zn(s) − Zn(t1))
2 (Zn(t2) − Zn(s))2 ≤ l1l2

n2 c2.

In the case of t2 − t1 < 1
n at least two of the 3 numbers nt1, ns, nt2 lie between two

consecutive integers and thus one of the differences in (2.13) is 0. If t2 − t1 ≥ 1
n then

we get

l1l2
n2 ≤

(
l1 + l2

n

)2

≤
(

nt2 − nt1 + 1

n

)2

≤ 4(t2 − t1)
2,

which completes the proof of (2.13).

2.2 Selection without replacement

In the case of selection without replacement, the variables ε
(n)
j (t) only take the values

0 or 1. Therefore the distribution of a single ε
(n)
j (t) is Bernoulli with P(ε

(n)
j (t) = 1) =

�nt�/n, while for the vector
(
ε
(n)
1 (t), . . . , ε(n)

n (t)
)

we have

P
(
ε
(n)
1 (t) = a1, . . . , ε

(n)
n (t) = an

)
= 1

/( n

�nt�
)
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provided all a j ’s are 0 or 1 and
∑n

i=1 ai = �nt�; otherwise the probability is 0. As

in the case of selection with replacement, we get Eε
(n)
j (t) = �nt�/n for 1 ≤ j ≤ n;

let ε̄
(n)
j (t) = ε

(n)
j (t) − Eε

(n)
j (t). In the sequel we formulate lemmas which are the

permutation analogues of the lemmas in the proof of Theorem 1.2.

Lemma 2.6 If (1.9) holds, then

lim
K→∞ lim sup

n→∞
P

⎛

⎝

∣∣∣∣∣∣

n−K∑

j=K+1

x j,n ε̄
(n)
j (t)

∣∣∣∣∣∣
≥ δ

⎞

⎠ = 0

for all δ > 0 and 0 ≤ t ≤ 1.

Proof From the joint distribution of ε
(n)
j (t) it is easy to obtain

E

((
ε̄
(n)
j (t)

)2
)

= �nt�
n

−
(�nt�

n

)2

≤ 1 for j = 1, . . . , n

and

E
(
ε̄
(n)
j (t)ε̄(n)

k (t)
)

= �nt�
n

�nt� − 1

n − 1
−

(�nt�
n

)2

= −�nt�(n − �nt�)
n2(n − 1)

for 1 ≤ j < k ≤ n.

This implies

Var

⎛

⎝
n−K∑

j=K+1

x j,n ε̄
(n)
j (t)

⎞

⎠ ≤ 3
n−K∑

j=K+1

x2
j,n

and therefore the Markov inequality together with (1.9) yields the statement of the
lemma. �
Lemma 2.7 If (1.9) holds, then for every n and each 0 < t < 1 there exist indepen-
dent, identically Bernoulli distributed random variables δ

(n)
j (t), j = 1, . . . , n with

P(δ
(n)
j (t) = 1) = �nt�/n, such that

P

⎛

⎝
K∑

j=1

x j,n

(
ε
(n)
j (t) − δ

(n)
j (t)

)
�= 0

⎞

⎠ ≤ 30
K 2

n
(2.14)

and

P

⎛

⎝
n∑

j=n−K+1

x j,n

(
ε
(n)
j (t) − δ

(n)
j (t)

)
�= 0

⎞

⎠ ≤ 30
K 2

n
(2.15)

for all K = 1, . . . , �n/4�.
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Proof We define for j ≥ 1 the random variables γ2 j−1 = ε
(n)
j (t) and γ2 j = ε

(n)
n− j+1(t).

For the approximation of the dependent ε
(n)
j (t) with independent δ

(n)
j (t), we use again

Lemma 2.2 and thus we need to estimate the differences

|P(γk = ak |γ1 = a1, . . . , γk−1 = ak−1) − P(γk = ak)|.

