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Abstract

It is known that for any smooth periodic function f the sequence (f(2kx))k≥1

behaves like a sequence of i.i.d. random variables, for example, it satisfies the central
limit theorem and the law of the iterated logarithm. Recently Fukuyama showed that
a permutation of (f(2kx))k≥1 can ruin the validity of the law of the iterated logarithm,
a very surprising result. In this paper we present an optimal condition on (nk)k≥1,
formulated in terms of the number of solutions of certain Diophantine equations,
which ensures the validity of the law of the iterated logarithm for any permutation
of the sequence (f(nkx))k≥1. A similar result is proved for the discrepancy of the
sequence ({nkx})k≥1, where {·} denotes fractional part.

1 Introduction

Given a sequence (x1, . . . , xN ) of real numbers, the value

DN = DN (x1, . . . , xN ) = sup
0≤a<b<1

∣∣∣∣∣

∑N
k=1 1[a,b)({xk})

N
− (b− a)

∣∣∣∣∣

is called the discrepancy of the sequence. Here 1[a,b) denotes the indicator function
of the interval [a, b) and {·} denotes fractional part. An infinite sequence (xn)n≥1

is called uniformly distributed mod 1 if DN (x1, . . . xN ) → 0 as N → ∞. Weyl [24]
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proved that for any increasing sequence (nk)k≥1 of integers, (nkx)k≥1 is uniformly dis-
tributed mod 1 for almost all x ∈ R in the sense of the Lebesgue measure. Computing
the discrepancy of this sequence is a difficult problem and the precise asymptotics is
known only in a few cases. Philipp [19] proved that if (nk)k≥1 satisfies the Hadamard
gap condition

nk+1/nk ≥ q > 1 (k = 1, 2, . . .), (1)

then the discrepancy of ({nkx})k≥1 obeys the law of the iterated logarithm, i.e.

1
4
√

2
≤ lim sup

N→∞
NDN (nkx)√
2N log log N

≤ D(q) a.e., (2)

where D(q) is a number depending on q. (For the simplicity of the notation, we will
write DN (xk) instead of DN (x1, . . . xN ).) Note that for the discrepancy of an i.i.d.
nondegenerate sequence (Xk)k≥1 we have

lim sup
N→∞

NDN (Xk)√
2N log log N

= 1/2 a.s. (3)

by the Chung-Smirnov law of the iterated logarithm (see e.g. [22, p. 504]). A com-
parison of (2) and (3) shows that for Hadamard lacunary (nk)k≥1, the sequence
({nkx})k≥1 of functions on (0, 1) behaves like a sequence of i.i.d. random variables.
(Note, however, that for certain values of x the distribution of ({nkx})k≥1 can differ
significantly from the uniform distribution even under (1), see e.g. [18].) Inter-
estingly, the analogy between lacunary sequences and sequences of i.i.d. random
variables is not complete. Fukuyama [8] determined the limsup in (2) for the se-
quences nk = θk, θ > 1; his results show that the limsup is different from 1/2 for
any integer θ ≥ 2. (On the other hand, in [8] it is shown that if θr is irrational
for r = 1, 2, . . ., then the limsup in (2) equals to the i.i.d. value 1/2.) Aistleitner
[2] constructed a Hadamard lacunary sequence (nk)k≥1 such that the limsup in (2)
is not a constant a.e. and Fukuyama and Miyamoto [11] showed that this actually
happens for nk = 2k − 1. Even more surprisingly, Fukuyama [9] showed that even
if the limsup in (2) is a constant (e.g., for nk = 2k), the value of the limsup can
change by permuting the sequence (nk)k≥1, a phenomenon radically different from
i.i.d. behavior, which is clearly permutation-invariant.

The previous results show that the behavior of ({nkx})k≥1 is very delicate, ex-
hibiting both probabilistic and number-theoretic phenomena. It is natural to ask for
which (nk)k≥1 the behavior of ({nkx})k≥1 follows exactly i.i.d. behavior, for example,
when is the limsup in (2) equal to 1/2 a.e and under what conditions is the value
of the limsup permutation-invariant. A near optimal number-theoretic condition for
lim sup = 1/2 a.e. was given by Aistleitner [3] and the purpose of the present paper
is to give an optimal condition for the permutation-invariance of the LIL.

Let f be a measurable function satisfying

f(x + 1) = f(x),
∫ 1

0
f(x)dx = 0, Var[0,1](f) < ∞. (4)
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A profound study of the behavior of the sequence (f(nkx))k≥1 for Hadamard lacunary
(nk)k≥1 was given in Gaposhkin [12, 13]. By a classical theorem of Kac [15], under
(4) the sequence (f(2kx))k≥1 satisfies the CLT and Erdős and Fortet showed (see [16,
p. 646]) that the CLT generally fails for (f((2k − 1)x))k≥1 (see also [6]). Gaposhkin
showed that (f(nkx))k≥1 satisfies the central limit theorem provided nk+1/nk is an
integer for all k ≥ 1 or if nk+1/nk → α, where αr is irrational for r = 1, 2, . . ..
More generally, he showed that (f(nkx))k≥1 satisfies the central limit theorem pro-
vided that for any nonzero integers a, b, c the number of solutions of the Diophantine
equation

ank + bnl = c, 1 ≤ k, l ≤ N (5)

is bounded by a constant K(a, b), independent of c. Aistleitner and Berkes [4] showed
that the CLT remains valid if for any nonzero integers a, b, c the number of solutions
of (5) is o(N), uniformly in c, and this condition is best possible. Aistleitner [3] also
proved that replacing o(N) by O(N/(log N)1+ε) in the previous theorem, the limsup
in (2) equals 1/2. As we will see, a two-term Diophantine condition will also give the
precise condition for the permutation-invariance of the LIL for DN (nkx).

2 Results

In what follows, we write ‖f‖ for the L2(0, 1) norm of a function f .

