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Abstract Selection from a finit population is used in several procedures in statis-
tics, among others in bootstrap and permutation methods. In this paper we give a
survey of some recent results for selection in "nonstandard" situations, i.e. in cases
when the negligibility condition of classical central limit theory is not satisfied
These results enable us to describe the asymptotic properties of bootstrap and per-
mutation statistics in case of infinit variances, when the limiting processes con-
tain random coefficients We will also show that random limit distributions can be
avoided by a suitable trimming of the sample, making bootstrap and permutation
methods applicable for statistical inference under infinit variances.

1 Introduction

Selection from a finit population is a basic procedure in statistics and large sam-
ple properties of many classical tests and estimators are closely connected with the
asymptotic behavior of sampling variables. Typical examples are bootstrap and per-
mutation statistics, both of which assume a sample X1,X2, . . . ,Xn of i.i.d. random
variables with distribution function F and then drawing, with or without replace-
ment, m = m(n) elements from the finit set {X1, . . . ,Xn}. The usefulness of this
procedure is due to the fact that the asymptotic properties of many important func-

István Berkes
Institute of Statistics, Graz University of Technology, Austria
e-mail: berkes@tugraz.at

Lajos Horváth
Department of Mathematics, University of Utah, Salt Lake City, USA
e-mail: horvath@math.utah.edu

Johannes Schauer
Institute of Statistics, Graz University of Technology, Austria
e-mail: johannes.schauer@tugraz.at

1P. Doukhan et al. (eds.), Dependence in Probability and Statistics,
Lecture Notes in Statistics 200, DOI 10.1007/978-3-642-14104-1_1,
© Springer-Verlag Berlin Heidelberg 2010



2 István Berkes, Lajos Horváth, and Johannes Schauer

tionals of the random variables X (n)
1 , . . . ,X (n)

m obtained by resampling are similar to
those of the functionals of the original sample X1, . . . ,Xn. There is an extensive liter-
ature of bootstrap and permutation statistics in case of populations with finit vari-
ance; on the other hand, very little is known in the case of infinit variances. Athreya
[2] showed, in the case when the underlying distribution is a stable distribution with
parameter 0 < α < 2, that the normalized partial sums of bootstrap statistics con-
verge weakly to a random limit distribution, i.e. to a distribution function containing
random coefficients Recently, Aue, Berkes and Horváth [3] extended this result to
permutation statistics. Note that the elements of a permuted sample are, in contrast
to bootstrap, dependent, leading to a different limit distribution.

The purpose of the present paper is to give a survey of the asymptotics of permu-
tation and bootstrap statistics in case of infinit variances, together with applications
to statistical inference, e.g. for change point problems. In Section 2 we will show
that resampling from an i.i.d. sample with infinit variance requires studying the
limiting behavior of a triangular array of random variables violating the classical
uniform asymptotic negligibility condition of central limit theory. Starting with the
1960’s, classical central limit theory has been extended to cover such situations (see
e.g. Bergström [4]). In this case the limit distribution is generally not Gaussian and
depends on the non-negligible elements of the array. In the case of permutation
statistics, the row elements of our triangular array are dependent random variables,
making the situation considerably more complicated. Theorems 2.3 and 2.4 in Sec-
tion 2 describe the new situation. As we will show in Section 3, the probabilistically
interesting, but statistically undesirable phenomenon of random limit distributions
can be avoided by trimmimg the sample, enabling one to extend a number of statis-
tical procedures for observations with infinit variances.

Our paper is a survey of some recent results of the authors; the proofs will be
given in our forthcoming papers [6] and [7].

2 Some general sampling theorems

For each n ∈N let
x1,n ≤ x2,n ≤ . . . ≤ xn,n

be a sequence of real numbers and denote by X (n)
1 ,X (n)

2 , . . . ,X (n)
m the random vari-

ables obtained by drawing, with or without replacement, m = m(n) elements from
the set {x1,n, . . . ,xn,n}. Defin the partial sum process

Zn,m(t) =
�mt�
∑
j=1

X (n)
j for 0 ≤ t ≤ 1, (1)
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where �·� denotes integral part. Let
D [0,1]−−−→ denote convergence in the space D [0,1]

of càdlàg functions equipped with the Skorokhod J 1-topology. The following two
results are well known.

Theorem 2.1. Let
n

∑
j=1

x j,n = 0,
n

∑
j=1

x2
j,n = 1 (2)

and
max

1≤ j≤n
|x j,n| −→ 0 (3)

and draw m = m(n) elements from the set {x1,n, . . . ,xn,n} with replacement, where

m/n → c for some c > 0. (4)

Then
Zn,m(t) D [0,1]−−−→W (ct) for n → ∞,

where {W(t),0 ≤ t ≤ 1} is a Wiener process.

Theorem 2.2. Assume (2) and (3) and draw m = m(n) elements from the set
{x1,n, . . . ,xn,n} without replacement, where m ≤ n and (4) holds. Then

Zn,m(t) D [0,1]−−−→ B(ct) for n → ∞,

where {B(t),0 ≤ t ≤ 1} is a Brownian bridge.

