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Abstract

The purpose of this paper is to develop the likelihood ratio test for the structural change

of an AR model to a threshold AR model. It is shown that the log-likelihood ratio test

converges to the maxima of a two-parameter Gaussian process in distribution. This limiting

distribution is novel and we tabulate the critical values. Some simulations are carried out to

examine the finite-sample performance of this test statistic. This paper also includes a weak

convergence of a two-parameter marked empirical process, which is of independent interest.

Keywords: AR model, threshold AR model, likelihood ratio test, structural change, marked

empirical process

1 Introduction

Many events, like the great depression, oil price shocks, and abrupt policy changes, may cause

a change in the structure of time series models used in economics and finance. When the

model changes, the original model may perform poorly, either for forecasting purposes or for the

purpose of analyzing the effect of policy changes. How to quickly and accurately detect such a

change has been a challenging issue to econometricians and statisticians for a long time. The

earliest references go back to Chow (1960) and Quandt (1960). For a survey on the history and

early results, we refer to Csörgő and Horváth (1997). Davis, Huang and Yao (1995) considered

the problem of testing whether or not a change has occurred in the parameter values of AR

models. Bai, Lumsdaine, and Stock (1998) studied the change point tests for I(0) and I(1)

multivariate time series. Bai and Perron (1998) considered issues related to multiple structural

changes, occurring at unknown dates, in the linear regression model. They proposed a procedure

which tests the null hypothesis of no change against the alternative of at least one change.

Bai (1999) proposed a likelihood-ratio-type test for multiple structural changes in regression
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models. His model allows for lagged-dependent variables and trending regressors. He showed

that asymptotic critical values can be obtained analytically. See also Hansen (2003), Yao and

Davis (1986), Horváth (1993, 1995). Ling (2007) developed a general asymptotic theory on

the Wald test for change-points in a general class of time series models under no change-point

hypothesis and applied the results for the long-memory fractional ARIMA model.

All the test statistics in the previous papers are for the change of parameters in the models,

while the form of the model is not changed under both null and alternative hypotheses. However,

the form of the model may be changed in practice. In fact, it is not unusual to see that the

forms of fitted models to different periods of a time series are different. For example, Li and Lam

(1995) used the threshold AR-ARCH models to fit 11 non-overlapping two-year period Hong

Kong Hang Seng index from 1970 to 1991, but Wong and Li (1997) found that two out of 11

periods should follow the AR-ARCH models. When the form of models is changed, the likelihood

ratio test (LRT) for the standard change-point problem is not locally most powerful any more.

How to efficiently detect the change of the structural forms of the time series models is a new

issue. This paper is the first step for this issue. We study the LRT for testing the structural

change of an AR model to a threshold AR model. The test statistic is shown to converge the

maxima of a two-parameter Gaussian process in distribution. This limiting distribution is novel

and never appears in the literature before. The critical values of the test statistic are tabulated.

Some simulations are carried out to examine the finite-sample performance of this test statistic.

This paper also includes a weak convergence of a two-parameter marked empirical process, which

is of independent interest.

This paper is organized as follows. Section 2 presents the test statistic and its limiting

distribution. Section 3 reports simulation results and gives one real data analysis. Section 4

gives the proof of our main results. Section 5 studies the weak convergence of a two-parameter
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marked empirical process.

2 Likelihood Ratio Test

We consider the null hypothesis

H0 : yi = �yi−1 + "i, if i = 1, . . . , n

against the alternative

H1 : there is an integer 1 ≤ k∗ < n such that

yi =

⎧⎨⎩
�1yi−1 + "i, if i = 1, . . . , k∗,

�1yi−1 + �2yi−1I{yi−1 ≤ r}+ "i, if i = k∗ + 1, . . . , n,

where ∣�∣ < 1, r is called the threshold parameter and the errors, "i, are independent identically

distributed random variables with mean 0 and variance �2 > 0. Under H0, the quasi-likelihood

function can be written as

Ln(�, �2) =

(
1

2��2

)n/2
exp

{
− 1

2�2

n∑
i=1

(yi − �yi−1)2

}
.

Under H1, assuming that k = k∗, the time of change, and r, the threshold, are both known, the

quasi-likelihood function can be written as

L1n(�1,�2, �
2)

=

(
1

2��2

)n/2
exp

{
− 1

2�2

[
k∑
i=1

(yi − �1yi−1)2 +

n∑
i=k+1

(yi − �1yi−1 − �2yi−1I{yi−1 ≤ r})2

]}
.

We should reject H0 in favor of H1 if the likelihood ratio

sup
�,�

Ln(�, �2)
/

sup
�1,�2,�

L1n(�1, �2, �
2)

is small. It is well known that

sup
�,�

Ln(�, �2) = Ln(�̂n, �̂
2
n) =

(
1

2��̂2
n

)n/2
exp(−n/2),
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where

�̂n =

(
n∑
i=1

y2
i−1

)−1( n∑
i=1

yi−1yi

)

and

�̂2
n =

1

n

n∑
i=1

(yi − �̂nyi−1)2

(cf. Brockwell and Davis (1991)). Since

k∑
i=1

(yi − �1yi−1)2 +
n∑

i=k+1

(yi − �1yi−1 − �2yi−1I{yi−1 ≤ r})2

=
n∑
i=1

(yi − �1yi−1 − �2yi−1I{yi−1 ≤ r, i > k})2 ,

we get that for any fixed k and r the quasi-maximum likelihood estimators �̂1n(k, r), �̂2n(k, r),

�̂2
n(k, r) are given by

[
�̂1n(k, r), �̂2n(k, r)

]′
=

(
n∑
i=1

Ai−1A
′
i−1

)−1( n∑
i=1

Ai−1yi

)
,

�̂2
n(k, r) =

1

n

n∑
i=1

(
yi − �̂1n(k, r)yi−1 − �̂2n(k, r)yi−1I{yi−1 ≤ r, i > k}

)2
,

where Ai−1 = (1, I{yi−1 ≤ r, i > k})′yi−1 (x′ denotes the transpose of vectors and matrices).

Thus we get

sup
�1,�2,�

L1n(�1, �2, �
2) = L1n(�̂1n(k, r), �̂2n(k, r), �̂2

n(k, r)) =

(
1

2��̂2
n(k, r)

)n/2
exp(−n/2).

Hence, for any fixed k and r, -2 times the log-likelihood ratio is

Tn(k, r) = n
(
log �̂2

n − log �̂2
n(k, r)

)
.