Theorem 1 Let (nk)k≥1 be a sequence of positive integers satisfying (1), such that
for any fixed integers a 6= 0, b 6= 0, c the number of solutions of the Diophantine
equation (5) is bounded by a constant K(a, b) independent of c, where for c = 0 we
require also k 6= l. Let f be a function satisfying (4). Then for any permutation
σ : N→ N we have

lim sup
N→∞

∑N
k=1 f(nσ(k)x)√
2N log log N

= ‖f‖ a.e.

As a consequence of Theorem 1 we obtain the following metric discrepancy result.

Theorem 2 Let (nk)k≥1 be a sequence of positive integers satisfying (1), such that
for any fixed integers a 6= 0, b 6= 0, c the number of solutions of the Diophantine
equation (5) is bounded by a constant K(a, b) independent of c, where for c = 0 we
require also k 6= l. Then for any permutation σ : N→ N we have

lim sup
N→∞

NDN (nσ(k)x)√
2N log log N

=
1
2

a.e. (6)

At the end of our paper we will show that if there exist integers a 6= 0, b 6= 0 and
c such that the Diophantine equation (5) has infinitely many solutions (k, l), k 6= l,
then the conclusion of Theorem 1 fails to hold for appropriate f . In fact, we can
even obtain a non-constant limsup, which perfectly matches the results in [1, 2]. This
shows that the Diophantine condition in Theorem 1 is essentially optimal.
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We stress that in Theorems 1 and 2 we bounded the number of solutions of (5)
also for c = 0 and thus nk = 2k does not satisfy this condition. In fact, the conclusion
of both theorems is false for nk = 2k: with the identity permutation σ(k) = k the
limsup in Theorem 1 equals

(
‖f‖2 + 2

∞∑

k=1

∫ 1

0
f(x)f(2kx) dx

)1/2

(see [14, 17]) and the limsup in Theorem 2 is
√

42/9 by the theorem of Fukuyama
[8]. As we mentioned in the Introduction, for the CLT with a limit distribution of
unspecified variance, it suffices to bound the number of solutions of (5) for coefficients
a, b, c all different from 0.

As the proof of Theorem 1 will show, in the case when f is a trigonometric
polynomial of degree d, it suffices to assume the Diophantine condition only with
coefficients a, b satisfying 1 ≤ |a| ≤ d, 1 ≤ |b| ≤ d. In particular, in the trigonometric
case f(x) = cos 2πx it suffices to allow only coefficients ±1, when the Diophantine
condition in Theorem 1 is satisfied for any Hadamard lacunary sequence (nk)k≥1 (see
e.g. Zygmund [25, pp. 203-204]). Thus we obtain the following corollary of Theorem
1, which is a permutation invariant version of the Erdős-Gál LIL in [7].

Theorem 3 Let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard
gap condition (1), and let σ : N→ N be a permutation of the set of positive integers.
Then

lim sup
N→∞

∑N
k=1 cos 2πnσ(k)x√
2N log log N

=
1√
2

a.e. (7)

If we assume the slightly stronger gap condition

nk+1/nk →∞ (8)

instead of Hadamard’s gap condition (1), then the behavior of f(nkx) is permutation-
invariant, regardless the number theoretic structure of (nk)k≥1. In fact, any sequence
(nk)k≥1 satisfying the gap condition (8) satisfies the Diophantine condition in The-
orem 1 automatically. This follows from the fact that for arbitrary fixed nonzero
integers a, b the set-theoretic union of the sequences (ank)k≥1 and (bnk)k≥1, arranged
in increasing order, satisfies the Hadamard gap condition (1) and consequently the
Diophantine condition in Theorem 1. Thus Theorem 1 implies the following

Theorem 4 Let (nk)k≥1 be a sequence of positive integers satisfying the gap condi-
tion (8). Then for any permutation σ : N → N of the integers and for any function
f satisfying (4) we have

lim sup
N→∞

∑N
k=1 f(nσ(k)x)√
2N log log N

= ‖f‖ a.e. (9)

Moreover, for any permutation σ of N we have

lim sup
N→∞

NDN (nσ(k)x)√
2N log log N

=
1
2

a.e. (10)
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3 Proofs

To deduce Theorem 2 from Theorem 1, we write I[a,b) for the indicator of the interval
[a, b), centered at expectation and extended with period 1, i.e.

I[a,b)(x) = 1[a,b)(〈x〉)− (b− a),

where 〈·〉 denotes the fractional part. For lacunary sequences (and also for permuta-
tions of lacunary sequences)

lim sup
N→∞

sup
0≤a<b≤1

∣∣∣∑N
k=1 I[a,b)(nkx)

∣∣∣
√

2N log log N
= sup

0≤a<b≤1
lim sup
N→∞

∣∣∣∑N
k=1 I[a,b)(nkx)

∣∣∣
√

2N log log N
a.e.

(see [10, Theorem 1]). Thus Theorem 1 yields

lim sup
N→∞

NDN (nσ(k)x)√
2N log log N

= sup
0≤a<b≤1

lim sup
N→∞

∣∣∣∑N
k=1 I[a,b)(nσ(k)x)

∣∣∣
√

2N log log N
= sup

0≤a<b≤1

∥∥I[a,b)

∥∥ =
1
2

almost everywhere.

We now turn to the proof of Theorem 1. In the sequel we will assume that the
function f(x), the sequence (nk)k≥1 and the permutation σ are fixed. We assume
that sequence (nk)k≥1 is a lacunary sequence satisfying the Diophantine condition in
Theorem 1. The method which we use for the proof of Theorem 1 is a multidimen-
sional version of the method which was used in to prove the permutation-invariant
CLT in our paper [5]. We recommend [5] as an introduction to the methods which
are used in the present paper.

We begin with some auxiliary results.

Lemma 1 Let A1, A2, . . . be arbitrary events, satisfying

∞∑

m=1

P(Am) = ∞

and

lim inf
N→∞

∑N
n=1

∑N
m=1 P(AmAn)(∑N

m=1 P(Am)
)2 = 1.