In the case of Theorem 2.1 the random variables X (n)
1 , . . . ,X (n)

m are i.i.d. with
mean 0 and variance 1/n and they satisfy the Lindeberg condition

lim
n→∞

m

∑
j=1

E[(X (n)
j )2I{|X (n)

j | ≥ ε}] = 0 for any ε > 0, (5)

since the sum on the left hand side is 0 for n ≥ n0(ε) by the uniform asymptotic
negligibility condition (3). Thus Theorem 2.1 is an immediate consequence of the
classical functional central limit theorem for sums of independent random variables
(see e.g. Skorokhod [16]). Theorem 2.2, due to Rosén [15], describes a different
situation: if we sample without replacement, the r.v.’s X (n)

1 , . . . ,X (n)
m are dependent

and the partial sum process Zn,m(t) converges weakly to a process with dependent
(actually negatively correlated) increments.

Typical applications of Theorem 2.1 and Theorem 2.2 include bootstrap and per-
mutation statistics. Let X1,X2, . . . be i.i.d. random variables with distribution func-
tion F with mean 0 and variance 1. Let {X (n)

1 , . . . ,X (n)
m } be the bootstrap sample

obtained by drawing m = m(n) elements from the set {X1, . . . ,Xn} with replace-
ment. Clearly, X (n)

1 , . . . ,X (n)
m are independent random variables with common distri-

bution Fn(t) = (1/n)∑n
i=1 I{Xi ≤ t}, the empirical distribution function of the sam-

ple X1, . . . ,Xn. Defin
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Xn =
1
n

n

∑
k=1

Xk and σ 2
n =

1
n

n

∑
k=1

(Xk −Xn)2

and apply Theorem 2.1 for the random finit set
{

X1−Xn
σn
√

n
, . . . ,

Xn−Xn
σn
√

n

}
, (6)

where the selection process is independent of the sequence X1,X2, . . .. It is easily
checked that the conditions of Theorem 2.1 are satisfie and it follows that if (4)
holds then conditionally on X = (X1,X2, . . .), for almost all paths (X1,X2, . . .),

PX

{
1

σn
√

n

�mt�
∑
k=1

(X (n)
k −Xn)

D [0,1]−−−→W (ct)

}
= 1.

This fundamental limit theorem for the bootstrap is due to Bickel and Freed-
man [8]. On the other hand, drawing n elements from the set {X 1, . . . ,Xn} with-
out replacement, we get a random permutation of X1, . . . ,Xn which we denote
by Xπ(1), . . . ,Xπ(n). Again we assume that the selection process is independent
of X1,X2, . . .. It is clear that all n! permutations of (X1,X2, . . . ,Xn) are equally
likely. Applying now Theorem 2.2 for the set (6), we get that for almost all paths
X = (X1,X2, . . .),

PX

{
1

σn
√

n

�nt�
∑
k=1

(Xπ(k)−Xn)
D [0,1]−−−→ B(t)

}
= 1,

an important fact about permutation statistics.
As the above results show, the uniform asymptotic negligibility condition for

the random set (6) is satisfie if EX 2
1 < ∞. It is easy to see that the converse is

also true. Thus studying bootstrap and permutation statistics under infinit variances
requires a model where uniform asymptotic negligibility fails, i.e. the elements of
the set {x1,n, . . . ,xn,n} are not any more ”small”. Clearly, in this case the limiting
behavior of the partial sums of the selected elements will be quite different. If, for
example, the largest element xn,n of the set {x1,n, . . . ,xn,n} does not tend to 0 as
n → ∞, then the contribution of xn,n in the partial sums of a sample of size n taken
from this set clearly will not be negligible and thus the limit distribution of such
sums (if exists) will depend on this largest element. A similar effect is well known
in classical central limit theory (see e.g. Bergström [4]), but the present situation
will exhibit substantial additional difficulties Without loss of generality we may
assume again that

n

∑
j=1

x j,n = 0. (7)

Next we will assume

x j,n −→ y j and xn− j+1,n −→ z j (8)
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for any fi ed j as n → ∞ for some numbers y j, z j , j ∈N and that

lim
K→∞

limsup
n→∞

n−K

∑
j=K+1

x2
j,n = 0. (9)

Condition (8) is no essential restriction of generality: if we assume only that the
sequences {x j,n, n ≥ 1}, {xn− j+1,n, n ≥ 1} are bounded for any fi ed j, then by a
diagonal argument we can fin a subsequence of n’s along which (8) holds. Then
along this subsequence our theorems will apply and if the limiting numbers y j,z j are
different along different subsequences, the processes Zn,m(t) will also have different
limits along different subsequences. This seems to be rather pathological behavior,
but it can happen even in simple i.i.d. situations, see Corollary 2.5 below. The role of
condition (9) is to exclude a Wiener or Brownian bridge component in the limiting
process, as it occurs in Theorem 2.1.

We formulate now our main sampling theorems. For the proof we refer to Berkes,
Horváth and Schauer [6].

