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On permutations of lacunary series
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Abstract

It is a well known fact that for periodic measurable f and rapidly increasing (nk)k≥1 the

sequence (f(nkx))k≥1 behaves like a sequence of independent, identically distributed random

variables. For example, if f is a periodic Lipschitz function, then (f(2kx))k≥1 satisfies the

central limit theorem, the law of the iterated logarithm and several further limit theorems

for i.i.d. random variables. Since an i.i.d. sequence remains i.i.d. after any permutation of

its terms, it is natural to expect that the asymptotic properties of lacunary series are also

permutation-invariant. Recently, however, Fukuyama (2009) showed that a rearrangement of

the sequence (f(2kx))k≥1 can change substantially its asymptotic behavior, a very surprising

result. The purpose of the present paper is to investigate this interesting phenomenon in detail

and to give necessary and sufficient criteria for the permutation-invariance of the CLT and LIL

for f(nkx).
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§ 1. Introduction

By classical results of Salem and Zygmund [19] and Erdős and Gál [8], if (nk)k≥1

satisfies the Hadamard gap condition

(1.1) nk+1/nk ≥ q > 1 (k = 1, 2, . . .)

then (cos 2πnkx)k≥1 obeys the central limit theorem and the law of the iterated loga-

rithm, i.e.

(1.2) lim
N→∞

λ

{

x ∈ (0, 1) :

N∑

k=1

cos 2πnkx ≤ t
√

N/2

}

= (2π)−1/2

∫ t

−∞

e−u2/2du,

and

(1.3) lim sup
N→∞

(N log log N)−1/2
N∑

k=1

cos 2πnkx = 1 a.e.

where λ denotes the Lebesgue measure. Philipp and Stout [17] showed that under (1.1)

on the probability space ([0, 1],B, λ) there exists a Brownian motion process {W (t), t ≥
0} such that

(1.4)
N∑

k=1

cos 2πnkx = W (N/2) + O
(

N1/2−ρ
)

a.e.

for some ρ > 0. This relation implies not only the CLT and LIL for (cos 2πnkx)k≥1, but

a whole class of further limit theorems for independent, identically distributed random

variables; for examples and discussion we refer to [17]. Similar results hold for lacunary

sequences f(nkx), where f is a measurable function on R satisfying the conditions

(1.5) f(x + 1) = f(x),

∫ 1

0

f(x) dx = 0,

∫ 1

0

f2(x) dx < ∞.

For example, Kac [14] proved that if (1.5) holds and f is either a Lipschitz function or

is of bounded variation in (0, 1), then f(2kx) satisfies the central limit theorem, more

precisely

lim
N→∞

λ

{

x ∈ (0, 1) :
N∑

k=1

f(2kx) ≤ σt
√

N

}

= (2π)−1/2

∫ t

−∞

e−u2/2du,

where

σ2 =

∫ 1

0

f2(x) dx + 2
∞∑

k=1

∫ 1

0

f(x)f(2kx) dx.
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The corresponding LIL

lim sup
N→∞

(2σ2N log log N)−1/2
N∑

k=1

f(2kx) = 1 a.e.

was proved by Maruyama [16] and Izumi [13] and the analogue of (1.4) for f(2kx) was

proved by Berkes and Philipp [6]. These results show that lacunary subsequences of

the trigonometric system and of the system (f(nx))n≥1 behave like sequences of i.i.d.

random variables and since an i.i.d. sequence remains i.i.d. after any permutation of

its terms, it is natural to expect that limit theorems for f(nkx) are also permutation-

invariant. Recently, however, Fukuyama [10] showed the surprising fact that rearrange-

ment of the sequence
(
{2kx}

)

k≥1
, where {·} denotes fractional part, can change the LIL

behavior of its discrepancy. The purpose of this paper is to show that the permutation-

invariance of f(nkx) is intimately connected with the number theoretic properties of

(nk)k≥1 and we will give necessary and sufficient criteria for the rearrangement-invariant

CLT and LIL for f(nkx) in terms of the number of solutions of the Diophantine equation

a1nk1
+ . . . + apnkp

= b, 1 ≤ k1, , . . . , kp ≤ N.

In Section 2 we will formulate our results for the trigonometric system and in Section 3

for the system f(nx). The proofs will be given in Section 4.