Clearly

P(γk+1 = 1) = �nt�
n

and

P(γk+1 = 1|γ1 = a1, . . . , γk = ak) = �nt� − a(k)

n − k

with ai ∈ {0, 1} for 1 ≤ i ≤ k and a(k) = ∑k
i=1 ai (≤ �nt�). By K ≤ �n/4� we have

k ≤ n/2, which implies

∣∣∣∣∣
�nt� − a(k)

n − k
− t

∣∣∣∣∣ ≤ k + 1

n − k
≤ 4k

n
.

Since |�nt�/n − t | ≤ 1/n, we conclude for ak+1 = 1

|P(γk+1 = ak+1|γ1 = a1, . . . , γk = ak) − P(γk+1 = ak+1)| ≤ 5k

n

and consequently the same is true for ak+1 = 0. Hence

ρ (dist(γk+1|γk, . . . , γ1), dist(γk+1)) ≤ 5k

n

and thus Lemma 2.2 yields the existence of independent Bernoulli random variables
δ
(n)
j (t), j = 1, . . . , n, with P(δ

(n)
j (t) = 1) = �nt�/n such that

P

(∣∣∣ε(n)
j (t) − δ

(n)
j (t)

∣∣∣ ≥ 30k

n

)
≤ 30k

n

and

P

(∣∣∣ε(n)
n− j+1(t) − δ

(n)
n− j+1(t)

∣∣∣ ≥ 30k

n

)
≤ 30k

n
.

The variables ε
(n)
j (t) and δ

(n)
j (t) only take values in {0, 1}, hence the statement of the

lemma follows. �
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As in the case of drawing with replacement, we will now formulate a generalization
of Lemma 2.7 for the finite dimensional distributions of ε

(n)
j (t).

Lemma 2.8 If (1.9) holds, then for every n and all 0 < t1 < . . . < td < 1 there exist

independent, identically distributed random vectors
(
δ
(n)
j (t1), . . . , δ

(n)
j (td)

)
,

j = 1, . . . , n, such that

(
δ
(n)
j (t1), . . . , δ

(n)
j (td)

)
d= (I {U ≤ �nt1�/n} , . . . , I {U ≤ �ntd�/n}) ,

where U is a uniform random variable on [0, 1] and furthermore

P

⎛

⎝ max
1≤l≤d

∣∣∣∣∣∣

K∑

j=1

x j,n

(
ε
(n)
j (tl) − δ

(n)
j (tl)

)
∣∣∣∣∣∣
≥ δ

⎞

⎠ → 0

and

P

⎛

⎝ max
1≤l≤d

∣∣∣∣∣∣

n∑

j=n−K+1

x j,n

(
ε
(n)
j (tl) − δ

(n)
j (tl)

)
∣∣∣∣∣∣
≥ δ

⎞

⎠ → 0

are satisfied for all δ > 0, K ≥ 1 and n → ∞.

Proof As in Sect. 2.1, the application of the same procedure as in Lemma 2.7 to the

random vector
(
ε
(n)
j (t1), . . . , ε

(n)
j (td)

)
instead of ε

(n)
j (t) will prove Lemma 2.8. �

Let δ̄
(n)
j (t) = δ

(n)
j (t) − Eδ

(n)
j . The next lemma is the analogue of Lemma 2.6 for

the independent random variables δ̄
(n)
j (t).

Lemma 2.9 If (1.9) holds, then

lim
K→∞ lim sup

n→∞
P

⎛

⎝

∣∣∣∣∣∣

n−K∑

j=K+1

x j,n δ̄
(n)
j (t)

∣∣∣∣∣∣
≥ δ

⎞

⎠ = 0

for all δ > 0 and 0 ≤ t ≤ 1.

Proof The proof can be given as the one to Lemma 2.6. �
Proof of Theorem 1.1 The proof of Theorem 1.1 can be given along the lines of the
proof of Theorem 1.2, where Lemmas 2.6–2.9 replace Lemmas 2.1 and 2.3–2.5 and
one uses simple modifications due to the different distributions of δ

(n)
j (t) and δ j (t).