Next we consider the asymptotic behavior of Tn([nt], r), 0 ≤ t ≤ 1,−∞ < r <∞, where [nt]

denotes the integer part of nt. Before we state our result, we need some further notations. Let

W (t, u), 0 ≤ t, u <∞ denote a two-parameter Wiener process, i.e. W is a continuous Gaussian

process with EW (t, u) = 0, E(W (t, u)W (s, v)) = min(t, s) min(u, v). For the existence and
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basic properties of the two-parameter Wiener process we refer to Csörgő and Révész (1981). Let

H(r) = E(y2
0I{y0 ≤ r}) and H = limr→∞H(r) = Ey2

0. Now we define the following Gaussian

process

U(t, x) = x(1− t)W (1, H)− [W (1, x)−W (t, x)]H.

Theorem 2.1. We assume that

{"i} are independent, identically distributed random variables, (2.1)

E"0 = 0, E"2
0 = �2 > 0, E∣"0∣6+� <∞ with some � > 0

and

∣P (a ≤ y0 ≤ b)∣ ≤ C∣a− b∣� with some C and 0 < � ≤ 1. (2.2)

If H0 holds, then

Tn([nt], r) =⇒ (U(t,H(r)))2

(1− t)H(r)(H − (1− t)H(r))H
in D([t1, t2]× [r1, r2]), (2.3)

for any 0 < t1 < t2 < 1 and r1 < r2 satisfying 0 < H(r1) < H(r2) < H.

It is easy to see that the distribution of the limit on the right hand side of (2.3) is �2(1) for

any fixed t and r. This is natural, since Tn([nt], r) is -2 times the log-likelihood ratio test for

any fixed t and r. The time of change and the threshold are unknown so it is natural to consider

the supremum functional of Tn([nt], r).

Corollary 2.1. If the conditions of Theorem 2.1 are satisfied, then

max
nt1≤k≤nt2

sup
r1≤r≤r2

Tn(k, r)
D→ sup

1−t2≤s≤1−t1
sup

u1≤u≤u2

(suW (1, 1)−W (s, u))2

su(1− su)
. (2.4)

where u1 = H̄(r1) and u2 = H̄(r2) with H̄(x) = H(x)/H.

Corollary 2.1 leads to distribution free tests. First we need an estimator for H̄(x). Let

H̄n(x) =

n∑
t=1

y2
t−1I{yt−1 ≤ x}

n∑
t=1

y2
t−1

.
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Clearly, H̄(x) and the empirical counterpart H̄n(x) are distribution functions so by H̄−1
n (x) we

denote the empirical quantile function, the generalized inverse of H̄n(x).

Corollary 2.2. If the conditions of Theorem 2.1 are satisfied and the distribution function of

y0 is strictly increasing on its support, then for all 0 < t1 < t2 < 1 and 0 < u1 < u2 < 1 we have

max
nt1≤k≤nt2

sup
r̂1≤r≤r̂2

Tn(k, r)
D→ sup

1−t2≤s≤1−t1
sup

u1≤u≤u2

(suW (1, 1)−W (s, u))2

su(1− su)
,

where r̂1 = H̄−1
n (u1) and r̂2 = H̄−1

n (u2) with H̄(x) = H(x)/H.

It is natural to ask if Corollaries 2.1 and 2.2 remain true if the suprema are taken for all

possible values of the arguments. The answer is no, since according to the law of iterated

logarithm for W (cf. Csörgő and Révész (1981)) we have that

P

{
sup

0<s<1
sup

0<u<1

(suW (1, 1)−W (s, u))2

su(1− su)
=∞

}
= 1. (2.5)

So truncation is needed or we have to work with weighted statistics. Since one term Taylor

expansion yields that, under H0, Tn(k, r) is equivalent with n(�̂2
n(k, r)− �̂2

n)/�̂2
n, we consider the

weighted version of n(�̂2
n(k, r)− �̂2

n)/�̂2
n:

Rn(k, r) =
1

n2�̂2
n

(Zn(ZnSn(k, r)− S2
n(k, r)))(�̂2

n − �̂2
n(k, r)),

where

Zn =
n∑
i=1

y2
i−1 and Sn(k, r) =

n∑
i=k+1

y2
i−1I{yi−1 ≤ r}.

Theorem 2.2. If H0, (2.1) and (2.2) hold, then

Rn(nt, r) =⇒ (U(t,H(r)))2 in D([0, 1]× [−∞,∞]).

Theorem 2.2 provides a statistic which is distribution free under the null hypothesis.

7



Corollary 2.3. If the conditions of Theorem 2.2 are satisfied, then

R̄n =

(
n

Zn

)3

max
1≤k≤n

sup
−∞<r<∞

Rn(k, r)
D→ sup

0≤s≤1
sup

0≤u≤1
(suW (1, 1)−W (s, u))2.

The two-parameter process W (t, s)− stW (1, 1) is similar to W ∗(u)− uW ∗(1), the represen-

tation of the Brownian bridge in terms of W ∗, a Wiener process (standard Brownian motion). If

t = 1, then W (1, s)− sW (1, 1) is a Brownian bridge. Choosing k = 1 in Rn(k, r), we are testing

the AR(1) null hypothesis against a threshold AR(1) alternative. This problem was studied by

Chan (1990) and Chan and Tong (1990) and maxr Rn(1, r) is the weighted version of the likeli-

hood ratio test in their paper. More references on testing the threshold models can be found in

Wong and Li (1997, 2000) and Ling and Tong (2005). If s = 1, then W (t, 1)−tW (1, 1) is again a

Brownian bridge. Rejecting for large values of maxk Rn(k,∞) we are rejecting the AR(1) model

null hypothesis in favor of the change in the parameter of the autoregressive process alternative.

Our weighted test is designed to detect if the model changed into a threshold autoregression at

an unknown time.

3 Simulations and an Application

In this section we study the finite sample behavior of the asymptotically distribution free test

statistic R̄n of Corollary 2.3. Corollary 2.3 provides the asymptotic distribution of the test

statistic under H0. Under H0 the value of � is arbitrary with ∣�∣ < 1 and the errors "i are i.i.d.

random variables with finite variance. We restrict ourselves to the case of normally distributed

errors with mean 0 and variance 1 in our study. We will consider five different cases, � ∈

{−0.5,−0.25, 0, 0.25, 0.5}. We also want to check the test statistic’s performance under different

alternative hypotheses. This leads us to the values of �2 ∈ {−0.75 − �1,−0.5 − �1, . . . , 0.75 −

�1} ∪ {−0.2,−0.15, . . . , 0.2} and �1 ∈ {−0.5,−0.25, 0, 0.25, 0.5}. We note that each case with
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�2 = 0 corresponds to the null hypothesis case.

