
Periodica Mathematica Hungarica Vol. 62 (1 ), 2011, pp. 1–12
DOI: 10.1007/s10998-011-5001-7

ON THE STRONG LAW OF LARGE NUMBERS

AND ADDITIVE FUNCTIONS

István Berkes1, Wolfgang Müller2 and Michel Weber3

1Graz University of Technology, Institute of Statistics

Münzgrabenstrasse 11, A-8010 Graz, Austria

E-mail: berkes@tugraz.at

2Graz University of Technology, Institute of Statistics

Münzgrabenstrasse 11, A-8010 Graz, Austria

E-mail: w.mueller@tugraz.at
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Abstract

Let f(n) be a strongly additive complex-valued arithmetic function.

Under mild conditions on f , we prove the following weighted strong law of

large numbers: if X, X1, X2, . . . is any sequence of integrable i.i.d. random

variables, then

lim
N→∞

∑N
n=1 f(n)Xn

∑N
n=1 f(n)

= EX a.s.

1. Introduction

Let X, X1, X2, . . . be i.i.d. integrable random variables and f(n), n = 1, 2, . . .

a positive numerical sequence, F (n) =
∑n

k=1 f(k). By a classical result of Jamison,

Orey and Pruitt [5], under the condition

lim sup
x→∞

1

x
#{n : F (n) ≤ xf(n)} < ∞, (1)
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we have the weighted strong law

lim
n→∞

∑n
k=1 f(k)Xk∑n

k=1 f(k)
= EX a.s. (2)

Conversely, if (2) holds for all i.i.d. sequences X, X1, X2, . . . with finite means, then

(1) is valid. Note that condition (1) puts a restriction on the distribution of the

weight sequence f(n) and not on the magnitude of the weights, as it happens, e.g.,

in central limit theory. In particular, (1) can fail even for bounded weight sequences

f(n), see [5]. Condition (1) is generally difficult to check for irregular sequences

f(n), and this leads to the question to study (2) for typical irregular sequences in

number theory, for example, additive arithmetic functions. Let f(n), n = 1, 2, . . .,

be a real-valued, strongly additive function, i.e., assume that

f(mn) = f(m) + f(n) for (m, n) = 1 (3)

and

f(pα) = f(p), for p prime, α = 2, 3, . . . (4)

It follows that

f(n) =
∑

p|n
f(p),

so that f is completely determined by its values taken over the primes. A typical

example is ω(n), the number of different prime factors of n. Put

An =
∑

p≤n

f(p)

p
, Bn =

∑

p≤n

|f(p)|2
p

. (5)

In [1] we studied the weighted SLLN with coefficients f(n) and proved the following

result (see Theorem 1.1 in [1]).

Theorem 1. Assume that f ≥ 0 and

Bp → ∞, f(p) = o(B1/2
p ) as p → ∞. (6)

Then for any i.i.d. sequence X, X1, X2, . . . with finite means, the weighted strong

law (2) holds.

Condition (6) plays an important role in probabilistic number theory as a

nearly optimal sufficient condition for the central limit theorem

lim
N→∞

1

N
#

{
n ≤ N :

f(n) − AN

B
1/2
N

≤ x
}

=
1

(2π)1/2

∫ x

−∞
e−t2/2dt (7)
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(see, e.g., Elliott [3], Kubilius [6]). Halberstam [4] proved that replacing the o by

O in (6) the CLT (7) becomes generally false. Note that relation (6) implies the

Lindeberg condition

lim
n→∞

1

Bn

∑

p<n

|f(p)|≥εB
1/2
n

|f(p)|2
p

= 0 for any ε > 0, (8)

and, under mild technical assumptions on f , condition (8) is necessary and sufficient

for the CLT (7), see again Elliott [3], Kubilius [6]. In [1] we also proved that (6)

implies the law of the iterated logarithm corresponding to (2) provided EX2 < ∞
(see Theorem 1.2 in [1]). We further indicated that if f(p) does not fluctuate too

wildly, namely if

sup
n≤p,q≤n2

p,q primes

∣∣∣
f(p)

f(q)

∣∣∣ = O(1), as n → ∞,

then Theorem 1 remains valid under condition (8). We raised the question of the

validity of Theorem 1 under the sole Lindeberg condition. Recently, Fukuyama and

Komatsu [2] answered this question affirmatively.