Theorem 2.3. Let, for each n = 1,2, . . .,

x1,n ≤ x2,n ≤ . . . ≤ xn,n (10)

be a finit set satisfying (7), (8), (9) and

∞

∑
j=1

y2
j < ∞ and

∞

∑
j=1

z2
j < ∞. (11)

Let X (n)
1 , . . . ,X (n)

m be the random elements obtained by drawing m = m(n) ≤ n ele-
ments from the set (10) without replacement, where (4) holds. Then for the processes
Zn,m(t) define by (1) we have

Zn,m(t) D [0,1]−−−→ R(ct) for n → ∞,

where
R(t) =

∞

∑
j=1

y j(δ j(t)− t)+
∞

∑
j=1

z j(δ ∗
j (t)− t)

and {δ j(t), 0 ≤ t ≤ 1}, {δ ∗
j (t), 0 ≤ t ≤ 1}, j = 1,2, . . . are independent jump pro-

cesses, each making a single jump from 0 to 1 at a random point uniformly dis-
tributed in (0,1).

Theorem 2.4. Let, for each n = 1,2, . . .,

x1,n ≤ x2,n ≤ . . . ≤ xn,n (12)

be a finit set satisfying (7), (8), (9) and (11). Let X (n)
1 , . . . ,X (n)

m be the random ele-
ments obtained by drawing m = m(n) elements from the set (12) with replacement,
where (4) holds. Then for the processes Zn,m(t) define by (1) we have
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Zn,m(t) D [0,1]−−−→ R(ct) for n → ∞

where
R(t) =

∞

∑
j=1

y j(δ j(t)− t)+
∞

∑
j=1

z j(δ ∗
j (t)− t)

and {δ j(t), t ≥ 0}, {δ ∗
j (t), t ≥ 0}, j = 1,2, . . . are independent Poisson processes

with parameter 1.

These results show that in the case when the asymptotic negligibility condition is
not satisfied the limiting process will depend on the values of y j and z j, j = 1,2, . . ..
Obviously the y j’s and z j’s form non-increasing sequences. The larger the differ-
ences between consecutive values are, the more the process R(t) will be different
from a Wiener process (or a Brownian bridge, respectively). Observe also that in the
case of permutation statistics with m = n, the process R(t) satisfie R(0) = R(1) = 0
and therefore it gives a non-Gaussian "bridge", having the same covariances (up to a
constant) as a Brownian bridge. In the bootstrap case R(t) has the same covariances
(again up to a constant) as a scaled Wiener process.

Figure 1 shows the sample paths of the (appropriately normalized) limiting pro-
cess R(t) for permutations with −y j = z j = c j−1/a (a ∈ {0.5,0.8,1,1.5}) and of a
Brownian bridge B(t). The pictures show the differences between the two limiting
processes and that increasing the value of a makes R(t) look closer to a Brownian
bridge.

We now turn to applications of Theorems 2.3 and 2.4. The simplest situation
with infinit variances is the case of i.i.d. random variables X1,X2, . . . belonging to
the domain of attraction of a stable r.v. ξα with parameter α ∈ (0,2). This means
that for some numerical sequences {an,n ∈ N}, {bn,n ∈ N}

Sn−an
bn

d−→ ξα , (13)

where Sn = ∑n
j=1 Xj. The necessary and sufficien condition for this is

P(X1 > t)∼ pL(t)t−α and P(X1 < −t)∼ qL(t)t−α as t → ∞ (14)

for some numbers p ≥ 0, q ≥ 0, p + q = 1 and a slowly varying function L(t). Let
the ordered statistics of (X1, . . . ,Xn) be X1,n ≤ X2,n ≤ . . . ≤ Xn,n and apply Theorem
2.3 and Theorem 2.4 to the random set{

X1,n− X̄n
Tn

, . . . ,
Xn,n − X̄n

Tn

}
, (15)

where X̄n = (1/n)∑n
j=1 Xj is the sample mean and Tn = max1≤ j≤n |Xj|. The normal-

ization Tn is used since the r.v.’s are outside the domain of attraction of a normal
random variable. This leads to the following results from Aue, Berkes and Horváth
[3] and Berkes, Horváth and Schauer [6].
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Fig. 1 Simulations of R(t) (solid) and B(t) (dashed) with −yj = z j = const · j−1/a and a =
0.5,0.8,1,1.5 (from top left to bottom right)

Corollary 2.1. Let X1,X2, . . . be i.i.d. random variables with partial sums satisfying
(13) with some {an,n∈N}, {bn,n∈N} and a stable random variable ξα , α ∈ (0,2).
Furthermore let X (n)

1 , . . . ,X (n)
m be the variables obtained by drawing (independently

of X1,X2, . . .) m = m(n) ≤ n times without replacement from the set {X1, . . . ,Xn}.
Assume that (4) holds and defin the functional CUSUM statistic by

Z∗
n,m(t) =

1
Tn

�mt�
∑
j=1

(X (n)
j − X̄n) for t ∈ [0,1]. (16)

Then
PX(Z∗

n,m(t) ≤ x) d−→ PZ(R∗(ct)≤ x) for n → ∞ (17)

for any real x, where

1.
0

0.
5

0.
0

0.0 0.2 0.4 0.6
t

0.8 1.0 0.0 0.2 0.4 0.6
t

0.8 1.0

0.0 0.2 0.4 0.6
t

0.8 1.0 0.0 0.2 0.4 0.6
t

0.8 1.0

R
(t)

−0
.5

−1
.0

1.
0

0.
5

0.
0

R
(t)

−0
.5

−1
.0

1.
0

0.
5

0.
0

R
(t)

−0
.5

−1
.0

1.
0

0.
5

0.
0

R
(t)

−0
.5

−1
.0
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R∗(t) =
1
M

⎛
⎝−q1/α

∞

∑
j=1

1

Z1/α
j

(δ j(t)− t)+ p1/α
∞

∑
j=1

1
(Z∗

j )1/α (δ ∗
j (t)− t)

⎞
⎠ .