The threshold r can be arbitrary too. However for our simulations we fix its value at 0. In

many practical situations this is a natural choice. Obviously the time of change k∗ will influence

the results, therefore we study the three cases k∗ ∈ {n/4, n/2, 3n/4} for a given sample size n.

We will use n ∈ {200, 400}. Our main interest lies in empirical power curves for each setting of n,

k∗ and �1, showing us proportions of rejection of the null hypothesis under different alternative

hypotheses (depending on the value of �2) for a fixed significance level 1− �.

The asymptotic distribution of our test statistic is not known in a closed form. Thus we can

only use Monte Carlo simulations to get the asymptotic critical values. We approximate the

two-parameter Wiener process on a 500 by 500 grid with partial sums of i.i.d. normal variables.

Repeating the procedure N = 10000 times we found the empirical quantiles as shown in Table 1.

Using the values in Table 1 we can construct the above described empirical power curves as

shown in Figure 1. For each combination of k∗ and �1 we show the curves for both values of

n ∈ {200, 400} corresponding to � = 0.05.

We note that in all 15 situations the observed significance level of the proposed test under

the null hypothesis is close to 1−� = 0.95 for sample sizes n = 400, while in the case of n = 200

it is slightly larger. The differences in the plots concerning the position of the change (for fixed

�1) reveal an interesting property. Namely, the test generally seems to work better for early

changes, in our test scenario k∗ = n/4. The deterioration of the power is especially obvious

in the late change k∗ = 3n/4 when �1 > 0. The increase in the power curves is slow when

�1 > 0, k∗ = 3n/4 and �2 tends to −1. This behavior might be explained by the fact that the

alternative hypothesis only really shows a change if the values fall below r = 0. Thus the test

statistic seems to need considerably more time after the change to detect H1.

The influence of the value of �1 on the power is quite small. While the behavior of the
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test statistic with negative �1 seems to be slightly better, the differences are not essential. We

observe that for negative �1 the power curves corresponding to change-points k∗ = n/4 and

k∗ = n/2 are nearly the same.

Now we study two data sets. Balcombe et al. (2007) models prices of agricultural products

by threshold AR(1) models. Our first sample consists of monthly average corn prices and the

second sample consists of monthly average soybeans prices achieved by farmers in Illinois from

January 1960 until November 20081. The prices are given in dollars per bushel. The sample size

is 587. Figure 2 shows the two time series.

We are interested in the relative prices changes, thus for given prices yj we study xj defined

by

xj =
yj − yj−1

yj−1
≈ log

(
yj
yj−1

)
.

To check if the data shows an indication of changing from an AR(1) to a threshold AR(1) model

we use R̄n of Corollary 2.3. The values of the test statistic R̄n are 5.039 (corn) and 5.861

(soybeans), so using the critical values in Table 1 we reject the null hypothesis in both cases at

the level � = 0.01.

The location of the maximum of supr Rn(k, r) indicates that the changes occurred around

July 1971 (corn) and October 1974 (soybeans). Our findings are summarized in Table 2.

Figure 3 shows the two time series of relative price changes together with the estimated

change-points and thresholds. Note that for the soybeans data the model suggests that the

observations xj are nearly independent if j ≤ k∗. To check the performance of our model

we plot the residuals in Figure 4. The plots indicate that our model describes the data sets.

Using the Ljung-Box test on the residuals we could not reject that the residuals are essentially

independent.

1The data sets are available at http://www.farmdoc.uiuc.edu/manage/pricehistory/price history.html.
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4 Proofs

The first lemma provides a simple representation for the difference between the estimated vari-

ances under the null and the change in the structure at time k alternative.

Lemma 4.1. For any k and r we have

n
(
�̂2
n − �̂2

n(k, r)
)

(4.1)

=

(
n∑
i=1

Ai−1"i

)′( n∑
i=1

Ai−1A
′
i−1

)−1( n∑
i=1

Ai−1"i

)
−

(
n∑
i=1

y2
i−1

)−1( n∑
i=1

yi−1"i

)2

and

n
(
�̂2
n − �̂2

n(k, r)
)

=

(
Sn(k, r)

n∑
i=1

yi−1"i − Zn
n∑

i=k+1

yi−1"iI{yi−1 ≤ r}

)2

Zn(ZnSn(k, r)− S2
n(k, r))

. (4.2)

Proof: The proof of (4.1) can be found, for example, in Seber and Lee (2003). Using the

definition of At−1, (4.2) follows from (4.1) via long but elementary calculations.

Lemma 4.2. If the conditions of Theorem 2.1 are satisfied, then

1

n
Zn → Ey2

0 a.s. (4.3)

and

max
1≤k≤n

sup
−∞<r<∞

∣∣∣∣ 1nSn(k, r)−
(

1− k

n

)
E(y2

0I{y0 ≤ r})
∣∣∣∣ P→ 0. (4.4)

Proof: The ergodic theorem implies (4.3). Next we show that

max
1≤k≤n−n�

sup
−∞<r<∞

∣∣∣∣ 1nSn(k, r)−
(

1− k

n

)
E(y2

0I{y0 ≤ r})
∣∣∣∣→ 0 a.s. (4.5)

for all 0 < � < 1. Let T > 0. Clearly,

sup
T≤r<∞

∣Ey2
0I{y0 ≤ r} − Ey2

0∣ = Ey2
0I{y0 > T}
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and

sup
−∞<r≤−T

Ey2
0I{y0 ≤ r} = Ey2

0I{y0 ≤ −T}

hold. Similarly we find

sup
T≤r<∞

n∑
i=k+1

y2
0I{y0 > r} =

n∑
i=k+1

y2
0I{y0 > T}

and

sup
−∞<r≤−T

n∑
i=k+1

y2
0I{y0 ≤ r} =

n∑
i=k+1

y2
0I{y0 ≤ −T}.

Hence by the ergodic theorem

lim sup
n→∞

max
1≤k≤n−n�

sup
−∞<r≤−T

∣∣∣∣ 1nSn(k, r)−
(

1− k

n

)
E(y2

0I{y0 ≤ r})
∣∣∣∣

≤ 2E(y2
0I{y0 ≤ −T})

and

lim sup
n→∞

max
1≤k≤n−n�

sup
T≤r<∞

∣∣∣∣ 1nSn(k, r)−
(

1− k

n

)
E(y2

0I{y0 ≤ r})
∣∣∣∣

≤ 2E(y2
0I{y0 ≥ T}).