Theorem 2. Assume that f ≥ 0 and the Lindeberg condition (8) is satisfied.

Then for any i.i.d. sequence X, X1, X2, . . . with finite means, (2) holds.

The approach of Fukuyama and Komatsu [2] is elegant and is based on Abel

summation. Put

G(n) =
∑

m≤n

|f(m)|2. (9)

The estimates

F (n) ≫ nAn, G(n) ≪ nA2
n (10)

which for f ≥ 0 are implied by the Lindeberg condition (8) (see for instance Lemma

2.1 in [1]) are crucial in their proof and the proof remains valid under these sole

conditions. Here ≪ means the same as the O notation. Observe now that, still

assuming f ≥ 0,

F (n) =
∑

p≤n

f(p)⌊n/p⌋ = nAn + O
( ∑

p≤n

f(p)
)

= nAn + O(n(log n)−1/2B1/2
n ), (11)

where in the last step we used the prime number theorem and the Cauchy–Schwarz

inequality. Thus assuming that

Bn ≪ A2
n (12)

it follows that F (n) ∼ nAn and

G(n) =
∑

p≤n

|f(p)|2⌊n/p⌋ + 2
∑

2≤p<q≤n

f(p)f(q)⌊n/pq⌋ ≪ n(Bn + A2
n) ≪ nA2

n.

In other words, (12) implies (10) and thus the proof of Theorem 2 yields the following

stronger result:
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Theorem 3. Let f ≥ 0 be a strongly additive function satisfying Bn ≪ A2
n.

Then for any i.i.d. sequence X, X1, X2, . . . with finite means, (2) holds.

Note that the condition Bn ≪ A2
n is weaker than the Lindeberg condition

which, as is shown in [1], implies Bn = o(A2
n). For example, Bn ≪ A2

n is satisfied if

f(p) = (log p)γ , γ > 0, under which the Lindeberg condition and the central limit

theorem (7) are false (see Halberstam [4]).

The purpose of the present paper is to extend Theorem 3 to complex-valued

additive functions. The following example shows that without f ≥ 0 the Lindeberg

condition (8) is generally not sufficient for the validity of the strong law (2).

Example. Let p1 < p2 < · · · be the sequence of the primes and define the

function f on the primes by f(p2k−1) = 1, f(p2k) = −1 (k = 1, 2, . . .). Then

Bn ∼ log log n and the Lindeberg condition (8) holds, but, as we will show in

Section 3, the strong law (2) fails for some i.i.d. sequences X, X1, X2, . . . with finite

means.

Call a nonnegative sequence (xn) quasi-monotone if there exists a nonnegative

monotone sequence (yn) with xn ≪ yn ≪ xn. Our main result is the following.

Theorem 4. Let f be a complex-valued strongly additive arithmetic function

such that n|An| → ∞ and n|An| is quasi-monotone. Assume that Bn → ∞ and

Bn ≪ |An|2, sup
nh<p≤n

|f(p)| ≪ |An| (13)

for some 0 < h < 1/4. Then for any i.i.d. sequence X, X1, X2, . . . with finite means,

the weighted strong law (2) holds.

Assuming Bn ≪ |An|2, the second condition of (13) is satisfied if |f(p)| =

O(B
1/2
p ), which is weaker than (6) and does not imply the Lindeberg condition, as

the example f(p) = (log p)γ , γ > 0 shows. In analogy with Theorem 3, it is possible

that the second condition of (13) can be omitted completely, but this remains open.

The quasi-monotonicity of n|An| is required because of the use of the Kronecker

lemma in the proof; in the case f ≥ 0 this condition is trivially satisfied. For f ≥ 0

the first relation of (13) reduces to the condition of Theorem 3, but there is a big

difference between the case f ≥ 0 and the general case. For f ≥ 0 the Lindeberg

condition implies the CLT (7) and also Bn = o(A2
n) (see, e.g., [1]); this means that

the centering factor An in (7) dominates the norming factor B
1/2
n and consequently

f(n) ∼ An along a set of integers with density 1. In the complex case the Lindeberg

condition still implies the CLT (7), but not Bn = o(|An|2) or even Bn ≪ |An|2 as

the example above shows: there An is bounded and Bn ∼ log log n. Instead, we get

the weaker relation

Bn = o(Ã2
n) with Ãn =

∑

p≤n

|f(p)|
p

.
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In the complex case the centering factor in the CLT (7) can be much smaller than

the norming factor and in such cases the SLLN (2) may also fail, as the example

above shows.