§ 2. The trigonometric system

In this section we deal with permutation-invariance of lacunary trigonometric series.

Theorem 2.1. Let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard

gap condition (1.1) and let σ : N → N be a permutation of the positive integers. Then

we have

(2.1) N−1/2
N∑

k=1

cos 2πnσ(k)x
D−→ N (0, 1/2)

and

(2.2) lim sup
N→∞

(N log log N)−1/2
N∑

k=1

cos 2πnσ(k)x = 1 a.e.

Here we used probabilistic terminology and
D−→ denotes convergence in distribution

in the probability space ([0, 1],B, λ).

Theorem 2.1 shows that for Hadamard lacunary trigonometric series the CLT and

LIL are permutation-invariant without any additional number theoretic condition on
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nk. We note also that the unpermuted CLT (1.2) and LIL (1.3) hold for cos 2πnkx

under the weaker gap condition

nk+1/nk ≥ 1 + ck−α, 0 ≤ α < 1/2

(see Erdős [7] and Takahashi [21]). However, as the next theorem shows (which is

contained in [4]), for having the permuted CLT and LIL the Hadamard gap condition

(1.1) in Theorem 2.1 cannot be weakened.

Theorem 2.2. For any positive sequence (εk)k≥1 tending to 0, there exists a

sequence (nk)k≥1 of positive integers satisfying

nk+1/nk ≥ 1 + εk, k ≥ k0

and a permutation σ : N → N of the positive integers such that

a−1
N

N∑

k=1

cos 2πnσ(k)x − bN
D−→ G

where G is the Cauchy distribution with density 1
π(1+x2)

, aN =
√

N/ logN and bN =

O(1). Moreover, there exists a permutation σ : N → N of the positive integers such that

(2.3) lim sup
N→∞

∑N
k=1 cos 2πnσ(k)x√

N log N
> 0 a.e.

For subexponentially growing (nk)k≥1 the permuted CLT and LIL are much harder

problems and we do not have a precise charaterization. Our next theorem gives sufficient

Diophantine conditions in this case. Let us say that a sequence (nk)k≥1 of positive

integers satisfies

Condition R, if for any p ≥ 2 and any fixed nonzero integers a1, . . . ap satisfying

|a1| ≤ p, . . . , |ap| ≤ p, the Diophantine equation

(2.4) a1nk1
+ . . . + apnkp

= 0, k1 < . . . < kp

has only a finite number of solutions. If the number of solutions of (2.4) is at most

C exp(pα) for some constants C, α > 0, we say that (nk)k≥1 satisfies condition R∗.

Theorem 2.3. If (nk)k≥1 is a sequence of positive integers satisfying condition

R, then for any permutation σ : N → N of the positive integers we have the central limit

theorem (2.1). If (nk)k≥1 satisfies condition R∗, we also have the permuted LIL (2.2).

It is not easy to decide if an explicitly given subexponential sequence satisfies

condition R or R∗. A simple example is the sequence (nk)k≥1 consisting of the numbers
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of the form pk1
1 · · · pkr

r (k1, . . . , kr ≥ 0), where {p1, . . . , pr} is a finite set of coprime

integers. In this case the validity of R∗ follows from a recent deep bound, due to

Amoroso and Viada [5], in the subspace theorem of W. Schmidt [20]. On the other

hand, it is easy to obtain sequences satisfying condition R∗ via random constructions.

Let ωk = (log k)α, α > 0 and let nk be independent random variables, defined on some

probability space, such that nk is uniformly distributed over the integers of the interval

[a(k − 1)ωk , akωk ], where a is a large constant. Then with probability one, (nk)k≥1

satisfies condition R∗. The so constructed sequence (nk)k≥1 grows much slower than

exponentially, in fact its growth speed is only slightly faster than polynomial. In contrast

to the CLT (1.2) which can hold even for sequences (nk) with nk+1 − nk = O(1) (see

Fukuyama [9]) we do not know if there are polynomially growing sequences (nk)k≥1

satisfying the permutation-invariant CLT and LIL.

§ 3. The system f(kx)

Let f be a measurable function satisfying

f(x + 1) = f(x),

∫ 1

0

f(x) dx = 0,

∫ 1

0

f2(x) dx < ∞

and let (nk)k≥1 be a sequence of integers satisfying the Hadamard gap condition (1.1).