Then

P

( ∞∏

n=1

∞∑
m=n

Am

)
= 1,

i.e. with probability 1 infinitely many of the events Am occur.
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A proof of this lemma can be found in [20].

Lemma 2 Let P1, P2 be probability measures on R2, and write p1, p2 for the corre-
sponding characteristic functions. Then for all T1, T2, δ1, δ2, x, y > 0

|P ∗
1 ([−x, x]× [−y, y])− P ∗

2 ([−x, x]× [−y, y])|
≤ xy

∫

(s,t)∈[−T1,T1]×[−T2,T2]
|p1(s, t)− p2(s, t)| d(s, t)

+xy
(
δ−1
1 δ2 exp

(−T 2
1 δ2

1/2
)

+ δ1δ
−1
2 exp

(−T 2
2 δ2

2/2
))

,

where
P ∗

1 = P1 ? H, P ∗
2 = P2 ? H,

and H is a two-dimensional normal distribution with density

(2πδ1δ2)−1 e−δ2
1u2/2−δ2

2v2/2.

Proof: Assume that T1, T2, δ1, δ2 > 0 are fixed. Letting

h(s, t) = e−δ2
1s2/2−δ2

2t2/2

denote the characteristic function of H, we have p∗1 = p2h and p∗2 = p2h. Writing γ1

and γ2 for the densities of P ∗
1 and P ∗

2 , respectively, we have

|γ1(u, v)− γ2(u, v)| ≤ (2π)−2

∣∣∣∣
∫

R2

e−isu−itv (p∗1(s, t)− p∗2(s, t)) d(s, t)
∣∣∣∣

≤ (2π)−2

∫

R2

|p1(s, t)− p2(s, t)| |h(s, t)| d(s, t)

≤ (2π)−2

∫

(s,t)∈[−T1,T1]×[−T2,T2]
|p1(s, t)− p2(s, t)| d(s, t)

+(2π)−2 2
∫

(s,t) 6∈[−T1,T1]×[−T2,T2]
|h(s, t)| d(s, t).

Therefore

|P ∗
1 ([−x, x]× [−y, y])− P ∗

2 ([−x, x]× [−y, y])|
≤

∫

[−x,x]×[−y,y]
|γ1(u, v)− γ2(u, v)| d(u, v)

≤ 4xy(2π)−2

∫

(s,t)∈[−T1,T1]×[−T2,T2]
|p1(s, t)− p2(s, t)| d(s, t)

+4xy(2π)−2 2
∫

(s,t) 6∈[−T1,T1]×[−T2,T2]
|h(s, t)| d(s, t).

Now
∫

(s,t) 6∈[−T1,T1]×[−T2,T2]
|h(s, t)| d(s, t)
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=
∫

(s,t) 6∈[−T1,T1]×[−T2,T2]
e−δ2

1s2/2−δ2
2t2/2 d(s, t)

≤ (2π)−1δ1δ2 −
(
(2π)−1/2δ1 − 4δ−1

1 exp
(−T 2

1 δ2
1/2

))×

×
(
(2π)−1/2δ2 − 4δ−1

2 exp
(−T 2

2 δ2
2/2

))

≤ δ−1
1 δ2 exp

(−T 2
1 δ2

1/2
)

+ δ1δ
−1
2 exp

(−T 2
2 δ2

2/2
)

proves the lemma. ¤

The following lemma is a one-dimensional version of Lemma 2, which can be
shown in the same way (a proof is contained in [5]).

Lemma 3 ([5, Lemma 4.2]) Let P1, P2 be probability measures on R, and write
p1, p2 for the corresponding characteristic functions. Let

P ∗
1 = P1 ? H, P ∗

2 = P2 ? H,

where H is a normal distribution with mean zero and standard deviation δ. Then for
all T > 0

|P ∗
1 ([−x, x])− P ∗

2 ([−x, x])| ≤ x

∫

s∈[−T,T ]
|p1(s)− p2(s)| ds + 4xδ−1e−T 2δ2/2.

Lemma 4 Let P1, P2 be probability measures on R, and write p1, p2 for the corre-
sponding characteristic functions. Then for any S, T, δ > 0

|P1([−x− S, x + S])− P2([−x + S, x− S])|
≤ x

∫

s∈[−T,T ]
|p1(s)− p2(s)| ds + 4xδ−1e−T 2δ2/2 + 4e−S2/(2δ2).

Proof: Let S, T, δ be fixed. Let H be a normal distribution with mean zero and
variance δ2, and set P ∗

1 = P1 ? H and P ∗
2 = P2 ? H. Then

|P1([−x− S, x + S])− P2([−x + S, x− S])|
≤ |P ∗

1 ([−x, x])− P ∗
2 ([−x, x])|+ 2H (R\[−S, S]) .

Now

2H(R\[−S, S]) ≤ 2
δ
√

2π

∫

s6∈[−S,S]
e−s2/(2δ2) ds

≤ 4e−S2/(2δ2),

and thus by Lemma 3

|P1([−x− S, x + S])− P2([−x + S, x− S])|
≤ x

∫

s∈[−T,T ]
w(s) ds + 4e−S2/(2δ2) + 4xδ−1e−T 2δ2/2,
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which proves Lemma 4. ¤

Let now θ > 1, ε > 0 and d ≥ 1 be arbitrary, but fixed. To simplify notations
we assume in the sequel that f is even. We will also assume that ‖f‖ > 0, since
otherwise Theorem 1 is trivial. We write

f(x) ∼
∞∑

j=1

aj cos 2πjx = p(x) + r(x),

where

p(x) =
d∑

j=1

aj cos 2πjx, r(x) =
∞∑

j=d+1

aj cos 2πjnkx.

Lemma 5 ([3, Lemma 3.1])

lim sup
N→∞

∑N
k=1 r(nσ(k)x)√
2N log log N

≤ Cd−1/4 a.e.

for some number C which is independent of d and σ.