By (2.2) we have that Ey2
0I{y0 ≤ r} is a continuous function, so the ergodic theorem with

Kaczor and Nowak (2001, p. 85) yields for all T > 0 that

max
1≤k≤n−n�

sup
−T≤r≤T

∣∣∣∣ 1nSn(k, r)−
(

1− k

n

)
E(y2

0I{y0 ≤ r})
∣∣∣∣→ 0 a.s.

Since we can choose T as large as we wish, (4.5) is proven.

Due to stationarity and the ergodic theorem we have

1

n
max

n−n�≤k≤n
Sn(k, r) ≤ 1

n

n∑
i=n−[n�]

y2
i−1

D
=

1

n

[n�]+1∑
i=1

y2
i−1 → �Ey2

0 a.s.

Since � > 0 can be chosen as small as possible, (4.4) is proven.
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Lemma 4.3. If the conditions of Theorem 2.1 are statisfied, then

1

n3/2

⎛⎝Sn([nt], r)
n∑
i=1

yi−1"i − Zn
n∑

i=[nt]+1

yi−1"iI{yi−1 ≤ r}

⎞⎠ =⇒ �U(t,H(r)) (4.6)

in D([0, 1]× [−∞,∞]).

Proof: The result follows immediately from Theorem 5.1 (proved in Section 5) and Lemma 4.2.

Lemma 4.4. If the conditions of Theorem 2.1 are satisfied, then

�̂2
n

P−→ �2 (4.7)

and

max
n�≤k≤n−n�

max
r1≤r≤r2

∣�̂2
n(k, r)− �2∣ P−→ 0 (4.8)

for all 0 < � < 1 and r1 < r2 satisfying 0 < H(r1) ≤ H(r2) < 1.

Proof: The proof of (4.7) can be found, for example, in Brockwell and Davis (1991). By (4.2)

and Lemmas 4.2 and 4.3 we have that

max
n�≤k≤n−n�

max
r1≤r≤r2

∣�̂2
n(k, r)− �̂2

n∣
P−→ 0

for all 0 < � < 1 and r1 < r2 satisfying 0 < H(r1) ≤ H(r2) < 1 and therefore (4.8) follows from

(4.7).

Proof of Theorem 2.1: Using a two-term Taylor expansion we have that

n(log �̂2
n − log �̂2

n(k, r)) =
1

�̂2
n

n(�̂2
n − �̂2

n(k, r)) +
1

2�2
n(k, r)

n(�̂2
n − �̂2

n(k, r))2,

where �n(k, r) is between �̂2
n(k, r) and �̂2

n. Lemmas 4.2, 4.3 and (4.2) yield that

n(�̂2
n − �̂2

n([nt], r)) =⇒ �2 (U(t,H(r)))2

(1− t)H(r)(H − (1− t)H(r))H
(4.9)
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in D([t1, t2]× [r1, r2]). It follows from Lemma 4.4 that

max
n�≤k≤n−n�

max
r1≤r≤r2

1

�2
n(k, r)

= OP (1),

and therefore (4.9) implies

max
n�≤k≤n−n�

max
r1≤r≤r2

1

�2
n(k, r)

n(�̂2
n − �̂2

n(k, r))2 = OP

(
1

n

)
.

Now (4.7) and (4.9) yield Theorem 2.1.

Proof of Corollary 2.1: Theorem 2.1 implies that

max
nt1≤k≤nt2

sup
r1≤r≤r2

Tn(k, r)
D→ sup

t1≤t≤t2
sup

r1≤r≤r2

(U(t,H(r)))2

(1− t)H(r)(H − (1− t)H(r))H
.

According to the scale transformation of the two-parameter Wiener process for any S > 0

{S−1/2W (t, Ss), 0 ≤ t, s} D= {W (t, s), 0 ≤ t, s}, (4.10)

which shows that with H̄(r) = H(r)/H

sup
t1≤t≤t2

sup
r1≤r≤r2

(U(t,H(r)))2

(1− t)H(r)(H − (1− t)H(r))H

= sup
t1≤t≤t2

sup
r1≤r≤r2

(H(r)(1− t)W (1, H)− (W (1, H(r))−W (t,H(r)))H)2

(1− t)H(r)(H − (1− t)H(r))H

D
= sup

t1≤t≤t2
sup

r1≤r≤r2

(
H̄(r)(1− t)W (1, 1)− (W (1, H̄(r))−W (t, H̄(r))

)2
H3

(1− t)H̄(r)(1− (1− t)H̄(r))H3

= sup
t1≤t≤t2

sup
u1≤u≤u2

((1− t)uW (1, 1)− (W (1, u)−W (t, u)))2

(1− t)u(1− (1− t)u)
,

where u1 = H̄(r1) and u2 = H̄(r2). Computing the covariance functions, one can easily verify

that

{W (1, s)−W (t, s), 0 ≤ t ≤ 1, 0 ≤ s <∞} D= {W (1− t, s), 0 ≤ t ≤ 1, 0 ≤ s <∞}, (4.11)

which immediately implies

sup
t1≤t≤t2

sup
u1≤u≤u2

((1− t)uW (1, 1)− (W (1, u)−W (t, u)))2

(1− t)u(1− (1− t)u)

D
= sup

1−t2≤s≤1−t1
sup

u1≤u≤u2

(suW (1, 1)−W (s, u))2

su(1− su)
.
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The proof of Corollary 2.2 is based on the following lemma.

Lemma 4.5. If the conditions of Corollary 2.2 are satisfied, then

sup
−∞<r<∞

∣H̄n(r)− H̄(r)∣ → 0 a.s. (4.12)

and

sup
H̄(r1)≤t≤H̄(r2)

∣H̄−1
n (t)− H̄−1(t)∣ → 0 a.s. (4.13)

for all 0 < H̄(r1) < H̄(r2) < 1.

Proof: The ergodic theorem yields that for any r

H̄n(r) → H̄(r) a.s. (4.14)

The limit H̄(r) is bounded, monotone and continuous, so standard arguments show that (4.14)

implies (4.12). By (4.12) we have

sup
0≤u≤1

∣H̄n(H̄−1(u))− u∣ → 0 a.s. (4.15)

Using Horváth (1984) (cf. also Csörgő and Horváth (1993)) we conclude from (4.15) that

sup
0≤u≤1

∣H̄(H̄−1
n (u))− u∣ → 0 a.s. (4.16)

Since H̄ is strictly increasing and continous, H̄−1 is a continous strictly increasing one-to-one

mapping, and therefore (4.16) implies (4.13).

Proof of Corollary 2.2: It is an immediate consequence of Corollary 2.1 and Lemma 4.5.

Proof of Theorem 2.2: By Lemma 4.1 we have that

Rn(k, r) =
1

n3�̂2
n

(
Sn(k, r)

n∑
i=1

yi−1"i − Zn
n∑

i=k+1

yi−1"iI{yi−1 ≤ r}

)2

,

so the theorem follows from (4.7) and Lemma 4.3.