2. Some lemmas

In this section we formulate some lemmas needed for the proof of Theorem 4.

Our first lemma extends the classical theorem of Jamison, Orey and Pruitt [5] to

complex weights.

Lemma 1. Let f(n), n = 1, 2, . . ., be complex numbers and put F (n) =∑n
k=1 f(k) and

L(t) = # {n : |F (n)| ≤ t|f(n)|} , (t ≥ 0). (14)

Assume that

|F (n)| → ∞ and |F (n)| is quasi-monotone. (15)

Then the weighted strong law (2) holds for all i.i.d. sequences X, X1, X2, . . . with

finite means if and only if

L(t) ≪ t (t ≥ 1). (16)

Dropping the quasi-monotonicity of |F (n)|, the necessity of (16) remains valid.

Proof. The argument of Jamison, Orey and Pruitt [5] yields the follow-

ing stronger statement. Assume that there is a nondecreasing monotone sequence

(V (n))n≥1 of nonnegative numbers such that for n → ∞

V (n) ≪ |F (n)| and V (n) → ∞ .

Then (2) holds for all i.i.d. sequences X, X1, X2, . . . with finite means if LV (t) ≪ t

for t ≥ 1, where

LV (t) = #{n : V (n) ≤ t|f(n)|} .

To prove this, set Yn = Xn − E(X1) and Zn = f(n)YnI(|f(n)Yn| < V (n)). Then

∑

n≥1

P (Zn 6= f(n)Yn) ≤
∑

n≥1

∫

|f(n)x|≥V (n)

dPY1(x) = E(LV (|Y1|)) ≪ E(|Y1|) < ∞ .

Hence (2) follows if

lim
n→∞

1

V (n)

n∑

m=1

Zm = 0 a.s.
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Using Kronecker’s lemma, this follows from
∑

n≥1 Zn/V (n) < ∞ a.s., and this in

turn is true if
∑

n≥1 Var (Zn)/V (n)2 < ∞. Now

∑

n≥1

Var (Zn)

V (n)2
=

∑

n≥1

|f(n)|2
V (n)2

∫

|f(n)x|<V (n)

x2 dPY1(x)

=

∫
x2

∑

|f(n)x|<V (n)

|f(n)|2
V (n)2

dPY1(x)

=

∫
x2

∫

(|x|,∞)

y−2 dLV (y) dPY1(x) .

Using the assumption LV (t) ≪ t for t ≥ 1 and LV (t) ≤ LV (1) for 0 ≤ t < 1 and par-

tial integration, the last integral is bounded by a constant multiple of E(|Y1|) < ∞.

Hence LV (x) ≪ x is sufficient for the validity of the strong law (2). Finally,

setting V (n) = maxm≤n |F (m)|, condition (15) implies V (n) ≪ |F (n)|. Since

LV (x) ≤ L(x), condition (16) is sufficient for (2). The necessity part of the ar-

gument of Jamison, Orey and Pruitt remains unchanged in the case of complex

weights.

Next we need a lemma on divisors of Bernoulli sums. Let {εi, i ≥ 1} be

a Bernoulli sequence, i.e. a sequence of independent random variables such that

P(εi = 0) = P(εi = 1) = 1/2, (i = 1, 2, . . .). Let Sn =
∑n

i=1 εi. Consider the elliptic

Theta function

Θ(d, m) =
∑

ℓ∈Z

eimπ ℓ
d − mπ2ℓ2

2d2 .

The following lemma, which is Theorem II from [7], yields precise asymptotics for

the probability that a natural number divides Sn.