Here Z j = η1 + . . .+η j , Z∗
j = η∗

1 + . . .+η∗
j , where {η j,η∗

j , j ∈N} are independent
exponential random variables with parameter 1,

M = max{(q/Z1)1/α ,(p/Z∗
1)1/α} (18)

and {δ j(t),t ∈ [0,1]}, {δ ∗
j (t),t ∈ [0,1]}, j ∈ N, are independent jump processes,

each making a single jump from 0 to 1 at a random point uniformly distributed in
(0,1), also independent of {Z j,Z∗

j , j ∈N}.

Corollary 2.2. Corollary 2.1 remains valid if X (n)
1 , . . . ,X (n)

m are obtained by drawing
with replacement from the set {X1, . . . ,Xn}. In this case {δ j(t),t ∈ [0,1]}, {δ ∗

j (t),t ∈
[0,1]}, j ∈ N, will be independent Poisson processes with parameter 1.

Note that in both corollaries the right-hand side of (17) is a conditional probability
given the random variables Z1,Z∗

1 ,Z2,Z∗
2 , . . .. This means that the limit distribution

is a random distribution function, possibly define on a different probability space
than X1,X2, . . .. In the bootstrap case this phenomenon was firs observed by Athreya
[2].

It is interesting to note that in the extreme case of α = 0, i.e. in case of i.i.d.
random variables X1,X2, . . . with slowly varying tails, Corollaries 2.1 and 2.2 remain
valid. More precisely, we assume that

P(X1 > t) ∼ pL(t) and P(X1 < −t)∼ qL(t) (19)

for t → ∞ and some non-increasing slowly varying function L(t) that satisfie
limt→∞ L(t) = 0. Using Theorems 2.3 and 2.4 yields the following results.

Corollary 2.3. Let X1,X2, . . . be i.i.d. random variables with slowly varying tails
satisfying (19). Furthermore let X (n)

1 , . . . ,X (n)
m be the variables obtained by drawing

(independently of X1,X2, . . .) m = m(n) ≤ n times without replacement from the set
{X1, . . . ,Xn}. Assume that (4) holds. Defin Z ∗

n,m(t) as in (16). Then

PX(Z∗
n,m(t)≤ x) d−→ PU(R∗(ct)≤ x) for n → ∞ (20)

for any real x, where

R∗(t) =−I(U > p)(δ (t)− t)+ I(U ≤ p)(δ ∗(t)− t).

Here U is a uniform random variable on (0,1) and {δ (t),t ∈ [0,1]}, {δ ∗(t),t ∈
[0,1]} are independent jump processes, each making a single jump from 0 to 1 at a
random point uniformly distributed in (0,1), independent of U.

Corollary 2.4. Corollary 2.3 remains valid if we sample X (n)
1 , . . . ,X (n)

m with re-
placement from the set {X1, . . . ,Xn} with m = m(n) satisfying (4). Then, however,
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{δ (t),t ∈ [0,1]} and {δ ∗(t),t ∈ [0,1]} are independent Poisson processes with pa-
rameter 1 (independent of U).

Our next corollary describes a situation when relation (8) fails, i.e. the sequences
x j,n and xn− j+1,n do not converge for fi ed j. Let X1,X2, . . . be i.i.d. symmetric ran-
dom variables with the distribution

P(X1 = ±2k) = 2−(k+1) k = 1,2, . . . (21)

This is the two-sided version of the St. Petersburg distribution. The distribution
function F(x) of X1 satisfie

1−F(x) = 2−k for 2k−1 ≤ x < 2k

which shows that G(x) = x(1−F(x)) is logarithmically periodic: if x runs through
the interval [2k,2k+1), then G(x) runs through all values in [1/2,1) and G(log2 x) is
periodic with period 1. Thus (14) fails and consequently F does not belong to the
domain of attraction of a stable law. The partial sums Sk = ∑n

k=1 Xk have a remark-
able behavior: for any fi ed 1 ≤ c < 2, the normed sums n−1Sn converge weakly
along the subsequence nk = �c2k� to an infinitel divisible distribution Fc such that
Fc = F∗c

1 and F2 = F1. The class F = {Fc, 1 ≤ c ≤ 2} can be considered a circle,
and in each interval [2k,2k+1), the distribution of n−1Sn essentially runs around this
circle in the sense that n−1Sn is close in distribution to Fc with c = n/2k. This be-
havior was discovered by S. Csörgő [10], who called this quasiperiodic behavior
’merging’. As the following corollary shows, merging will also take place in the be-
havior of permutation and bootstrap statistics. For simplicity, we consider the case
when we draw n elements from the sample (X1, . . . ,Xn). Let Ψ (x), 0 < x < ∞ de-
note the function which increases linearly from 1/2 to 1 on each interval (2 j,2 j+1],
j = 0,±1,±2, . . ..