Proof of Corollary 2.3: The result follows from Theorem 2.2 combined with (4.10) and (4.11).
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5 Weak Convergence of a Two-Parameter Marked Empiri-

cal Process

It is immediate from Lemma 4.1 that the statistics discussed in Section 2 are closely connected

to the two-parameter marked empirical process

Gn(t, r) =
1√
n

[nt]∑
i=1

yi−1"iI{yi−1 ≤ r}.

Since we work with the stationary solution under the null hypothesis,

yi =

∞∑
k=0

�k"i−k, −∞ < i <∞ with some ∣�∣ < 1. (5.1)

Throughout this section C stands for a generic constant whose value may change from line to

line.

Theorem 5.1. If (2.1), (2.2) and (5.1) hold, then

Gn(t, r) =⇒ �W (t,H(r)) in D([0, 1]× [−∞,∞]),

where W is a two-parameter Wiener process.

Remark: Although Theorem 5.1 suffices for the purposes of the present paper, it is worth

pointing out that the result remains valid for a much larger class of linear processes, e.g., for

processes

yi =
∞∑
k=0

�k"i−k, −∞ < i <∞,

where �k = O(�k) for some ∣�∣ < 1. The proof requires only trivial changes.

The proof of Theorem 5.1 is based on the following tightness criterion.

Lemma 5.1. Let {�i(s), 0 ≤ s ≤ 1, i ≥ 1} be non-decreasing processes in D[0, 1], let �(s),

0 ≤ s ≤ 1, be a non-decreasing function and define

Kn(t, s) =
1

n1/2

[nt]∑
i=1

(�i(s)− �(s)).
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If there exist a � > 2, C > 0 and a sequence an such that an
√
n→ 0 and

E(Kn(t2, s)−Kn(t1, s))
6 ≤ C∣t2 − t1∣� if ∣t2 − t1∣ ≥ an,

E(Kn(t, s2)−Kn(t, s1))6 ≤ C∣s2 − s1∣� if ∣s2 − s1∣ ≥ an

(5.2)

and

n1/2 sup
∣s2−s1∣≤an

∣�(s2)− �(s1)∣ → 0, (5.3)

then Kn(t, s) is tight.

Proof. By a classical tightness criterion (see e.g. Billingsley (1968)) it suffices to show that for

any " > 0 and � > 0 there is an L such that

lim sup
n→∞

P

{
sup

∣t−t′∣≤1/L
sup

∣s−s′∣≤1/L
∣Kn(Δ(t, t′, s, s′)∣ > "

}
< �, (5.4)

where Δ(t, t′, s, s′) denotes the rectangle [t, t′]× [s, s′] and for any rectangle Δ, Kn(Δ) denotes

the increment of the function Kn over Δ. (Here, and in the rest of this proof, all rectangles have

sides parallel with the coordinate axes.) Let Kn(t, s) = K
(1)
n (t, s)−K(2)

n (t, s), where

K(1)
n (t, s) = n−1/2

[nt]∑
i=1

�i(s) and K(2)
n (t, s) = n−1/2

[nt]∑
i=1

�(s).

To simplify the formulas, we will assume that N = 1/an is an integer; the proof in the general

case requires only trivial changes. Let Pn denote the set of points in the unit square of which

both coordinates belong to the set Qn = {ian, 0 ≤ i ≤ N}. Let Δ∗ be the largest rectangle with

vertices in Pn contained in Δ(t, t′, s, s′). Clearly, the difference Δ(t, t′, s, s′) ∖Δ∗ is the union of

17



4 rectangles with one side not exceeding 1/L and the other not exceeding an and thus

sup
∣t−t′∣≤1/L

sup
∣s−s′∣≤1/L

∣Kn(Δ(t, t′, s, s′)∣

≤ sup
∣t−t′∣≤1/L
t,t′∈Qn

sup
∣s−s′∣≤1/L
s,s′∈Qn

∣Kn(Δ(t, t′, s, s′)∣

+ 2 sup
∣t−t′∣≤1/L

sup
∣s−s′∣≤an
s or s′∈Qn

∣Kn(Δ(t, t′, s, s′)∣

+ 2 sup
∣t−t′∣≤an
t or t′∈Qn

sup
∣s−s′∣≤1/L

∣Kn(Δ(t, t′, s, s′)∣

=: I1 + I2 + I3.

The increments in I2 and I3 are small. To see this, we let Δ be a rectangle in the unit square

[0, 1]× [0, 1] as in the suprema in I2 and I3. Then we denote by Δ′ the smallest rectangle with

vertices belonging to Pn covering Δ. Clearly, the length of one side of the rectangle Δ′ is equal

to an, the other is < 2/L for sufficiently large n. Thus we get, using the monotonicity of �(s)

and �i(s), that

∣Kn(Δ)∣ ≤ ∣K(1)
n (Δ)∣+ ∣K(2)

n (Δ)∣ ≤ ∣K(1)
n (Δ′)∣+ ∣K(2)

n (Δ)∣ ≤ ∣Kn(Δ′)∣+ 2∣K(2)
n (Δ′)∣.

Again by the monotonicity of �, relation (5.3) and an
√
n → 0, the increment of K

(2)
n (Δ′) is

on(1), uniformly over all rectangles on Pn with one side having length an. Thus we have

I2 + I3 ≤ 4 sup
∣t−t′∣<2/L
t,t′∈Qn

sup
∣s−s′∣<2/L
s,s′∈Qn

∣Kn(Δ(t, t′, s, s′)∣+ on(1)

and hence it suffices to prove (5.4) in the case when all vertices of the rectangle Δ(t, t′, s, s′)

18



belong to Pn. Let si = ian, tj = jan, 0 ≤ i, j ≤ N , and

�i,j = Kn(Δ(ti, ti+1, sj , sj+1)),

Ti,j =

{
(p, q) ∈ ℕ2

0 :
i

L
≤ pan ≤

(i+ 1)

L
,
j

L
≤ qan ≤

(j + 1)

L

}
,

S(T ) =
∑

(i,j)∈T

�i,j ,

M(T ) = max{∣S(T ′)∣ : T ′ ⊆ T },

where T , T ′ are rectangles in the unit square. Geometrically, the set {(ti, sj), 0 ≤ i, j ≤ N} is

a lattice with (N + 1)2 points and the sets Ti,j give a partition of this lattice into L2 ‘square

formed’ sublattices. Clearly, any rectangle Δ in the original lattice with sides < 2/L intersects

at most 9 of the the L2 sublattices Ti,j and thus

P

⎧⎨⎩ sup
∣t−t′∣≤1/L
t,t′∈Qn

sup
∣s−s′∣≤1/L
s,s′∈Qn

∣Kn(Δ(t, t′, s, s′)∣ ≥ "

⎫⎬⎭ ≤
∑

0≤i,j≤L−1

P {M(Ti,j) ≥ "/9} .