Lemma 2. We have the following uniform estimate:

sup
2≤d≤n

∣∣∣P{d|Sn} − Θ(d, n)

d

∣∣∣ = O((log n)5/2n−3/2),

and

∣∣∣P{d|Sn} − 1

d

∣∣∣ =





O((log n)5/2n−3/2 + 1
de− nπ2

2d2 ), if d ≤ √
n,

O(1/
√

n), if
√

n ≤ d ≤ n.

Further, for any α > 0 and all ε > 0,

sup
d<π

√
n

2α log n

∣∣∣P{d|Sn} − 1

d

∣∣∣ = Oε(n
−α+ε)

and for any 0 < ρ < 1 and all 0 < ε < 1,

sup
d<(π/

√
2)n(1−ρ)/2

∣∣∣P{d|Sn} − 1

d

∣∣∣ = Oε(e
−(1−ε)nρ

). (17)
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Remark. Actually, we will need only relation (17) in the present paper. By

using the Poisson summation formula we get

Θ(d, n)

d
=

1

d

∑

ℓ∈Z

eiπn ℓ
d −nπ2 ℓ2

2d2 =

√
2

πn

∑

ℓ∈Z

e−2( n
2d +ℓ)2 d2

n

and thus

sup
2≤d≤n

∣∣∣P{d|Sn} −
√

2

πn

∑

ℓ∈Z

e−2( n
2d +ℓ)2 d2

n

∣∣∣ = O
( (log n)5/2

n3/2

)
,

a further asymptotic formula useful in many situations.

3. Proof of Theorem 4

Let f be a strongly additive, complex-valued arithmetical function satisfying

the conditions of Theorem 4. Analogously to (11), we have

|F (n)| = n|An| + O(n(log n)−1/2B1/2
n ), (18)

and thus by Bn ≪ |An|2 we have |F (n)| ∼ n|An|. Hence the quasi-monotonicity of

n|An| and n|An| → ∞ imply that (15) holds. In view of Lemma 1, for the proof

of Theorem 4 it suffices to prove (16) for the function L defined by (14) and to do

this, we use the same probabilistic trick as in [1]. Consider a Bernoulli sequence

{εi, i ≥ 1} defined on a probability space (Ω,A, P), possibly different from the

probability space supporting the variables X, X1, X2, . . . in (2). Put Sn =
∑n

i=1 εi

and define L by (14). Let 0 < η < 1/2 and Fη(n) = infm≥ηn |F (m)|. Clearly

L(t) = #{n : |F (n)| ≤ t|f(n)|}
≤ #{n : |F (Sn)| ≤ t|f(Sn)|} ≤ #{n : Fη(Sn) ≤ t|f(Sn)|},

(19)

and this is true for any t ≥ 0, because the graph of the random walk {Sn, n ≥ 1}
replicates all positive integers with possible multiplicities. We next define

Ωη = {Sn ≥ ηn for all n ≥ 1},

and observe that P(Ωη) > 0. Indeed, Sn/n → 1/2 a.s. and thus there exists an

integer n0 ≥ 2 such that letting

Ω∗
η = {Sn ≥ ηn for all n ≥ n0}, A = {ε1 = 1, . . . , εn0−1 = 1},

we have P(Ω∗
η) > 0. Let Ω∗∗

η denote the event obtained from Ω∗
η by replacing

ε1, . . . , εn0−1 in the sums Sn by 1. Clearly Ω∗
η ⊆ Ω∗∗

η and thus P(Ω∗∗
η ) > 0 and
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consequently P(Ω∗∗
η ∩A) > 0, since Ω∗∗

η depends on εn0 , εn0+1, . . . and thus Ω∗∗
η and

A are independent. Now observing that Ω∗∗
η ∩ A ⊆ Ωη, relation P(Ωη) > 0 follows.

Reading (19) on Ωη gives

L(t) ≤ #{n : Fη(n) ≤ t|f(Sn)|} on Ωη for all t > 0

and consequently

1

t
L(t) ≤ 1

P(Ωη)
E

1

t
#{n : Fη(n) ≤ t|f(Sn)|}. (20)

But for all t > 0

1

t
#{n : Fη(n) ≤ t|f(Sn)|}

≤ 1 +
1

t
#{n ≥ t : Fη(n) ≤ t|f(Sn)|} = 1 +

1

t

∑

n≥t

χ{F 2
η (n) ≤ t2|f(Sn)|2}

≤ 1 + t
∑

n≥t

|f(Sn)|2
F 2

η (n)
.