This lemma is valid for general lacunary sequences without any condition on the
number of solutions of Diophantine equations. It is easy to see that the proof of [3,
Lemma 3.1] is valid not only for strictly increasing lacunary sequences, but also for
permutations of lacunary sequences, since it is based on a result of Philipp [19], which
also has this property. We also recall that Var[0,1] f ≤ 1 implies |aj | ≤ j−1, j ≥ 1
(cf. Zygmund [25, p. 48]), and

‖r‖2 ≤
∞∑

j=d+1

|aj |2 ≤
∞∑

j=d+1

j−2 ≤ d−1.

Lemma 6

lim sup
N→∞

∑N
k=1 p(nσ(k)x)√
2N log log N

= ‖p‖ a.e.

In case ‖p‖ = 0 Lemma 6 is trivial. Therefore, to simplify formulas, we will
assume in the sequel, without loss of generality, that ‖p‖ = 1, and prove

lim sup
N→∞

∑N
k=1 p(nσ(k)x)√
2N log log N

= 1 a.e.

Since a finite number of elements of (nk)k≥1 does not influence the asymptotic be-
havior of (nσ(k)x)k≥1 we can also assume that

ank + bnl = 0 (11)

does not have any solution (k, l), k 6= l for 1 ≤ |a| ≤ d, 1 ≤ |b| ≤ d.
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Since d can be chosen arbitrarily large, Lemma 5 and and Lemma 6 together
imply Theorem 1. Therefore it remains to prove Lemma 6. The proof of this lemma
is crucial, and will be given in two parts below. The main ingredient is Lemma 7,
which is formulated and proven below. For the proof we use ideas of Révész [21].

We define

µk = nσ(k), k ≥ 1

∆∗
m =

{
k ≥ 1 : θm ≤ k < θm+1

}
, m ≥ 1.

We rearrange the sequence (µk)k≥1 in such a way that it is increasing within the
blocks ∆∗

m and call this new sequence (νk)k≥1. In other words, (νk)k≥1 consists of
the same elements as (µk)k≥1 (and (nσ(k))k≥1), but satisfies

νk < νl if k < l and k, l ∈ ∆∗
m for some m ≥ 1.

Moreover, we define

∆m =



k ∈ ∆∗

m : @l ∈
m−logθ m⋃

n=1

∆∗
n :

νk

νl
∈

[
1
2d

, 2d

]

 , m ≥ 1, (12)

∆m =
{

k ∈ ∆m :
(
k mod

(⌈√
m + logq(2d)

⌉))

6∈ {
0, . . . ,

⌈
logq(2d)

⌉}}
, m ≥ 1,

∆(h)
m =

{
k ∈ ∆m :

k

d√m + logq(2d)e ∈ [h, h + 1)
}

, h ≥ 0,m ≥ 1,

ηm =

∑
k∈∆m

p(νkx)√
|∆m|

, m ≥ 1,

αm(s) =
∏

h≥0


1 +

is
∑

k∈∆
(h)
m

∑d
j=1 aj cos(2πjνkx)

√
|∆m|


 , m ≥ 1,

βm =
∑

h≥0

∑

k1,k2∈∆
(h)
m

d∑

j1,j2=1

aj1aj2

2
cos(2π(j1νk1 + j2νk2)x)

+
∑

h≥0

∑

k1,k2∈∆
(h)
m

d∑

j1,j2=1

︸ ︷︷ ︸
(k1,j1)6=(k2,j2)

aj1aj2

2
cos(2π(j1νk1 − j2νk2)x), m ≥ 1,

ϕm,n(s, t) = E
(
eisηm+itηn

)
, m, n ≥ 1, s, t ∈ R.

Here |∆m| denotes the number of elements of the set ∆m. Throughout the paper
log x will be understood as max{1, log x}. ∑n

k=m means
∑

m≤k≤n, if m,n are not
integers.
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We observe that for m ≥ 1

|∆m| ≥ |∆∗
m| − (2 logq 2d)

m−logθ m∑

n=1

|∆∗
n|

≥ |∆∗
m|

(
1− (2 logq 2d)θm+1−logθ m

|∆∗
m|

)

≥ |∆∗
m|

(
1− (2 logq 2d)θ

(θ − 1)m

)

and therefore

|∆m| ≥ |∆m| −
((

1 +
⌈
logq(2d)

)⌉ ( |∆m|
d√m e + 1

))

≥ |∆∗
m|

(
1− (2 logq 2d)θ

(θ − 1)m

) (
1− 2

(
1 +

⌈
logq(2d)

⌉)

d√m e

)
. (13)

Also, it is clear that

θm(θ − 1) ≤ |∆∗
m| ≤ θm(θ − 1) + 1, (14)

and ∑

h≥0

∣∣∣∆(h)
m

∣∣∣
3
≤

(
max
h≥0

∣∣∣∆(h)
m

∣∣∣
)2 ∑

h≥0

∣∣∣∆(h)
m

∣∣∣ ≤ m|∆m|. (15)

By construction
∑

h≥0

∑

k∈∆
(h)
m

p(νkx) =
∑

k∈∆m

p(νkx), m ≥ 1,

and since we have assumed ‖p‖ = 1, we also have

|aj | ≤
√

2, 1 ≤ j ≤ d, (16)

and
∑

k∈∆m

d∑

j=1

a2
j

2
= |∆m|, m ≥ 1. (17)

Finally, we have for m ≥ 1

|βm| ≤
∑

h≥0

∑

k1,k2∈∆
(h)
m

d∑

j1,j2=1

1 ≤ d2

(
max
h≥0

|∆(h)
m |

)∑

h≥0

∣∣∣∆(h)
m

∣∣∣ ≤ d2√m|∆m|. (18)

Lemma 7 Let m,n ≥ 1, and assume that

m ≤ n− dlogθ ne. (19)
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Then for sufficiently large m,n we have
∥∥∥ϕm,n(s, t)− e−(s2+t2)/2

∥∥∥ ≤ 1
m4 + n4

provided
|s| ≤ m1/8 |t| ≤ n1/8.