Now (5.2) and Móricz (1977) yield

∑
0≤i,j≤L−1

P{M(Ti,j) ≥ "/9} ≤
∑

0≤i,j≤L−1

1

("/9)6
EM6(Ti,j) ≤

C ′

"6
L2(1/L)�

for some constant C ′, completing the proof.

Lemma 5.1 can also be derived from Corollary 1 in Davydov and Zitikis (2008) when the

convergence of the finite dimensional distributions is also assumed.

Proof of Theorem 5.1. We must show the convergence of the finite dimensional distributions

and tightness. We use Lemma 5.1 to establish the tightness of Gn(t, r). Their result can be used

for partial sums of differences of non-decreasing random functions. Hence we write, as the first

step in the proof, Gn(t, r) in this form.

Let x+ = xI{x ≥ 0} and x− = xI{x ≤ 0}. We write

"iyi−1 = "+
i y

+
i−1 + "+

i y
−
i−1 + "−i y

+
i−1 + "−i y

−
i−1.
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We use the decomposition

Gn(t, r) =
1√
n

[nt]∑
i=1

yi−1"iI{yi−1 ≤ r} (5.5)

=
1√
n

[nt]∑
i=1

(
y+
i−1"

+
i I{yi−1 ≤ r} − E(y+

i−1"
+
i I{yi−1 ≤ r})

)
+

1√
n

[nt]∑
i=1

(
y+
i−1"

−
i I{yi−1 ≤ r} − E(y+

i−1"
−
i I{yi−1 ≤ r})

)
+

1√
n

[nt]∑
i=1

(
y−i−1"

+
i I{yi−1 ≤ r} − E(y−i−1"

+
i I{yi−1 ≤ r})

)
+

1√
n

[nt]∑
i=1

(
y−i−1"

−
i I{yi−1 ≤ r} − E(y−i−1"

−
i I{yi−1 ≤ r})

)
.

Note that yi−1 and "i are independent and thus E(yi−1"iI{yi−1 ≤ r}) = 0. All terms in the

right hand side of (5.5) are in the required form of Lemma 5.1. We show the tightness of the

first term, the tightness of the other three terms can be established in the same way.

Since F (x) = P{y0 ≤ x} is continuous by (2.2), it is enough to estimate the increments of

the partial sum process
∑[nt]

i=1

(
y+
i−1"

+
i I{F (yi−1) ≤ s} − c(s))

)
, 0 ≤ t, s ≤ 1, where the function

c(s) is defined by c(s) = E("+
i y

+
i−1I{F (yi−1) ≤ s}). Let d(s) = E(y+

i−1I{F (yi−1) ≤ s}). We

split the increments of

G+
n (t, s) =

1√
n

[nt]∑
i=1

(
y+
i−1"

+
i I{F (yi−1) ≤ s} − E(y+

i−1"
+
i I{F (yi−1) ≤ s})

)
in s into two terms:

G+
n (t, s2)−G+

n (t, s1) = An(t; s1, s2) +Bn(t; s1, s2), (5.6)

where

An(t; s1, s2) =
1√
n

[nt]∑
i=1

("+
i − E"

+
i )y+

i−1I{s1 < F (yi−1) ≤ s2}

and

Bn(t; s1, s2) =
E"+

0√
n

[nt]∑
i=1

[
y+
i−1I{s1 < F (yi−1) ≤ s2} − E(y+

i−1I{s1 < F (yi−1) ≤ s2})
]
.
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For any s1 ≤ s2 we have by the Hölder inequality that

d(s2)− d(s1) = E
(
y+
i−1I{s1 < F (yi−1) ≤ s2}

)
≤
(
E(y+

i−1)6
)1/6

(P (s1 < F (y0) ≤ s2))5/6 (5.7)

=
(
E(y+

i−1)6
)1/6

(s2 − s1)5/6 .

For the increments we write

"+
i y

+
i−1I{s1 < F (yi−1) ≤ s2} − (c(s2)− c(s1))

= ("+
i − E"

+
i )y+

i−1I{s1 < F (yi−1) ≤ s2}+ (E"+
i )
[
y+
i−1I{s1 < F (yi−1) ≤ s2} − (d(s2)− d(s1))

]
.

It is easy to see that

E
{

("+
i − E"

+
i )2(y+

i−1)2I{s1 < F (yi−1) ≤ s2}∣ℱi−1

}
=
[
E("+

0 − E"
+
0 )2
]

(y+
i−1)2I{s1 < F (yi−1) ≤ s2},

where ℱi = �("j ,−∞ < j ≤ i). So using the Rosenthal inequality for martingales (cf. Hall and

Heyde (1980), pp. 23-24) we conclude

E

⎛⎝ [nt]∑
i=1

("+
i − E"

+
i )y+

i−1I{s1 < F (yi−1) ≤ s2}

⎞⎠6

(5.8)

≤ C

{
n∑
i=1

E∣"+
i − E"

+
i ∣

6E(y+
i−1I{s1 < F (yi−1) ≤ s2})6

+ E

(
n∑
i=1

(E("+
0 )2)(y+

i−1)2I{s1 < F (yi−1) ≤ s2}

)3
⎫⎬⎭ .

Applying Hölder’s inequality we obtain that

n∑
i=1

E∣"+
i − E"

+
i ∣

6E(y+
i−1I{s1 < F (yi−1) ≤ s2})6 =nE∣"+

0 − E"
+
0 ∣

6E(y+
0 I{s1 < F (y0) ≤ s2})6

≤Cn(s2 − s1)�/(6+�).

Introducing g(s) = E[(y+
i−1)2I{F (yi−1) ≤ s}] and

�i(s1, s2) = (y+
i−1)2I{s1 < F (yi−1) ≤ s2} − (g(s2)− g(s1)),
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we have that

E

(
n∑
i=1

(y+
i−1)2I{s1 < F (yi−1) ≤ s2}

)3

(5.9)

= E

(
n∑
i=1

�i(s1, s2) +
n∑
i=1

(g(s2)− g(s1))

)3

≤ 4E

∣∣∣∣∣
n∑
i=1

�i(s1, s2)

∣∣∣∣∣
3

+ 4[n(g(s2)− g(s1))]3.