(21)

We now prove the following lemma.

Lemma 3. For any 0 < h < 1/4 and sufficiently large n we have

‖f(Sn)‖ ≤ 1

h
sup

nh<p≤n

|f(p)| +
∣∣∣

∑

2≤p≤nh

f(p)

p

∣∣∣ + C
( ∑

2≤p≤nh

|f(p)|2
p

)1/2

where ‖ · ‖ denotes the L2 norm in (Ω,A, P) and C is an absolute constant.

Proof. In the argument that follows, all constants implied by ≪ will be

absolute. Using the triangular inequality we find

‖f(Sn)‖ ≤
∥∥∥f(Sn) −

∑

2≤p≤nh

p|Sn

f(p)
∥∥∥ +

∥∥∥
∑

2≤p≤nh

p|Sn

f(p) −
∑

2≤p≤nh

f(p)P{p|Sn}
∥∥∥+

+
∣∣∣

∑

2≤p≤nh

f(p)P{p|Sn} −
∑

2≤p≤nh

f(p)

p

∣∣∣ +
∣∣∣

∑

2≤p≤nh

f(p)

p

∣∣∣.

Since f(Sn) =
∑

p|Sn
f(p) and Sn ≤ n, we obtain

∣∣∣f(Sn) −
∑

2≤p≤nh

p|Sn

f(p)
∣∣∣ =

∣∣∣
∑

nh<p≤n
p|Sn

f(p)
∣∣∣ ≤

∑

nh<p≤n
p|Sn

|f(p)| ≤ 1

h
sup

nh<p≤n

|f(p)|.
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The last bound is justified by the fact that if Sn admits K different prime factors

> nh, then nKh ≤ Sn ≤ n implies Kh ≤ 1. Using Lemma 2 with ρ = 1 − 2h and

ε = 1/2, we obtain

∣∣∣
∑

2≤p≤nh

f(p)P{p|Sn} −
∑

2≤p≤nh

f(p)

p

∣∣∣ ≤
∑

2<p≤nh

|f(p)|
∣∣∣P{p|Sn} − 1

p

∣∣∣

≪ e− 1
2 n1−2h ∑

2≤p≤nh

|f(p)|.

By Cauchy’s inequality

∑

2≤p≤nh

|f(p)| ≤
( ∑

2≤p≤nh

p
)1/2( ∑

2≤p≤nh

|f(p)|2
p

)1/2

≤ nh
( ∑

2≤p≤nh

|f(p)|2
p

)1/2

,

hence

∣∣∣
∑

2≤p≤nh

f(p)P{p|Sn} −
∑

2≤p≤nh

f(p)

p

∣∣∣ ≪ e− 1
2 n1−2h

nh
( ∑

2≤p≤nh

|f(p)|2
p

)1/2

≪
( ∑

2≤p≤nh

|f(p)|2
p

)1/2

.

We finally prove

∥∥∥
∑

2≤p≤nh

p|Sn

f(p) −
∑

2≤p≤nh

f(p)P{p|Sn}
∥∥∥

2

≪
∑

2<p≤nh

|f(p)|2
p

.
(22)

Write the left-hand side of (22) as

E

∣∣∣
∑

2≤p≤nh

f(p)(χ(p|Sn) − P{p|Sn})
∣∣∣
2

=
∑

2≤p≤nh

|f(p)|2P{p|Sn}(1 − P{p|Sn})+

+2ℜ
{ ∑

2≤p<q≤nh

f(p)f(q)(P{pq|Sn} − P{p|Sn}P{q|Sn})
}

.

By relation (17) with ρ = 1 − 4h > 0 and ε = 1/2, we obtain for p, q ≤ nh

P{p|Sn} =
1

p
+ O(e− 1

2 n1−4h

), P{pq|Sn} =
1

pq
+ O(e− 1

2 n1−4h

). (23)

This also yields

|P{pq|Sn} − P{p|Sn}P{q|Sn}| ≪ e− 1
2 n1−4h

.