Corollary 2.5. Let X1,X2, . . . be i.i.d. random variables with the distribution (21).
Let X (n)

1 , . . . ,X (n)
n be the elements obtained by drawing n times with replacement

from the set {X1, . . . ,Xn} and let Z∗
n(t) be define by (16) with m = n. Let 1 ≤ c < 2.

Then for nk = �c2k� we have

PX(Z∗
nk

(t)≤ x) d−→ PZ(Rc(t)≤ x)

for any real x, where

Rc(t) =
1
M

[
−

∞

∑
j=1

1
Zj

Ψ
(

Zj

c

)
(δ j(t)− t)+

∞

∑
j=1

1
Z∗

j
Ψ
(Z∗

j

c

)
(δ ∗

j (t)− t)

]

with
M = max

{
Ψ (Z1/c)

Z1
,
Ψ (Z∗

1/c)
Z∗

1

}
.
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Here Zj = η1 + . . .+ η j and Z∗
j = η∗

1 + . . . + η∗
j , where {η j, η∗

j , j ∈ N} are i.i.d.
exp(1) random variables and {δ j(t),0 ≤ t ≤ 1}, {δ ∗

j (t),0 ≤ t ≤ 1}, j = 1,2, . . . are
independent jump processes, each making a single jump from 0 to 1 at a uniformly
distributed point in (0,1).

Just like in the case of partial sums, the class Rc of limiting processes is log-
arithmically periodic, namely R2c = Rc and for a fi ed n with 2k ≤ n < 2k+1 the
conditional distribution of Z∗

n(t) is close to that of Rc(t) with c = n/2k.
Corollary 2.5 remains valid if we draw X (n)

1 , . . . ,X (n)
n without replacement from

the set {X1, . . . ,Xn}. Then δ j(t) and δ ∗
j (t) are independent Poisson processes with

parameter 1.

3 Application to change point detection

Due to the random limit distributions in Corollaries 2.1 and 2.2, bootstrap and per-
mutation methods cannot be directly used in statistical inference when the observa-
tions do not have finit variances. Let X1,X2, . . . be i.i.d. random variables belong-
ing to the domain of normal attraction of a stable r.v. ξ α with parameter α ∈ (0,2).
Let Sn = X1 + . . . + Xn and let X1,n ≤ X2,n ≤ . . . ≤ Xn,n be the order statistics of
the sample (X1, . . . ,Xn). It is well known (see e.g. Darling [11]) that for any fi ed
j the ratios Xj,n/Sn, Xn− j,n/Sn have nondegenerate limit distributions as n → ∞,
which means that the contribution of the extreme elements in the normed sum
n−1/α(X1 + . . . + Xn) is not negligible. As Corollaries 2.1 and 2.2 show, both in
the permutation and bootstrap case we have

PX(Z∗
n,m(t) ≤ x) d−→ PZ(R∗(ct)≤ x) as n → ∞

for any real x, provided m/n → c > 0, where

R∗(t) =
1
M

⎛
⎝−q1/α

∞

∑
j=1

1

Z1/α
j

(δ j(t)− t)+ p1/α
∞

∑
j=1

1
(Z∗

j )1/α (δ ∗
j (t)− t)

⎞
⎠ .

Here the terms Z−1/α
j (δ j(t)− t) and (Z∗

j )
−1/α(δ ∗

j (t)− t) are due to the extremal
terms Xj,n and Xn− j,n in the sum Sn and thus to get a limit distribution not contain-
ing random coefficient we have to eliminate the effect of the extremal elements.
Natural ideas are trimming the sample (X1, . . . ,Xn) before resampling, or to choose
the sample size in resampling as o(n), reducing the chance of the largest elements of
the sample to get into the new sample. In this section we will show that after a suit-
able trimming, the limit distribution of the partial sums of the resampled elements
will be normal, and thus bootstrap and permutation methods will work under infinit
variances. We will illustrate this with an application to change point detection.

Consider the location model
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Xj = µ +δ I( j > K)+ e j for j = 1, . . . ,n, (22)

where 1 ≤ K ≤ n, µ and δ = δn �= 0 are unknown parameters. We assume that
|δ | ≤ D with some D > 0 and that e1, . . . ,en are i.i.d. random variables with

Ee1 = 0, Ee2
1 = σ 2 > 0 and E|e1|ν < ∞ with some ν > 2. (23)

We want to test the hypothesis H0 : K ≥ n against H1 : K < n. Common test statistics
for this setting are the CUSUM statistics define by

Tn = max
1≤k≤n

1
n1/2σ̂n

∣∣∣∣∣
k

∑
j=1

(Xj − X̄n)

∣∣∣∣∣
and

Tn,1 = max
1≤k≤n

√
n

k(n− k)
1

σ̂n

∣∣∣∣∣
k

∑
j=1

(Xj − X̄n)

∣∣∣∣∣ ,
where

X̄n =
1
n

n

∑
j=1

Xj and σ̂ 2
n =

1
n

n

∑
j=1

(Xj − X̄n)2.