�
The following lemma yields the tightness in Theorem 1.1.
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Lemma 2.10 If (1.8) and (1.9) hold and t1, t2 ∈ [0, 1], then

E (Zn(s) − Zn(t1))
2 (Zn(t2) − Zn(s))2 ≤ C(t2 − t1)

2 for all t1 ≤ s ≤ t2 (2.16)

and Zn(t) is tight.

Proof As in the proof of inequality (2.13), we use
∑n

j=1 x2
j,n ≤ c for all n and

consequently
∑n

j=1 x4
j,n ≤ c2. With these inequalities,

∑n
j=1 x j,n = 0 and using

l1 := �ns� − �nt1� and l2 := �nt2� − �ns� we get

E (Zn(s) − Zn(t1))
2 (Zn(t2) − Zn(s))2

= E

⎛

⎝
�ns�∑

j=�nt1�+1

X (n)
j

⎞

⎠
2 ⎛

⎝
�nt2�∑

j=�ns�+1

X (n)
j

⎞

⎠
2

=
�ns�∑

i, j=�nt1�+1

�nt2�∑

k,l=�ns�+1

E
(

X (n)
i X (n)

j X (n)
k X (n)

l

)

= l1l2 E
(
(X (n)

1 )2(X (n)
2 )2

)

+[l1l2(l2 − 1) + l1(l1 − 1)l2] E
(
(X (n)

1 )2 X (n)
2 X (n)

3

)

+ l1(l1 − 1)l2(l2 − 1) E
(

X (n)
1 X (n)

2 X (n)
3 X (n)

4

)
.

Now

n(n − 1) E
(
(X (n)

1 )2(X (n)
2 )2

)
=

n∑

i, j=1
i �= j

x2
i,nx2

j,n ≤
(

n∑

i=1

x2
i,n

)2

≤ c2,

n(n − 1)(n − 2)

∣∣∣E
(
(X (n)

1 )2 X (n)
2 X (n)

3

)∣∣∣ =

∣∣∣∣∣∣∣∣

n∑

i, j,k=1
i �= j �=k

x2
i,nx j,nxk,n

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

n∑

i, j=1
i �= j

x2
i,nx j,n(−xi,n − x j,n)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
−

n∑

i=1

x3
i,n(−xi,n)−

n∑

i=1

x2
i,n

n∑

j=1
j �=i

x2
j,n

∣∣∣∣∣∣∣∣
≤2c2,
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n(n − 1)(n − 2)(n − 3)

∣∣∣E
(

X (n)
1 X (n)

2 X (n)
3 X (n)

4

)∣∣∣

=

∣∣∣∣∣∣∣∣

n∑

i, j,k,l=1
i �= j �=k �=l

xi,nx j,nxk,nxl,n

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

n∑

i, j,k=1
i �= j �=k

xi,nx j,nxk,n(−xi,n − x j,n − xk,n)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
3

⎛

⎜⎜⎝−
n∑

i, j=1
i �= j

x2
i,nx j,n(−xi,n − x j,n)

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣
≤ 6c2.

The estimates above imply for n ≥ 6

E (Zn(s) − Zn(t1))
2 (Zn(t2) − Zn(s))2

≤ c2 l1l2
n(n − 1)

+ 2c2 l1l2(l1 + l2 − 2)

n(n − 1)(n − 2)
+ 6c2 l1(l1 − 1)l2(l2 − 1)

n(n − 1)(n − 2)(n − 3)

≤ 2c2 l1l2
n2 + 8c2 l1l2(l1 + l2)

n3 + 48c2 l2
1l2

2

n4 ≤ 30c2
(

l1 + l2
n

)2

.