Since E(y+
i )6+� <∞, we get by the Hölder inequality that

g(s2)− g(s1) =E[(y+
i−1)2I{s1 < F (yi−1) ≤ s2}]

≤
(
E(y+

i−1)6+�
)1/(3+�/2)

(s2 − s1)(4+�)/(6+�).

Now we write

E

∣∣∣∣∣
n∑
i=1

�i(s1, s2)

∣∣∣∣∣
3

≤
∑

1≤i, j, k≤n
∣E(�i(s1, s2)�j(s1, s2)�k(s1, s2))∣ . (5.10)

For any c > 0 we define the truncated sums

yi,n =
∑

0≤k≤c logn

�k"i−k.

First we show that for any � > 0, c = c(�) in the previous sum can be chosen such that for all

1 ≤ i, j, k ≤ n

∣E(�i(s1, s2)�j(s1, s2)�k(s1, s2))− E(�i,n(s1, s2)�j,n(s1, s2)�k,n(s1, s2))∣ ≤ Cn−�, (5.11)

with

�i,n(s1, s2) = (y+
i−1,n)2I{s1 < F (yi−1,n) ≤ s2} − E

(
(y+
i−1,n)2I{s1 < F (yi−1,n) ≤ s2}

)
,
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where C does not depend on s1, s2. By Hölder’s inequality we have

E∣�i(s1, s2)− �i,n(s1, s2)∣3

≤ 4E∣(y+
i−1)2 − (y+

i−1,n)2∣3 + 4E[(y+
i−1,n)2∣I{s1 < F (yi−1) ≤ s2} − I{s1 < F (yi−1,n) ≤ s2}∣]3

≤ C

{
E

( ∑
c logn<k<∞

�k∣"−k∣

)3

+ [E(y+
i−1,n)6+�]6/(6+�)[E∣I{s1 < F (yi−1) ≤ s2} − I{s1 < F (yi−1,n) ≤ s2}∣3(6+�)/�]�/(6+�)

}
.

Using (2.1), for any � there is c such that

E

⎛⎝ ∑
c logn<k<∞

�k∣"−k∣

⎞⎠3

≤ Cn−�.

Also, by (2.1) there is a C such that E(y+
i,n)6+� ≤ C for all c, n and i. Next we combine the

definition of yi,n with (2.2), to see that for any given � there is a c such that

[E∣I{s1 < F (yi−1) ≤ s2} − I{s1 < F (yi−1,n) ≤ s2}∣3(6+�)/�]�/(6+�) ≤ Cn−�.

Thus the proof of (5.11) can be completed via Hölder’s inequality.

Using the definition of yi,n we observe that

E(�i,n(s1, s2)�j,n(s1, s2)�k,n(s1, s2)) = 0,

if there is at least one index i, j, k which differs from the other two with more than c log n+ 1.

So to estimate (5.10) we need to consider the terms when the difference between the indices is

less than c log n+ 1. The number of these terms cannot be more than n(c log n+ 1)2. We claim

that for such indices

E∣�i,n(s1, s2)�j,n(s1, s2)�k,n(s1, s2)∣ ≤ C(∣s2 − s1∣�/(6+�) + n−�). (5.12)

To prove (5.12) we note that the �i,n’s are differences and we compute the product resulting in

a sum of eight terms. All the elements of the sum are three-term-products. One of the terms is
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(y+
i,n)2I{s1 < F (yi,n) ≤ s2}(y+

j,n)2I{s1 < F (yj,n) ≤ s2}(y+
k,n)2I{s1 < F (yk,n) ≤ s2} for which we

have, on account of Hölder’s inequality and (2.2),

E
(

(y+
i,n)2I{s1 < F (yi,n) ≤ s2}(y+

j,n)2I{s1 < F (yj,n) ≤ s2}(y+
k,n)2I{s1 < F (yk,n) ≤ s2}

)
≤ E

(
(y+
i,n)2I{s1 < F (yi,n) ≤ s2}

)3

= E
(
(y+
i )6I{s1 < F (yi) ≤ s2}

)
+O(n−�)

≤
(
E(y+

i )6+�
)6/(6+�)

(s2 − s1)�/(6+�) +O(n−�).

Similar inequalities can be established for all the other 7 terms, proving (5.12).

Putting together (5.8)-(5.12) we conclude that for all 0 ≤ t, s1, s2 ≤ 1 that

EA6
n(t; s1, s2) (5.13)

≤ C
{
n−� +

1

n2
(s2 − s1)�/(6+�) + (s2 − s1)3(4+�)/(6+�) +

1

n2
(log n)2(s2 − s1)�/(6+�)

}
≤ C

{
n−� + (s2 − s1)3(4+�)/(6+�) +

1

n2
(log n)2(s2 − s1)�/(6+�)

}
,

since we can assume without loss of generality that 0 < � < 1.

Next we prove an upper bound for EB6
n(t; s1, s2). Similarly to �i(s1, s2) and �i,n(s1, s2) we

define �i(s1, s2) = y+
i−1I{s1 < F (yi−1) ≤ s2} − (d(s2)− d(s1)) and

�i,n(s1, s2) = y+
i−1,nI{s1 < F (yi−1,n) ≤ s2} − E(y+

i−1,nI{s1 < F (yi−1,n) ≤ s2}).

We note that

EB6
n(t; s1, s2) ≤ C

n3

∑
1≤i1,...,i6≤nt

∣∣∣∣∣∣E
6∏
j=1

�ij (s1, s2)− E
6∏
j=1

�ij ,n(s1, s2)

∣∣∣∣∣∣
+
C

n3

∑
1≤i1,...,i6≤nt

∣∣∣∣∣∣E
6∏
j=1

�ij ,n(s1, s2)

∣∣∣∣∣∣
= D1,n(t; s1, s2) +D2,n(t; s1, s2).
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Following the arguments leading to (5.11), one can show that for any � > 0 there is c = c(�)

such that ∣∣∣∣∣∣E
6∏
j=1

�ij (s1, s2)− E
6∏
j=1

�ij ,n(s1, s2)

∣∣∣∣∣∣ ≤ Cn−� (5.14)

and therefore

D1,n(t; s1, s2) ≤ Cn−�.

Now we estimate E
∏6
j=1 �ij ,n(s1, s2). Let us divide the indices i1, . . . , i6 into blocks so that the

differences between indices within a block are less than c log n and between blocks are larger

than c log n. Clearly, if there is at least one block containing a single element, the expected

value of the product is 0. So it suffices to consider the cases when all blocks contain at least

two elements. This allows the cases of one single block with 6 elements, two blocks with 3 + 3

or 4 + 2 elements and finally 3 blocks with 2 elements each.