The limit distributions of both statistics are known:

lim
n→∞

PH0(Tn ≤ x) = P
(

sup
0≤t≤1

|B(t)| ≤ x
)

,

and
lim
n→∞

PH0 (a(logn)Tn,1 ≤ x+ b(logn)) = exp(−2exp(−x)),

where {B(t),t ∈ [0,1]} is a Brownian bridge,

a(x) =
√

2logx and b(x) = 2logx+
1
2

loglogx− 1
2

logπ .

(see Csörgő and Horváth [9] and Antoch and Hušková [1]) and one can determine
critical values based on these limit distributions. On the other hand, under the change
point alternative if nδ 2

n → ∞, then Tn → ∞ in probability and if nδ 2
n /loglogn → ∞,

then Tn/
√

loglogn →∞ in probability. However, the convergence to the limit distri-
bution is rather slow under the null hypothesis and thus the obtained critical values
will work only for large sample sizes and lead to conservative tests otherwise. An-
toch and Hušková [1] proposed the use of permutation statistics to get correct criti-
cal values for small and moderate size samples. Consider a sample X = (X1, . . . ,Xn),
let π = (π(1), . . . ,π(n)) be a random permutation of (1, . . . ,n), independent of the
sample (X1, . . . ,Xn), and let Xπ = (Xπ(1), . . . ,Xπ(n)) be the permuted sample. Let
T ∗

n,1 = Tn,1(Xπ), where X is considered fi ed, and the randomness is in π . Antoch
and Hušková [1] showed the following theorem:
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Theorem 3.1. If conditions (22) and (23) are satisfie and |δ n| ≤D for some D > 0,
then for all x

lim
n→∞

PX(T ∗
n ≤ x) = P

(
sup

0≤t≤1
|B(t)| ≤ x

)

and
lim
n→∞

PX
(
a(logn)T ∗

n,1 ≤ x+ b(logn)
)

= exp(−2exp(−x)),

for almost all realizations of X as n → ∞.

Note that Theorem 3.1 is valid under the null as well as under the alternative
hypotheses. This shows that the critical values for the test based on Tn,1 can be re-
placed by the sample quantiles of its permutation version based on T ∗

n,1, a procedure
which is numerically quite convenient. For a given sample (X 1, . . . ,Xn) we generate

of Tn(Xπ) and Tn,1(Xπ) and hence to the desired critical values. As the simulations
in [1] show, these critical values are much more satisfactory than the critical values
based on the limit distribution. As Hušková [14] pointed out, approximations using
bootstrap versions of the test statistics would also work well.

Using N independent permutations, that is N values of T ∗
n , denoted by T ∗

n ( j),
j = 1,2, . . . ,N, let

Hn,N(x) =
1
N

N

∑
j=1

{T ∗
n ( j) ≤ x},

be the empirical distribution function that can be used to approximate

Hn(x) = PH0(Tn ≤ x).

Defin Hn,N,1 and Hn,1 as the analogues to Hn,N and Hn where Tn,1 replaces Tn.
Berkes, Horváth, Hušková and Steinebach [5] showed that if conditions (22) and
(23) are satisfied then we have

|Hn,N(x)−Hn(x)| = oPX(1) as min(n,N) → ∞

for almost all realizations of X. They also studied the rate of convergence and they
proved

|Hn,N(x)−Hn(x)| = OPX

(
N−1/2 + n−(ν−2)/(6ν))

and
|Hn,N,1(x)−Hn,1(x)| = oPX

(
N−1/2 +(loglogn)−ν/2)

for almost all realizations of X.
The previous results show that permutation and bootstrap statistics provide an

effective way to detect a change of location in an i.i.d. sequence (X n). Note, how-
ever, that for the validity of the limit distribution results above we need, by (23), the
existence of ν > 2 moments of the underlying variables. As we will see below, using
a suitable trimming of the sample (X1, . . . ,Xn), the limiting processes in Corollaries
2.1 and 2.2 become Brownian motion, resp. Brownian bridge, and then the boot-

a large number of random permutations which leads to the empirical distributions
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strapped or permuted version of the CUSUM statistics will work without assuming
the existence of second moments.

Fix a sequence ωn → ∞ of integers with ωn/n → 0. Put m = n− 2ωn and let
(Y1, . . . ,Ym) denote the part of the original sample (X1, . . . ,Xn) obtained by remov-
ing the ωn smallest and largest elements from the set. Let Y1,m ≤ . . . ≤ Ym,m be
the ordered sample of (Y1, . . . ,Ym). Draw m elements Y (m)

1 , . . . ,Y (m)
m from the set

{Y1, . . . ,Ym} with or without replacement. Let ε (m)
j (t) count how many times Yj,m

has been chosen among the firs �mt� sampled elements:

ε(m)
j (t) = k if Yj,m has been chosen k times among the firs �mt� elements,

for j = 1, . . . ,m. Clearly, in the case of selection without replacement k can only take
the values 0, 1 while k ∈ {0,1, . . . ,�mt�} when drawing with replacement. Letting
Ȳm = (1/m)∑m

j=1Yj = (1/m)∑m
j=1 Yj,m , we have

Ẑm(t) :=
�mt�
∑
j=1

(Y (m)
j − Ȳm) =

m

∑
j=1

(Yj,m− Ȳm)ε(m)
j (t) =

m

∑
j=1

(Yj,m− Ȳm) ε̄(m)
j (t),

where ε̄(m)
j (t) = ε(m)

j (t)−Eε(m)
j (t) is the centered version of ε (m)

j (t).