As in the proof of (2.13), the left hand side of (2.16) is equal to 0 if t2 − t1 < 1
n . If

t2 − t1 ≥ 1
n , we obtain

l1 + l2
n

≤ nt2 − nt1 + 1

n
≤ 2(t2 − t1)

and therefore (2.16) is shown. By applying the Markov inequality and Theorem 15.6
(p. 128) by Billingsley [6] the proof of the lemma is completed. �

2.3 Proofs of the corollaries

Proof of Corollaries 1.1 and 1.2 Let X1, X2, . . . be i.i.d. random variables such that,
letting Sn = ∑n

k=1 Xk , we have

(Sn − an)/bn
d−→ ξα (2.17)

for some numerical sequences (an), (bn) and an α-stable r.v. ξα . By the classical theory
(see e.g. [12] or [11], Chapter XVII) the sequences (an), (bn) can be chosen to satisfy
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nb−2
n

bn∫

−bn

x2d F(x) → C, an = n

bn∫

−bn

xd F(x) (2.18)

for some C > 0. As a consequence, we have

an/nbn → 0 and a2
n/nb2

n → 0. (2.19)

Clearly, the first relation of (2.19) follows from the second one and the second rela-
tion follows from (2.18) upon observing that (

∫ t
−t xd F(x))2 = o(

∫ t
−t x2d F(x)) for

t → ∞ for any distribution F with infinite second moment. Actually, as is shown in
Feller [11, Chapter XVII], in the case α �= 1 we can choose an = 0 (after centering
the X j at expectations for α > 1 which is no restriction of generality), and thus (2.19)
becomes trivial, but in the case α = 1 the centering factor an can be nonlinear and the
situation is more delicate.

Let Tn = max1≤k≤n |Xk |, Xn = n−1 ∑n
k=1 Xk . Formally, Corollaries 1.1 and 1.2

are obtained by applying Theorems 1.1 and 1.2 for the random set

Hn =
{

X1,n − Xn

Tn
, . . . ,

Xn,n − Xn

Tn

}
, (2.20)

where X1,n ≤ X2,n ≤ · · · ≤ Xn,n is the ordered sample of (X1, . . . , Xn). However, to
avoid certain technical difficulties in verifying conditions (1.8) and (1.9) for Hn , we
will use an indirect approach by first applying Theorems 1.1 and 1.2 for a perturbed
version of Hn . As in the proof of Theorems 1.1 and 1.2, we will assume again m = n;
the general case requires only trivial changes. Let Z∗

n,m(t) in Corollaries 1.1 and 1.2
be denoted in this case by Z∗

n(t).
Write

Xn

Tn
= bn

Tn

(
Sn − an

nbn
+ an

nbn

)
. (2.21)

It is known (see e.g. [7]) that both bn/Tn and Tn/bn are bounded in probability and

thus (2.17), (2.19) and (2.21) imply X̄n/Tn
P−→ 0. Fix now an integer L ≥ 1. By

Csörgő et al. [9, p. 109], we have

1

bn
(X j,n : j ∈ [1, L] ∪ [n − L + 1, n])

d−→
(

− q1/α

Z1/α
1

, . . . ,− q1/α

Z1/α
L

,
p1/α

(Z∗
L)1/α

, . . . ,
p1/α

(Z∗
1)1/α

)

where Z j = η1 +· · ·+η j , Z∗
j = η∗

1 +· · ·+η∗
j and (η j ) and (η∗

j ) are i.i.d. sequences of
exp(1) random variables, independent also of each other. The last convergence relation
remains valid if we divide both sides by their maximum norm, i.e. with Tn/bn resp. M ,
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where M is the random variable defined by (1.18). Thus using X̄n/Tn
P−→ 0 we get

that

(
X j,n − Xn

Tn
: j ∈ [1, L] ∪ [n − L + 1, n]

)

d−→ 1

M

(
− q1/α

Z1/α
1

, . . . ,− q1/α

Z1/α
L

,
p1/α

(Z∗
L)1/α

, . . . ,
p1/α

(Z∗
1)1/α

)
. (2.22)