The central limit theorem for f(nkx) has a long history. Kac [14] proved that if f is

Lipschitz continuous then f(nkx) satisfies the CLT for nk = 2k and not much later

Erdős and Fortet (see [15], p. 655) showed that this is not any more valid if nk = 2k −1.

Gaposhkin [11] proved that f(nkx) obeys the CLT if nk+1/nk → α where αr is irrational

for r = 1, 2 . . . and the same holds if all the fractions nk+1/nk are integers. To formu-

late more general criteria, let us say that a sequence (nk)k≥1 of positive integers satisfies

Condition D2, if for any fixed nonzero integers a, b, c the number of solutions of

the Diophantine equation

(3.1) ank + bnl = c, k, l ≥ 1

is bounded by a constant K(a, b), independent of c.

Condition D∗
2 (strong D2), if for any fixed integers a 6= 0, b 6= 0, c the number of

solutions of the Diophantine equation (3.1) is bounded by a constant K(a, b), indepen-

dent of c, where for a = b, c = 0 we require also k 6= l.

Condition D2 is a variant of Sidon’s B2 condition, where the bound for the num-

ber of solutions of (3.1) is assumed only for a = b = 1. Gaposhkin [12] proved that
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under minor smoothness assumptions on f , condition D2 implies the CLT for f(nkx).

Recently, Aistleitner and Berkes [1] proved that the CLT holds for f(nkx) provided for

any fixed nonzero integers a, b, c the number of solutions (k, l) of

ank + bnl = c, 1 ≤ k, l ≤ N

is o(N), uniformly in c, and this condition is also necessary. This criterion settles the

CLT problem for f(nkx), but, as we noted, the validity of the CLT does not imply

permutation-invariant behavior of f(nkx). The purpose of this section is to give a pre-

cise characterization for the CLT and LIL for permuted sums
∑N

k=1 f(nσ(k)x).

Our first result gives a necessary and sufficient condition for permuted partial sums
∑N

k=1 f(nσ(k)x) to have only Gaussian limit distributions and gives precise criteria this

to happen for a specific permutation σ.

Theorem 3.1. Let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard

gap condition (1.1) and condition D2. Let f satisfy (1.5) and let σ be a permutation of

N. Then N−1/2
∑N

k=1 f(nσ(k)x) has a limit distribution iff

(3.2) γ = lim
N→∞

N−1

∫ 1

0

(
n∑

k=1

f(nσ(k)x)

)2

dx

exists, and then

(3.3) N−1/2
N∑

k=1

f(nσ(k)x)
D−→ N(0, γ).

If γ = 0, the limit distribution is degenerate.

Theorem 3.1 is best possible in the following sense:

Theorem 3.2. If condition D2 fails, there exists a permutation σ such that the

normed partial sums in (3.3) have a nongaussian limit distribution.

In other words, under the Hadamard gap condition and condition D2, the limit

distribution of N−1/2
∑N

k=1 f(nσ(k)x) can only be Gaussian, but the variance of the

limit distribution depends on the constant γ in (3.2) which, as simple examples show, is

not permutation-invariant. For example, if nk = 2k and σ is the identity permutation,

then (3.2) holds with

γ = γf =

∫ 1

0

f2(x)dx + 2
∞∑

k=1

∫ 1

0

f(x)f(2kx)dx
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(see Kac [14]). Using an idea of Fukuyama [10], one can construct permutations σ of N

such that

lim
N→∞

1

N

∫ 1

0

(
N∑

k=1

f(nσ(k)x)

)2

dx = γσ,f

with γσ,f 6= γf . Actually, the set of possible values γσ,f belonging to all permutations σ

contains the interval If = [‖f‖2, γf ] and it is equal to this interval provided the Fourier

coefficients of f are nonnegative. For general f this is false (for details cf. [2]).

Under the slightly stronger condition D∗
2 we get

Theorem 3.3. Let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard

gap condition (1.1) and condition D∗
2. Let f satisfy (1.5) and let σ be a permutation of

N. Then the central limit theorem (3.3) holds with γ = ‖f‖2.

We now pass to the problem of the LIL.