Theorem 3.2. In the case of selection without replacement, there exist independent,
identically distributed indicator variables δ (m)

j (t), j = 1, . . . ,m with P(δ (m)
j (t) = 1)

= �mt�/m such that for any 0 < t < 1

P

(
ε(m)

j (t) �= δ (m)
j (t) for some 1 ≤ j ≤ m1/3 or m−m1/3 < j ≤ m

)

≤Ct−1m−1/6, (24)

where C is an absolute constant. Moreover, with probability 1

∑
m1/3< j≤m−m1/3

(Yj,m− Ȳm) ε̄(m)
j (t) = oP

(
m1/αω1/2−1/α

m

)
. (25)

The statements of the theorem remain valid for selection with replacement, except
that in this case the δ (m)

j (t), j = 1, . . . ,m are independent B(�mt�,1/m) random
variables.

Letting δ̄ (m)
j (t) = δ (m)

j (t)−Eδ (m)
j (t) and

Am =

(
m

∑
j=1

(Yj,m − Ȳm)2

)1/2

=
√

m σ̂m ≈ m1/α ω1/2−1/α
m ,

relation (25) shows that the asymptotic behavior of A−1
m Ẑm(t) is the same as that of
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A−1
m ∑

j∈Im
(Yj,m − Ȳm) ε̄(m)

j (t) (26)

with
Im = {k : 1 ≤ k ≤ �m1/3� or m−
m1/3� < k ≤ m}.

By (25), the expression in (26) can be replaced by A−1
m ∑ j∈Im(Yj,m − Ȳm)δ̄ (m)

j (t), a
normed sum of i.i.d. random variables. Using a tightness argument and the func-
tional central limit theorem under Ljapunov’s condition, we get

Corollary 3.1. Assume H0 and defin

T̂m = max
1≤k≤m

1√
mσ̂m

k

∑
j=1

(Yπ( j)−Y m).

Then conditionally on X, for almost all paths

PX
(
T̂m ≤ x

)−→ P
(

sup
0≤t≤1

|B(t)| ≤ x
)

for n → ∞.

A similar result holds for Darling-Erdős type functionals:

Corollary 3.2. Assume H0 and defin

T̂m,1 := max
1≤k≤m

√ m
k(m− k)

1
σ̂m

∣∣∣∣∣
k

∑
j=1

(Yπ( j)− Ȳm)

∣∣∣∣∣ .

Then conditionally on X, for almost all paths

PX

(
(2loglogm)1/2T̂m,1 ≤ x+ 2loglogm+

1
2

logloglogm− 1
2

log(π)
)

−→ exp(−2exp(−x)).

Corollaries 3.1 and 3.2 show that trimming and permuting the sample provides a
satisfactory setup for change point problems under infinit variance. Just like in case
of finit variances (cf. Theorem 3.1), Corollary 3.2 remains true under the change–
point alternative. A small simulation study is given below, showing simulated criti-
cal values and the empirical power of the trimmed tests.

Consider the location model in (22) with

n ∈ {100,200},K ∈ {n/4,n/2,3n/4},µ = 0,δ ∈ {0,2,4}

and with i.i.d. errors e j having distribution function

F(x) =

{
1
2(1− x)−1.5 for x ≤ 0
1− 1

2(1+ x)−1.5 for x < 0.
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We use trimming with ωn = �nβ �, β ∈ {0.2,0.3,0.4}. To simulate the critical values
we generate a random sample (X1, . . . ,Xn) according to the above model and trim
it to obtain (Y1, . . . ,Ym). For N = 105 permutations of the integers {1, . . . ,m} we
calculate the values of T̂m and T̂m,1 define in Corollaries 3.1 and 3.2, respectively.
The computation of the empirical quantiles yields the desired critical values. Tables
1 and 3 summarize our results for T̂m and T̂m,1, respectively.

Table 1 Simulated quantiles of T̂m

β = 0.2 β = 0.3 β = 0.4
n K δ 10 % 5 % 1 % 10 % 5 % 1 % 10 % 5 % 1 %

100 - 0 1.115 1.225 1.429 1.144 1.271 1.514 1.142 1.264 1.495
100 25 2 1.127 1.239 1.467 1.157 1.288 1.541 1.153 1.283 1.535
100 25 4 1.144 1.264 1.501 1.161 1.292 1.542 1.164 1.295 1.556
100 50 2 1.137 1.258 1.489 1.150 1.280 1.523 1.159 1.289 1.539
100 50 4 1.154 1.276 1.514 1.159 1.289 1.539 1.167 1.298 1.553
100 75 2 1.133 1.255 1.483 1.153 1.281 1.528 1.155 1.283 1.536
100 75 4 1.148 1.276 1.514 1.163 1.293 1.548 1.159 1.291 1.550