If there is only one block then we use again Hölder’s inequality to conclude that∣∣∣∣∣∣E
6∏
j=1

�ij ,n(s1, s2)

∣∣∣∣∣∣ ≤ C(∣s2 − s1∣�/(6+�) + n−�).

The number of such terms in D2,n(t; s1, s2) is at most Cn(log n)5. If there are two blocks in the

product, then the blocks are independent and the numbers of terms in the blocks are 2 and 4 or

3 and 3. Using the independence and then Hölder’s inequality for the terms in the same block

we get ∣∣∣∣∣∣E
6∏
j=1

�ij ,n(s1, s2)

∣∣∣∣∣∣ ≤ C(∣s2 − s1∣(6+2�)/(6+�) + n−�).

The number of two-block terms in D2,n(t; s1, s2) is not more than Cn2(log n)4. Finally, consider

the case of three blocks of two elements each. As before, using Hölder’s inequality we have∣∣∣∣∣∣E
6∏
j=1

�ij ,n(s1, s2)

∣∣∣∣∣∣ ≤ C(∣s2 − s1∣3(4+�)/(6+�) + n−�).
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The number of terms in D2,n(t; s1, s2) with 3 blocks is Cn3(log n)3. Hence we obtained the

following upper bound for Bn(t; s1, s2):

EB6
n(t; s1, s2) (5.15)

≤ C
{
n−� +

1

n2
(log n)5(s2 − s1)�/(6+�) +

1

n
(log n)4(s2 − s1)(6+2�)/(6+�)

+ (log n)3(s2 − s1)3(4+�)/(6+�)

}
.

The upper bounds in (5.13) and (5.15) yield

E(G+
n (t, s2)−G+

n (t, s1))6 (5.16)

≤ C
{
n−� +

1

n2
(log n)5(s2 − s1)�/(6+�) +

1

n
(log n)4(s2 − s1)

+ (log n)3(s2 − s1)3(4+�)/(6+�)

}
.

Next we consider the increments of G+
n (t, s) in t. By stationarity,

E

⎛⎝ [nt2]∑
i=[nt1]+1

("+
i y

+
i−1I{F (yi−1) ≤ s} − c(s))

⎞⎠6

= E

⎛⎝[nt2]−[nt1]∑
i=1

("+
i y

+
i−1I{F (yi−1) ≤ s} − c(s))

⎞⎠6

.

Next Rosenthal’s inequality for martingale differences and the independence of "i and yi−1 yield

E

⎛⎝ [nt]∑
i=1

("+
i − E"

+
i )y+

i−1I{F (yi−1) ≤ s}

⎞⎠6

≤ C

⎧⎨⎩
[nt]∑
i=1

E
[
("+
i − E"

+
i )6(y+

i−1)6
]

+ E

⎛⎝ [nt]∑
i=1

(y+
i−1)2E("+

i − E"
+
i )2

⎞⎠3⎫⎬⎭
≤ C

⎧⎨⎩[nt] + [nt]3 + E

⎛⎝ [nt]∑
i=1

(
(y+
i−1)2 − E(y+

i−1)2
)⎞⎠3⎫⎬⎭

≤ C
{

[nt] + [nt]3 + [nt](log n)3 + n−�
}
.

In the last step we estimated the third moment in the second line above by using the truncated

variables yi−1,n.
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Following the arguments leading to (5.15) one could easily verify that

E

(
[nt2]−[nt1]+1∑

i=1

(y+
i−1I{F (yi−1) ≤ s} − d(s))

)6

≤ C
{
n−� + ([nt2]− [nt1] + 1)(log n)5 + ([nt2]− [nt1] + 1)2(log n)4

+([nt2]− [nt1] + 1)3(log n)3
}
.

Thus we have for all 0 ≤ t1 ≤ t2 ≤ 1 and 0 ≤ s ≤ 1

E(G+
n (t2, s)−G+

n (t1, s))
6

≤ C 1

n3

{
n−� + ([nt2]− [nt1] + 1)(log n)5 + ([nt2]− [nt1] + 1)2(log n)4 (5.17)

+([nt2]− [nt1] + 1)3(log n)3
}
.

Let an = n−
 with 0.6 < 
 < 1. Choose � such that 
 < � < 1. If s2 − s1 ≥ an, then

(log n)5

n2
(s2 − s1)�/(6+�) ≤ C(s2 − s1)2/�,

(log n)5

n
(s2 − s1) ≤ C(s2 − s1)1+1/�,

(log n)3

n
(s2 − s1)3(4+�)/(6+�) ≤ C(s2 − s1)1+1/�.

Since 3(4 + �)/(6 + �) > 2, we can choose � > 2, such that by (5.16) there is � > 2 such that for

all 0 ≤ t ≤ 1 and ∣s2 − s1∣ ≥ an

E(G+
n (t, s2)−G+

n (t, s1))6 ≤ C(s2 − s1)� .

Similarly, by (5.17) we have for all 0 ≤ s ≤ 1 and ∣t2 − t1∣ ≥ an

E(G+
n (t2, s)−G+

n (t1, s))
6 ≤ C(t2 − t1)� .

Since 
 > 0.6, it follows from (5.7) that

n1/2 sup
∣s2−s1∣≤an

E(y+
0 I{s1 ≤ F (y0) ≤ s2})→ 0.
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The tightness ofG+
n (t, s) follows from Lemma 5.1. By (5.5) we have the tightness ofGn(t, F−1(s))

as well.

Since the partial sums of
∑N

i=1 yi−1"iI{F (yi−1) ≤ s}, N ≥ 1 is also a martingale for all s,

the convergence of the finite dimensional distributions of Gn(t, F−1(s)) is a consequence of the

central limit theorem for martingale differences (cf. Hall and Heyde (1980)).
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Horváth, L. (1993) The maximum likelihood method for testing changes in the parameters of
normal observations. Ann. Statist. 21, 671–680.
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A Tables

� = 0.10 � = 0.05 � = 0.01

2.343 2.758 3.604

Table 1: Simulated critical values

Corn Soybeans

�̂1 0.131 0.026

�̂2 0.344 0.430
r 0.076 0.090

Table 2: Parameter estimators
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Figure 1: Empirical power curves with � = 0.05 (reference line), n = 200 (solid) and n = 400
(dashed), where the x-axis corresponds to the values of �2.
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Figure 2: Monthly average corn (left) and soybeans (right) prices from 1960-2008
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Figure 3: Relative monthly average corn (left) and soybeans (right) price changes from 1960-2008
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Figure 4: Residual plots of corn data set (left) and soybeans data set (right)
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