Proof: Using
eix = (1 + ix)e−x2/2+w(x), |w(x)| ≤ |x|3, (20)

we have

eisηm =
∏

h≥0

exp


 is

∑
k∈∆

(h)
m

∑d
j=1 aj cos(2πjνkx)

√
|∆m|




= αm(s) exp




∑

h≥0

−s2
(∑

k∈∆
(h)
m

∑d
j=1 aj cos(2πjνkx)

)2

2|∆m|


×

× exp


∑

h≥0

w


s

∑
k∈∆

(h)
m

∑d
j=1 aj cos(2πjνkx)

√
|∆m|





 .

Since

∑

h≥0


 ∑

k∈∆
(h)
m

d∑

j=1

aj cos(2πjνkx)




2

=
∑

h≥0

∑

k1,k2∈∆
(h)
m

d∑

j1,j2=1

aj1aj2

2
(cos(2π(j1νk1 + j2νk2)x) + cos(2π(j1νk1 − j2νk2)x))

=
∑

h≥0

∑

k1,k2∈∆m

d∑

j1,j2=1

aj1aj2

2
cos(2π(j1νk1 + j2νk2)x)

|∆m|+
∑

h≥0

∑

k1,k2∈∆m

d∑

j1,j2=1︸ ︷︷ ︸
(k1,j1) 6=(k2,j2)

aj1aj2

2
cos(2π(j1νk1 − j2νk2)x)

= |∆m|+ βm,

where we used (17), we can write

eisηm = αm(s) exp
(
−s2

2

(
1 +

βm

|∆m|
)

+ wm(s)
)

, (21)

where

wm(s) =
∑

h≥0

w


s

∑
k∈∆

(h)
m

∑d
j=1 aj cos(2πjνkx)

√
|∆m|


 ,

11



and by (15), (16), (20),

|wm(s)| ≤

∣∣∣∣∣∣∣

∑

h≥0

s3d323/2
∣∣∣∆(h)

m

∣∣∣
3

|∆m|3/2

∣∣∣∣∣∣∣
≤ 3 |s|3 d3m|∆m|−1/2. (22)

Note further that

|αm(s)| ≤
∏

h≥0


1 +

s2
(∑

k∈∆
(h)
m

∑d
j=1 aj cos(2πjνkx)

)2

|∆m|




1/2

≤ exp




∑

h≥0

s2
(∑

k∈∆
(h)
m

∑d
j=1 aj cos(2πjνkx)

)2

2|∆m|




= exp
(

s2

2

(
1 +

βm

|∆m|
))

. (23)

Finally we observe, that for m ≤ n− dlogθ ne

E (αm(s)αn(t))

=
∫ 1

0

∏

h≥0


1 +

is
∑

k∈∆
(h)
m

∑d
j=1 aj cos(2πjνkx)

√
|∆m|


×

×
∏

h≥0


1 +

it
∑

k∈∆
(h)
n

∑d
j=1 aj cos(2πjνkx)

√
|∆n|


 dx

= 0, (24)

since by the construction of the sets ∆m, ∆n and ∆(h)
m , ∆(h)

n we have for any 1 ≤
j1, j2 ≤ d

j1νk1

j2νk2

6∈
[
1
2
, 2

]
if k1 ∈ ∆(h1)

m , k2 ∈ ∆(h2)
m for some h1 6= h2

or k1 ∈ ∆(h1)
n , k2 ∈ ∆(h2)

n for some h1 6= h2,

and also

j1νk1

j2νk2

6∈
[
1
2
, 2

]
if k1 ∈ ∆(h1)

m , k2 ∈ ∆(h2)
n for some h1, h2 ≥ 0.

In fact, if e.g. k1 ∈ ∆(h1)
m , k2 ∈ ∆(h2)

m for h1 < h2, then necessarily

j1nk1

j2nk2

≤ dnk1

nk1+dlogq(2d)e
< dqlogq(2d) ≤ 1/2,

12



and for k1 ∈ ∆m, k2 ∈ ∆n we have

j1nk1

j2nk2

6∈
[
1
2
, 2

]
since

nk1

nk2

6∈
[

1
2d

, 2d

]

by (12) and (19). Thus by (21), (23), (24)
∣∣∣ϕm,n(s, t)− e−s2/2−t2/2

∣∣∣

=
∣∣∣∣E

(
αm(s)αn(t) exp

(
−s2

2

(
1 +

βm

|∆m|
)

+ wm(s)
)
×

× exp
(
− t2

2

(
1 +

βn

|∆n|
)

+ wn(t)
))

− e−s2/2−t2/2

∣∣∣∣

=
∣∣∣∣E

(
αm(s)αn(t)

(
exp

(
−s2

2

(
1 +

βm

|∆m|
)

+ wm(s)
)
×

× exp
(
− t2

2

(
1 +

βn

|∆n|
)

+ wn(t)
)
− e−s2/2−t2/2

))∣∣∣∣

≤ E
(
|αm(s)αn(t)|

∣∣∣∣exp
(
−s2

2

(
1 +

βm

|∆m|
)

+ wm(s)
)
×

× exp
(
− t2

2

(
1 +

βn

|∆n|
)

+ wn(t)
)
− e−s2/2−t2/2

∣∣∣∣
)

≤ E
∣∣∣∣ewm(s)+wn(t) − exp

(
s2βm

2|∆m| +
t2βn

2|∆n|
)∣∣∣∣

≤ E
∣∣∣ewm(s)+wn(t) − 1

∣∣∣ + E
∣∣∣∣e

(
s2βm

2|∆m| +
t2βn

2|∆n|
)
− 1

∣∣∣∣ . (25)

By (22) we have

E
∣∣∣ewm(s)+wn(t) − 1

∣∣∣ ≤ e
(
3|s|3d3m|∆m|−1/2 + 3|t|3d3n|∆n|−1/2

)
− 1. (26)