Next we show that

lim
K→∞ lim sup

n→∞
P

⎛

⎝T −2
n

n−K∑

j=K+1

(X j,n − Xn)2 ≥ ε

⎞

⎠ = 0 for any ε > 0. (2.23)

We write

n−K∑

j=K+1

(X j,n − Xn)2 =
n−K∑

j=K+1

[
(X j,n − an/n) − (Xn − an/n)

]2

≤
n−K∑

j=K+1

(X j,n − an/n)2 + 2|Xn − an/n|
∣∣∣∣∣∣

n−K∑

j=K+1

(X j,n − an/n)

∣∣∣∣∣∣

+ n|Xn − an/n|2
=: I1 + I2 + I3.

Clearly,

b−2
n I3 = 1

n

(
Sn − an

bn

)2

= oP (1)

by (2.17). To estimate I1 and I2, we note that for any fixed K ≥ 1,

1

bn

⎛

⎝
n−K∑

j=K+1

X j,n − an

⎞

⎠ d−→ A1(K ),
1

b2
n

n−K∑

j=K+1

X2
j,n

d−→ A2(K ) (2.24)

where A1(K ) → 0 a.s., A2(K ) → 0 a.s. for K → ∞. (See Csörgő et al. [9].) Now
by (2.19)

b−2
n I2 = 2

n

∣∣∣∣
Sn − an

bn

∣∣∣∣

∣∣∣∣∣

∑n−K
j=K+1 X j,n − an

bn
+ o(1)

∣∣∣∣∣ ,
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and

b−2
n I1 = 1

b2
n

n−K∑

j=K+1

X2
j,n − 2an

nb2
n

⎛

⎝
n−K∑

j=K+1

X j,n − an

⎞

⎠ −
(

2K

n
+ 1

)
a2

n

nb2
n

:= I4 + I5 + I6.

By (2.19) we have I6 = o(1) for any fixed K , while (2.24) and (2.19) take care of the
estimate of I4 and I5 and thus (2.23) is proved.

The just proved relation (2.23) implies that for every ε > 0 there exist positive inte-
gers L = L(ε), n0 = n0(ε) and for any n ≥ n0 a set An = An(ε) in the underlying
probability space such that P(An) ≥ 1 − ε and

T −2
n

n−L∑

j=L+1

(X j,n − Xn)2 ≤ ε on An for n ≥ n0. (2.25)

By Jensen’s inequality, the last relation implies that

∣∣∣∣∣∣
T −1

n

n−L∑

j=L+1

(X j,n − Xn)

∣∣∣∣∣∣
≤ (εn)1/2 on An for n ≥ n0. (2.26)

Let Hn,L denote the set obtained from Hn in (2.20) by replacing all elements with
indices L + 1 ≤ j ≤ n − L by 0. Since the sum of the elements of Hn is 0, (2.26)
shows that the average ηn,L of the set Hn,L satisfies |ηn,L | ≤ (ε/n)1/2 and conse-
quently nη2

n,L ≤ ε on An . Hence if H∗
n,L denotes the set obtained by subtracting ηn,L

from each element of Hn,L , the Euclidean distance of the vectors Hn,L and H∗
n,L is

at most
√

ε. By (2.25) the Euclidean distance of Hn and Hn,L on An is also at most√
ε. It follows that the distance of Hn and H∗

n,L is at most 2
√

ε and thus Corollary 2.1
yields for any 0 ≤ t ≤ 1

EX(Z∗
n(t) − Z∗

n,L(t))2 ≤ 4ε on An for n ≥ n0, (2.27)

where Z∗
n(t) and Z∗

n,L(t) (0 ≤ t ≤ 1) denote the partial sum processes of random
elements sampled (with or without replacement) from Hn resp. H∗

n,L . Note also that
Z j ∼ j a.s. and Z∗

j ∼ j a.s. by the strong law of large numbers and thus letting
RL(t) denote the analogue of R(t) in Corollaries 1.1 and 1.2 when the infinite sums
are replaced by their Lth partial sums, we have by 0 < α < 2