10 I. BERKES, W. MÜLLER and M. WEBER

Thus we conclude

∥∥∥
∑

2≤p≤nh

p|Sn

f(p)−
∑

2≤p≤nh

f(p)P{p|Sn}
∥∥∥

2

≪
∑

2≤p≤nh

|f(p)|2
p

+ e− 1
2 n1−4h

( ∑

2≤p≤nh

|f(p)|
)2

≪
∑

2≤p≤nh

|f(p)|2
p

+ n2he− 1
2 n1−4h ∑

2≤p≤nh

|f(p)|2
p

≪
∑

2≤p≤nh

|f(p)|2
p

,

proving (22). The proof of Lemma 3 is now complete.

We can now easily complete the proof of Theorem 4. Observe that the condi-

tions of Theorem 4 imply

|F (ηn)| ≫ n max(|Anh |, B1/2

nh ), sup
nh<p≤n

|f(p)| ≪ |F (ηn)|/n (24)

for any 0 < η ≤ 1, 0 < h < 1 and n ≥ n0(η, h) = t0. To prove the first relation of

(24) note that
∑

p≤n
1
p = log log n + C + o(1) for some constant C and thus

∑

nh<p≤n

1

p
= O(1),

∑

ηn<p≤n

1

p
= o(1).

Hence by (13)

|An − Aηn| ≤ sup
ηn<p≤n

|f(p)|
∑

ηn<p≤n

1

p
= o(An)

giving Aηn ∼ An and similarly

|Anh − An| ≤ sup
nh<p≤n

|f(p)|
∑

nh<p≤n

1

p
≪ |An|,

giving |Anh | ≪ |An|. Thus Bn ≪ |An|2, Aηn ∼ An and the relation |F (n)| ∼ n|An|
pointed out after (18) imply

|F (ηn)| ≫ n|Aηn| ∼ n|An| ≫ n|Anh | ≫ nB
1/2

nh .

This proves the first relation of (24) and shows also that the second relation of (24)

follows from the second condition of (13).
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Let us choose now, as before, 0 < η < 1/2 and 0 < h < 1/4. Using (21),

Lemma 3 and the relation Fη(n) ≫ |F (ηn)| implied by the quasi-monotonicity of

|F (n)|, we get, for t ≥ t0,

E
1

t
#{n : Fη(n) ≤ t|f(Sn)|}

≤ 1 + t
∑

n≥t

E |f(Sn)|2
F 2

η (n)

≤ 1 + Ct
∑

n≥t

1

|F (ηn)|2
{

sup
nh<p≤n

|f(p)|2 +
∣∣∣

∑

2≤p≤nh

f(p)

p

∣∣∣
2

+
∑

2≤p≤nh

|f(p)|2
p

}
.

On using (24) we deduce

sup
t≥t0

E
1

t
#{n : Fη(n) ≤ t|f(Sn)|} ≤ C1

with some other constant C1 which, together with (20), gives L(t) ≪ t, completing

the proof of Theorem 4.

In conclusion we show that for the additive function f defined in the example

in Section 1, the weighted SLLN (2) fails for some i.i.d. sequence X, X1, X2, . . . with

finite means. In this case An → α =
∑∞

k=1(−1)k−1/pk > 0 and thus An = O(1);

further |f(p)| = 1 for all primes p and Bn ∼ log log n and thus the Lindeberg

condition (8) is satisfied. Thus the CLT (7) is also valid, and it follows that

|f(n)| ≫ (log log n)1/2 on a set H of integers with density ≥ 1/2. Further by

(18) we have |F (n)| ∼ αn as n → ∞ and thus |F (n)/f(n)| ≪ n/(log log n)1/2 on

H. Consequently, for n ∈ H, n ≥ n0 the inequality |F (n)/f(n)| ≤ t is satisfied if

n ≤ C1t(log log t)1/2 for a sufficiently small constant C1 and thus

L(t) = #{n : |F (n)/f(n)| ≤ t} ≫ t(log log t)1/2.

Therefore by Lemma 1 the weighted SLLN (2) fails for some i.i.d. sequence (Xn)

with finite means, as claimed.
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