The function βm is a sum of at most 2
√

m|∆m| trigonometric functions. The co-
efficients of these functions are bounded by some constant C∗ by the Diophantine
condition in Theorem 1. Using (18), this implies

‖βm‖2 ≤ 2C∗√m|∆m|,
P

(
|βm| > |∆m|2/3

)
≤ 2C∗√m

|∆m|−1/3
,

E exp
(

s2βm

|∆m|
)

≤ exp
(
s2|∆m|−1/3

)
+ exp

(
s2d2√m

) 2C∗m
|∆m|−1/3

(27)

and therefore

E
∣∣∣∣exp

(
s2βm

2|∆m| +
t2βn

2|∆n|
)
− 1

∣∣∣∣

≤
(
E exp

(
s2βm

|∆m|
))1/2 (

E exp
(

t2βn

|∆n|
))1/2

− 1 (28)

13



≤
((

exp
(
s2|∆m|−1/3

)
+ exp

(
s2d2√m

) 2C∗m
|∆m|−1/3

)
×

×
(

exp
(
t2|∆n|−1/3

)
+ exp

(
t2d2√n

) 2C∗n
|∆n|−1/3

))1/2

− 1 (29)

Now (25), (26), (29) and some elementary calculations show that for sufficiently large
m,n, under the additional condition

|s| ≤ m1/8, |t| ≤ n1/8

we have ∣∣∣ϕm,n(s, t)− e−s2/2−t2/2
∣∣∣ ≤ 1

m4 + n4
,

which proves the lemma. ¤

Lemma 8 For sufficiently large m we have
∣∣∣Eeisηm − e−s2/2

∣∣∣ ≤ m−4,

for all s ∈ [−m1/8,m1/8].

Proof: This lemma is an one-dimensional version of Lemma 7 and can be shown in
exactly the same way.

Lemma 9 Let B be a finite set of positive integers. Then if |B| is sufficiently large,
we can divide B into two disjoint sets B1, B2, such that

|B2| ≤ C1|B|/
√

log |B|

for some constant C1, and
∣∣∣∣∣∣
E exp


is|B1|−1/2

∑

k∈B1

p(nkx)


− e−s2/2

∣∣∣∣∣∣
≤ (log |B1|)−4,

for |s| ≤ (log |B|)1/8.

Proof: This lemma can be shown in the same way as the previous two lemmas
(or exactly in the same way as [5, Lemma 4.3]).

Lemma 10 ([23, Lemma 2]) Let B be a finite set of positive integers. Then for
any λ > 0 satisfying

4λ|B|1/3 < 1

we have ∫ 1

0
exp

(∑

k∈B

p(nσ(k)x)

)
dx ≤ C2e

C3λ2|B|,

where C2, C3 are positive constants.

14



Next we prove some Berry-Esseen type lemmas needed for our proof. We redefine
the random variables η1, η2, . . . on a larger probability space (Ω,A, P̂ ) (we write
η̂1, η̂2, . . . for the redefined r.v.’s), such that their finite dimensional distributions
remain unchanged, and such that on the new probability space there exists a sequence
ĥ1, ĥ2, . . . of i.i.d. random variables satisfying

• ĥm ∼ N (0, τm), where τm =
1√

8 log log log θm
, m ≥ 1

• ĥm and ηm are independent, m ≥ 1,

• the two-dimensional random variables (ĥm, ĥn) and (η̂m, η̂n) are independent,
m 6= n, m, n ≥ 1

Lemma 11 Define

zm =
√

(2− ε)(θ/(θ − 1)) log log θm

and

Am =
{

ω ∈ Ω : η̂m(ω) + ĥm(ω) > zm

}
, m ≥ 1.

Then
∣∣∣P̂ (AmAn)−R

(
(1 + τm)−1zm

)
R

(
(1 + τn)−1zn

)∣∣∣
≤ (log m)2(log n)2

(
m−4 + n−4

)

for sufficiently large m,n, provided m ≤ n− dlog ne. Here

R(u) = 1− (2π)−1/2

∫ u

−u
e−s2/2ds, u ≥ 0.

Proof: We define two measures P1, P2 on R2: P1 is the measure induced by
(η̂m, η̂n), and P2 is a two-dimensional standard normal distribution. We apply Lemma
2 with x = z1, y = z2, σ1 = τm, σ2 = τn and

T1 = 8
√

log log θm log log log θm T2 = 8
√

log log θn log log log θn.

Then we get, using the notations from Lemma 2,

|P ∗
1 ([−x, x]× [−y, y])− P ∗

2 ([−x, x]× [−y, y])|
≤ +xy 4T1T2

1
m4 + n4

+xy
(
τ−1
m τn e

(−T 2
1 τ2

1 /2
)

+ τmτ−1
n e

(−T 2
2 τ2

2 /2
))

≤ (log m)2(log n)2
(

1
m4

+
1
n4

)

for sufficiently large m,n (we emphasize that T1 ≤ m1/8, T2 ≤ n1/8 for sufficiently
large m,n, and therefore we can use Lemma 7). Since by construction (η̂m, η̂n) and
(ĥm, ĥn) are independent,

P̂ (AmAn) = 1− (P1 ? H) ([−zm, zm]× [−zn, zn]) = 1− P ∗
1 ([−zm, zm]× [−zn, zn]),

15



and since the random variables ĥm have distribution N (0, τm), we have

1− P ∗
2 ([−zm, zm]× [−zn, zn]) = R

(
(1 + τm)−1zm)

)
R

(
(1 + τn)−1zm

)
.

Summarizing our estimates, we have
∣∣∣P̂ (AmAn)−R

(
(1 + τm)−1zm

)
R

(
(1 + τn)−1zn

)∣∣∣ ≤ (log m)2(log n)2
(

1
m4

+
1
n4

)

for sufficiently large m,n. ¤

Lemma 12 For sufficiently large m

∣∣∣P̂ (Am)−R
(
(1 + τm)−1zm

)∣∣∣ ≤ (log m)2

m4
.