EZ(RL(t) − R(t))2 = O
⎛

⎝
∞∑

j=L+1

(Z−2/α
j + (Z∗

j )
−2/α)

⎞

⎠ = oL(1) a.s. (2.28)

By (2.27), (2.28) and the Markov inequality, the Lévy distance LX of the conditional
distributions of Z∗

n(t) and Z∗
n,L(t) relative to X is ≤ 2ε1/3 on An for n ≥ n0 and the
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Lévy distance LZ of the conditional distributions of R(t) and RL(t) relative to Z is
oL(1) a.s. for any fixed 0 ≤ t ≤ 1. Since ε > 0 was arbitrary, it suffices to prove that
given any integer L ≥ 1, Corollaries 1.1 and 1.2 hold with Z∗

n(t) replaced by Z∗
n,L(t)

and R(t) replaced by RL(t).
Fix L ≥ 1. By (2.22) and the Skorokhod–Dudley–Wichura theorem (see e.g. [19]),

on a suitable probability space one can redefine the vectors X(n) = (X1,n, . . . , Xn,n),

n = 1, 2, . . . , without changing their distributions, together with a sequence η1, η
∗
1,

η2, η
∗
2 . . . of independent exp(1) random variables such that the convergence in dis-

tribution in relation (2.22) can be replaced by a.s. convergence. Define X after the
redefinition as X = (X(1), X(2), . . .). Clearly, this redefinition does not change the dis-
tribution of the r.v. on the left hand side of (1.17). Since after the redefinition the first
and last L elements of Hn converge a.s. to finite limits, the average ηn,L of Hn,L

satisfies |ηn,L | = O(1/n) a.s. Thus the set H∗
n,L satisfies conditions (1.7) and (1.8)

with probability 1, with limiting numbers

y j = −M−1q1/α Z−1/α
j , z j = M−1 p1/α(Z∗

j )
−1/α, j = 1, . . . , L ,

where M is defined by (1.18) and all the other y j , z j are equal to 0. Also, since the
elements of the set H∗

n,L with indices L + 1 ≤ j ≤ n − L are equal to −ηn,L , the

sum of the squares of these elements is at most nη2
n,L = o(1) a.s. and thus condition

(1.9) is also satisfied a.s. Applying Theorems 1.1 and 1.2 for the set H∗
n,L completes

the proof. �
Proof of Corollary 1.3 Let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be the order statistics of the
sample (X1, . . . , Xn) and let M1,n, M2,n, . . . , Mn,n be the elements of the sample
(X1, . . . , Xn) arranged in decreasing order of absolute value. Since 1− F(t)+ F(−t)
is slowly varying, Theorem 2.3 in Maller and Resnick [17] implies that

M2,n/M1,n
P−→ 0.

Consequently, for any fixed integer K ≥ 1 and n → ∞ we have

1

M1,n

(
X1,n, . . . , X K ,n, Xn−K+1,n, . . . , Xn,n

)

d−→ (I {U > p}, 0, . . . , 0, I {U ≤ p})

where U is a uniform random variable on the unit interval (0, 1) and I denotes indicator
function. The last relation implies

(
X1,n

Tn
,

X2,n

Tn
, . . . ,

X K ,n

Tn
,

Xn−K+1,n

Tn
, . . . ,

Xn,n

Tn

)

d−→ (−I {U > p}, 0, . . . , 0, I {U ≤ p}). (2.29)

By the Skorokhod-Dudley-Wichura theorem the vectors in (2.29) can be redefined such
that we get almost sure convergence. By Theorem 2.3 in Maller and Resnick [17] the
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partial sums Sn = ∑n
k=1 Xk satisfy Sn/M1,n

P−→ 1 and consequently X̄n/Tn
P−→ 0.