200 - 0 1.166 1.293 1.549 1.144 1.268 1.498 1.169 1.303 1.560
200 50 2 1.176 1.306 1.561 1.157 1.284 1.525 1.183 1.314 1.577
200 50 4 1.179 1.311 1.566 1.172 1.300 1.549 1.182 1.313 1.582
200 100 2 1.168 1.300 1.551 1.171 1.298 1.553 1.169 1.299 1.558
200 100 4 1.179 1.307 1.561 1.182 1.314 1.576 1.181 1.315 1.574
200 150 2 1.149 1.270 1.503 1.154 1.279 1.530 1.176 1.307 1.569
200 150 4 1.164 1.289 1.531 1.158 1.284 1.537 1.181 1.309 1.569

Note that the differences between the estimated quantiles under the null (δ = 0)
and under the alternative hypotheses are small, just as in case of finit variances in
Antoch and Hušková [1]. Comparing the simulated values with the asymptotic ones
given in Tables 2 and 4, one can note relatively large differences for n = 100 (in
particular in the case of T̂m,1).

Table 2 Asymptotic critical values of Tm

10 % 5 % 1 %
1.224 1.358 1.628

The quantiles of T̂m,1 show more fluctuation than those of T̂m . Note that increas-
ing β will stabilize the simulated quantiles.
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Table 3 Simulated quantiles of T̂m,1

β = 0.2 β = 0.3 β = 0.4
n K δ 10 % 5 % 1 % 10 % 5 % 1 % 10 % 5 % 1 %

100 - 0 2.835 3.174 3.961 2.900 3.199 3.540 2.719 2.945 3.453
100 25 2 2.793 3.143 3.511 2.827 3.032 3.465 2.661 2.898 3.371
100 25 4 2.719 2.945 3.415 2.694 2.946 3.441 2.660 2.898 3.385
100 50 2 2.939 3.328 3.960 2.703 2.978 3.386 2.650 2.881 3.335
100 50 4 2.747 3.034 3.625 2.640 2.872 3.342 2.635 2.869 3.346
100 75 2 2.926 3.339 3.808 2.875 3.353 3.765 2.764 3.012 3.438
100 75 4 2.864 3.091 3.667 2.731 2.950 3.466 2.685 2.921 3.411

200 - 0 3.065 3.431 4.317 3.065 3.469 4.560 2.924 3.286 3.994
200 50 2 3.035 3.393 4.501 3.009 3.433 4.527 2.896 3.243 3.844
200 50 4 2.959 3.242 4.071 2.929 3.249 4.078 2.851 3.110 3.541
200 100 2 3.027 3.406 4.500 2.983 3.317 4.004 2.868 3.179 3.775
200 100 4 2.886 3.188 3.799 2.892 3.112 3.751 2.771 3.019 3.508
200 150 2 3.024 3.519 5.092 2.951 3.356 4.125 2.832 3.070 3.570
200 150 4 2.949 3.323 4.386 2.874 3.183 3.812 2.802 3.051 3.547

Table 4 Asymptotic critical values of Tm,1

n β 10 % 5 % 1 %
100 .2 3.223 3.636 4.572
100 .3 3.222 3.636 4.572
100 .4 3.218 3.634 4.575
200 .2 3.264 3.658 4.552
200 .3 3.262 3.658 4.552
200 .4 3.260 3.656 4.553

Figures 2–5 show the empirical power of the test based on the (non permuted)
test statistics Tm, Tm,1 for each δ ∈ {−3,−2.9, . . . ,2.9,3}.
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Fig. 2 Empirical power of Tm with empirical (dashed) and asymptotic (solid) critical values, α =
0.05,n = 100,β = 0.3 and K = 25,50 (left, right)

Fig. 3 Empirical power of Tm with empirical (dashed) and asymptotic solid) critical values, α =
0.05,n = 200,β = 0.3 and K = 50,100 (left, right)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

alternative mean

n=100 & k=25 n=100 & k=50
em

pi
ric

al
 p

ow
er

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

em
pi

ric
al

 p
ow

er

−3 −2 −1 0 1 2 3
alternative mean

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

alternative mean

n=200 & k=50 n=200 & k=100

em
pi

ric
al

 p
ow

er

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

em
pi

ric
al

 p
ow

er

−3 −2 −1 0 1 2 3
alternative mean

−3 −2 −1 0 1 2 3



18 István Berkes, Lajos Horváth, and Johannes Schauer

Fig. 4 Empirical power of Tm,1 with empirical (dashed) and asymptotic (solid) critical values α =
0.05,n = 100,β = 0.3 and K = 25,50 (left, right)

Fig. 5 Empirical power of Tm,1 with empirical (dashed) and asymptotic (solid) critical values α =
0.05,n = 200,β = 0.3 and K = 50,100 (left, right)
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The figure show that the test based on Tm,1 is conservative when we use the
asymptotic critical values.

In conclusion we note that the type of trimming we used above is not the only
possibility to eliminate the large elements of the sample (X1, . . . ,Xn). Alternatively,
we can remove from the sample the ωn elements with the largest absolute values.
In [7] we determined the asymptotic distribution of permuted and bootstrapped
CUSUM statistics under this kind of trimming. While the limit distribution of T̂m
remains the same in this case, note that, surprisingly, the asymptotic theory of the
two trimming procedures is different, see [7], [12], [13] for further information.
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