This can be shown like Lemma 11, using Lemma 3 instead of Lemma 2.

Lemma 13 Let

Am =

{
x ∈ (0, 1) :

θm∑

k=1

p(νkx) >
√

(2 + ε) log log θn + 3
√

log log θm

log log log θm

}
, m ≥ 1.

Then for sufficiently large m

P(Am) ≤ R
(√

(2 + ε) log log θm
)

+ 2
(log m)2

m4
.

Proof: This is a consequence of Lemma 4 and Lemma 9. In fact, let

B = {1 ≤ k ≤ θm} .

Then by Lemma 9 there exist sets B1, B2 such that such that

|B2| ≤ C1|B|/
√

log |B|
and ∣∣∣∣E exp

(
is

∑
k∈B1

p(nkx)
|B1|1/2

)
− e−s2/2

∣∣∣∣ ≤
1

(log |B1|)4 ,

for |s| ≤ (log |B|)1/8. We apply Lemma 4 with

T = 8
√

log log θm log log log θm

S =
√

log log θm(log log log θm)−1

σ = τm

x =
√

(2 + ε) log log θm +
√

log log θm (log log log θm)−1

and get

P

{
x ∈ (0, 1) :

θm∑

k=1

p(νkx) >
√

(2 + ε) log log θm + 2
√

log log θm

log log log θm

}

16



≤ 1−
(

1√
2π

∫ √
(2+ε) log log θm

−
√

(2+ε) log log θm

es2/2 ds− 2xT
1

(log |B1|)4
−4xτ−1

m exp
(−T 2τ2

m/2
)− 2 exp

(−S2/(2τ2
m)

))

≤ R
(√

(2 + ε) log log θm
)

+ (log m)2m−4

for sufficiently large m. By Lemma 10

P




∣∣∣∣∣∣
∑

k∈B2

p(nkx)

∣∣∣∣∣∣
> S


 ≤ m−4

for sufficiently large m, and the proof of the lemma is complete. ¤

We are ready now to prove the upper bound in the LIL. We show

Lemma 14

lim sup
N→∞

∣∣∣∑N
k=1 p(nσ(k)x)

∣∣∣
√

2N log log N
≤ 1 a.e.

Proof: By Lemma 13 we have
∑

m≥1

P
(
Am

)
< +∞,

and therefore the Borel-Cantelli lemma implies

lim inf
m→∞

∣∣∣∑θm

k=1 p(nσ(k)x)
∣∣∣

√
(2 + ε)θm log log θm

≤ 1 a.e. (30)

It remains to fill the gaps between θm and θm+1, m ≥ 1. Using Lemma 10 we can
show, e.g. by using the method from [7, Section 4], that

lim sup
m→∞

max
θm≤M≤θm+1

∣∣∣∑M
k=θm p(nσ(k)x)

∣∣∣
√

2(θm+1 − θm) log log(θm+1 − θm)
≤ C4 a.e.,

where C4 may only depend on p and the growth factor q. Combining this with (30)
we have

lim sup
N→∞

∣∣∣∑N
k=1 p(nσ(k)x)

∣∣∣
√

2N log log N

≤ lim sup
m→∞

max
θm≤M≤θm+1

∣∣∣∑M
k=1 p(nσ(k)x)

∣∣∣
√

2θm log log θm

≤ lim sup
m→∞

∣∣∣∑θm

k=1 p(nσ(k)x)
∣∣∣

√
2θm log log θm

+ lim sup
m→∞

max
θm≤M≤θm+1

∣∣∣∑M
k=θm p(nσ(k)x)

∣∣∣
√

2θm log log θm

17



≤ (2 + ε) + C4(θ − 1) a.e.

Since ε > 0 and θ > 1 can be chosen arbitrarily, this concludes the proof of Lemma 14.
¤

Next we prove the lower bound in the LIL.

Lemma 15

lim sup
N→∞

∣∣∣∑N
k=1 p(nσ(k)x)

∣∣∣
√

2N log log N
≥ 1 a.e.

Proof: By Lemma 11 we have

N∑

n=1

N∑

m=1

P̂ (AmAn)

≥ −C5 + 2
N∑

n=1

n−logθ n∑

m=n2/3

(
R

(
(1 + τm)−1zm)

)
R

(
(1 + τn)−1zn

)

+(log m)2(log n)2
1

m4n4

)

≥ −C6 + 2
N∑

n=1

n∑

m=1

R
(
(1 + τm)−1zm)

)
R

(
(1 + τn)−1zn

)

−2
N∑

n=1

n2/3∑

m=1

R
(
(1 + τm)−1zm)

)
R

(
(1 + τn)−1zn

)

−2
N∑

n=1

n∑

m=n−logθ n

R
(
(1 + τm)−1zm)

)
R

(
(1 + τn)−1zn

)

for some positive constants C5 and C6.

In the sequel we will assume that ε and θ are chosen in such a way that there
exists some ρ > 0 such that

(2− ε)(θ/(θ − 1))/2 < 1− ρ.

For given ε this is possible by choosing θ large. Some calculations show that

exp
(
− (

(1 + τm)−1zm + 1
)2

/2
)

≤
√

2π R
(
(1 + τm)−1zm

)

≤ exp
(
− (

(1 + τm)−1zm

)2
/2

)
,

and therefore

(m log θ)−(1+τm)−1(2−ε)(θ/(θ−1))/2

e−(1+τm)−1
√

(2−ε)(θ/(θ−1)) log log θm/2−1/2
(31)
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≤
√

2π R
(
(1 + τm)−1zm

)

≤ (m log θ)−(1+τm)−1(2−ε)(θ/(θ−1))/2,

which implies

N∑

n=1

n2/3∑

m=1

R
(
(1 + τm)−1zm)

)
R

(
(1 + τn)−1zn

)

+
N∑

n=1

n∑

m=n−logθ n

R
(
(1 + τm)−1zm)

)
R

(
(1 + τn)−1zn

)

= o

(
N∑

n=1

n∑

m=1

R
(
(1 + τm)−1zm)

)
R

(
(1 + τn)−1zn

)
)

as m →∞.