The proof can now be completed as in the case of Corollary 1.1. �
Proof of Corollary 1.4 Let � be the function defined before the formulation of Cor-
ollary 1.4 and let F−1(x) = sup{t : F(t) ≤ x} be the inverse of the distribution
function F of X1. Clearly

F−1(x) = −2k−1 = −x−1�(x) for x ∈ [2−k, 2−(k−1)), k ≥ 2

and by the symmetry of the distribution of X1

F−1(x) = (1 − x)−1�(1 − x) for 1/2 < x < 1

at points of continuity of F . We also have �(2−k x) = �(x) for all k ∈ Z. Let, as in
the formulation of the Corollary, Z j = η1 + · · · + η j , Z∗

j = η∗
1 + · · · + η∗

j , where
η1, η2, . . . and η∗

1, η∗
2, . . . are independent sequences of i.i.d. exp(1) random variables

and put

X∗
j,n = F−1

(
Z j

Zn+1

)
, 1 ≤ j ≤ n.

Let further X1,n ≤ . . . ≤ Xn,n be the ordered sample of X1, . . . , Xn . As is well
known (see e.g. [16]), the vectors (X1,n, . . . , Xn,n) and (X∗

1,n, . . . , X∗
n,n) have the

same distribution. Now

X∗
1,n = F−1

(
Z1

Zn+1

)
= − Zn+1

Z1
�

(
Z1

Zn+1

)

provided Z1/Zn+1 < 1/2 which holds for any fixed ω if n ≥ n0(ω). By the strong
law of large numbers Zn+1/n → 1 a.s. whence it follows

X∗
1,n = − n

Z1
�

(
Z1

n

)
(1 + o(1)) a.s. (2.30)

and similarly, for every fixed ω for n ≥ n0(ω)

X∗
n,n = F−1

(
Zn

Zn+1

)
=

(
1 − Zn

Zn+1

)−1

�

(
1 − Zn

Zn+1

)
= Zn+1

ηn+1
�

(
ηn+1

Zn+1

)

= n

ηn+1
�

(ηn+1

n

)
(1 + o(1)) a.s. (2.31)

Since Z1 = η1 and ηn+1 are independent, relations (2.30) and (2.31) show that
−X∗

1,n/n and X∗
n,n/n are asymptotically independent and equidistributed; the same

holds for the vectors − 1
n (X∗

1,n, . . . , X∗
K ,n) and 1

n (X∗
n−K+1,n, . . . , X∗

n,n) for any fixed
K ≥ 1 as n → ∞.
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Now along the subsequence n = nk = �c 2k� for some constant 1 ≤ c < 2 we
obtain, using (2.30) and �(2−kx) = �(x),

X∗
1,nk

nk
→ − 1

Z1
�

(
Z1

c

)
a.s.

Similar formulas apply for X∗
j,nk

/nk for any fixed j ≥ 1 and also for the variables
X∗

nk− j+1,nk
/nk on the other end for any fixed j ; in the latter case, Z j should be

replaced by Z∗
j and a.s. convergence by convergence in distribution. Thus letting

Tn = max1≤ j≤n |X j | and using the asymptotic independence of the ordered sample
elements at the two ends of the sample, we get for any fixed K ≥ 1

1

Tnk

(X1,nk , . . . , X K ,nk , Xnk−K+1,nk , . . . , Xnk ,nk )

d−→ 1

M

⎛

⎝−
�

(
Z1
c

)

Z1
, . . . ,−

�
(

Z K
c

)

ZK
,
�

(
Z∗

K
c

)

Z∗
K

, . . . ,
�

(
Z∗

1
c

)

Z∗
1

⎞

⎠ , (2.32)

where

M = max

{
� (Z1/c)

Z1
,
�

(
Z∗

1/c
)

Z∗
1

}
.

Observing also that X̄n/Tn
P−→ 0, the proof can be completed exactly as in the case

of Corollary 1.1. �
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