Thus

lim inf
N→∞

∑N
n=1

∑N
m=1 P̂ (AmAn)(∑N

m=1 P̂ (Am)
)2 = 1.

Then, by (31), for sufficiently large m

P̂ (Am) ≥ m−1+ρ/2.

Therefore ∞∑

m=1

P̂ (Am) = +∞,

and by Lemma 1 there occur infinitely events Am with probability 1, which implies

lim sup
m→∞

∣∣∣η̂m + ĥm

∣∣∣
√

(2− ε)(θ/(θ − 1)) log log θm
≥ 1 a.s.

Using the classical LIL for i.i.d. random variables we easily get

lim sup
m→∞

∣∣∣ĥm

∣∣∣
√

(2− ε)(θ/(θ − 1)) log log θm
= 0 a.s.,

(recall that τm → 0) and therefore

lim sup
m→∞

|η̂m|√
(2− ε)(θ/(θ − 1)) log log θm

≥ 1 a.s.

This implies the similar result for the original random variables η1, η2, . . . , i.e.

lim sup
m→∞

|ηm|√
(2− ε)(θ/(θ − 1)) log log θm

≥ 1 a.e.

or

lim sup
m→∞

∣∣∑
k∈∆m

p(νkx)
∣∣

√
(2− ε)(θ/(θ − 1))|∆m| log log θm

≥ 1 a.e.
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Using Lemma 10, it is not difficult to show

lim sup
m→∞

∣∣∣∑
k∈∆m\∆m

p(νkx)
∣∣∣

√
(2− ε)(θ/(θ − 1))|∆m| log log θm

= 0 a.e.

and since by (13) and (14)
|∆m|

θm(θ − 1)
→ 1

this implies

lim sup
m→∞

∑θm+1

k=θm p(νkx)√
(2− ε)θm+1 log log θm+1

≥ 1 a.e.

By the results from the previous section,

lim sup
m→∞

∣∣∣∑θm

k=1 p(νkx)
∣∣∣

√
2θm log log θm

≤ 1 a.e.,

and therefore

lim sup
m→∞

∑θm+1

k=1 p(νkx)√
2θm+1 log log θm+1

≥
√

2− ε√
2

− 1√
θ

a.e.

Choosing ε > 0 small and θ > 1 large this proves Lemma 6, and therefore the proof
of Theorem 1 is complete. ¤

To conclude this section, we justify the remark made after the statement of The-
orem 1. Assume there exist integers a 6= 0, b 6= 0, c, such that the Diophantine
equation

ank − bnl = c (32)

has infinitely many solutions (k, l), k 6= l (by an easy observation we can assume
a > 0, b > 0). We will construct a trigonometric polynomial p(x) and a permutation
σ : Z+ → Z+ such that

lim sup
N→∞

∑N
k=1 p(nσ(k)x)√
2N log log N

6= ‖p‖ a.e. (33)

We define
p(x) = cos(2πax) + cos(2πbx).

Let
(k1, l1), (k2, l2), . . .

denote a sequence of solutions of (32), chosen in such a way that

• kj > ki, lj > li for j > i

• ki+1/ki > 2, li+1/li > 2, i ≥ 1
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• ki+1/ki →∞, li+1/li →∞.

Clearly there exists a permutation σ : Z+ → Z+ such that

lim sup
N→∞

∣∣∣∑N
k=1 p(nσ(k)x)

∣∣∣
√

2N log log N
= lim sup

N→∞

∣∣∣∑N/2
i=1 p(nkix) + p(nlix)

∣∣∣
√

2N log log N
(34)

For example, we can construct σ such that for every even N

{σ(k), 1 ≤ k ≤ N} = {ki, 1 ≤ i ≤ N/2− blog10 Nc}
∪ {li, 1 ≤ i ≤ N/2− blog10 Nc}
∪ {1 ≤ k ≤ M} ,

where M is chosen such that the set on the right-hand side really consists of N
elements. Since always M ≤ 2 log N , relation (34) will hold for σ. Thus it suffices to
calculate

lim sup
N→∞

∣∣∣∑N/2
i=1 p(nkix) + p(nlix)

∣∣∣
√

2N log log N
.

Using standard trigonometric identities we have

p(nki
x) + p(nlix)

= cos(2πankix) + cos(2πbnkix) + cos(2πanlix) + cos(2πbnlix)
= 2 cos(π(anki + bnli)x) cos(π(anki − bnli)x) + cos(2πbnkix) + cos(2πanlix)
= 2 cos(πcx) cos (π(anki

+ bnli)x) + cos(2πbnki
x) + cos(2πanlix).

Clearly, a sequence consisting of the elements

(anki + bnli)/2, anli , bnki , i ≥ 1,

arranged in increasing order, is a lacunary sequence for i sufficiently large. Using the
methods of [1] we can show

lim sup
N→∞

∑N
k=1 2 cos(πcx) cos(π(anki + bnli)x) + cos(2πbnkix) + cos(2πanlix)√

2N log log N

=
√

2 cos2(πcx) + 1 a.e.

and therefore

lim sup
N→∞

∣∣∣∑N/2
i=1 p(nkix) + p(nlix)

∣∣∣
√

2N log log N
=

√
cos2(πcx) + 1/2 a.e.

=

√
cos(2πcx) + 2

2
a.e.,

which verifies (33).
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[18] Y. Peres and W. Schlag. Two Erdős problems on lacunary sequences: chromatic
number and Diophantine approximation. Bull. Lond. Math. Soc., 42(2):295–300,
2010.

22



[19] W. Philipp. Limit theorems for lacunary series and uniform distribution mod 1.
Acta Arith., 26(3):241–251, 1974/75.
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