Theorem 3.4. Let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard

gap condition (1.1) and condition D2. Let f be a measurable function satisfying (1.5),

let σ be a permutation of N and assume that

γ = lim
N→∞

N−1

∫ 1

0

(
N∑

k=1

f(nσ(k)x)

)2

dx

for some γ ≥ 0. Then we have

(3.4) lim sup
N→∞

∑N
k=1 f(nσ(k)x)√
2N log log N

= γ1/2 a.e.

If instead of condition D2 we assume D∗
2, in (3.4) we have γ = ‖f‖.

Theorem 3.2 shows that condition D2 in Theorem 3.1 is best possible: if there

exist nonzero integers a, b and a sequence (cm)m≥1 of integers such that the number of

solutions (k, l), k 6= l of

ank + bnl = cm

tends to infinity as m → ∞, the CLT for f(nσ(k)x) fails for a suitable permutation

σ and a trigonometric polynomial f . We cannot prove the analogous statement in

Theorem 3.4. However, the conclusion of Theorem 3.4 fails to hold for appropriate f

and σ provided there exist nonzero integers a, b, and a fixed integer c, such that the

Diophantine equation (3.1) has infinitely many solutions (k, l), k 6= l.

The previous results describe quite precisely the permutation-invariant CLT and

LIL under the Hadamard gap condition (1.1). If (nk)k≥1 grows faster than exponentially,

i.e.

nk+1/nk → ∞
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then condition D∗
2 is satisfied, and thus so are the permutational-invariant CLT and

LIL. In [3] we have shown that given a 1-periodic Lipschitz α function (0 < α ≤ 1)

satisfying
∫ 1

0
f(x) dx = 0, under the slightly stronger gap condition

∞∑

k=1

(nk/nk+1)
α < ∞, 0 < α < 1

there exists a sequence (gk(x))k≥1 of measurable functions on (0, 1), i.i.d. in the proba-

bilistic sense, such that

∞∑

k=1

|f(nkx) − gk(x)| < ∞ a.e.

This implies not only the CLT and LIL for any rearrangement of (f(nkx))k≥1, but also

the permutation-invariance of practically all asymptotic properties of (f(nkx))k≥1.

§ 4. Proofs

To keep our paper at reasonable length, we will give here the proofs only for the

CLT case. The arguments for the LIL use similar ideas, but they are considerably more

complicated and will be given in a subsequent paper. As the proof of Theorem 3.1 will

show, in the case when f is a trigonometric polynomial of degree d, it suffices to as-

sume condition D2 with coefficients a, b satisfying |a| ≤ d, |b| ≤ d. In particular, in the

trigonometric case f(x) = cos 2πx it suffices to allow only coefficients ±1 in condition

D2, i.e. condition D2 reduces to Sidon’s B2 condition mentioned in Section 3. This

condition is satisfied for any Hadamard lacunary sequence (nk)k≥1 (see e.g. Zygmund

[22, pp. 203-204]) and thus Theorem 2.1 is contained in the proof of Theorem 3.1.

Theorem 3.3 follows from Theorem 3.1 and the following

Lemma 4.1. Let (nk)k≥1 be a lacunary sequence of positive integers satisfying

condition D
(s)
2 , and let f be a function satisfying (1.5). Then for any permutation σ of

N

lim
N→∞

N−1

∫ 1

0

(
N∑

k=1

f(nσ(n)x)

)2

dx = ‖f‖.

Proof of Lemma 4.1: For the simplicity of writing we assume that f is an even

function, i.e. the Fourier series of f is of the form

f ∼
∞∑

j=1

aj cos 2πjx.
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Let ε > 0 be arbitrary. We choose d > ε−1 and define

p(x) =

d∑

j=1

aj cos 2πjx, r(x) =

∞∑

j=d+1

aj cos 2πjx.

Since by assumption Var[0,1] f < ∞ we have

|aj| = O
(
j−1
)
, j → ∞

(cf. Zygmund [22, p. 48]), and therefore

(4.1) ‖r‖ =

∞∑

j=d+1

a2
j/2 ≪

∞∑

j=d+1

j−2 ≪ d−1 ≪ ε

By a classical norm inequality for lacunary series we have

(4.2)

∥
∥
∥
∥
∥

N∑

k=1

r(nσ(k)x)

∥
∥
∥
∥
∥
≪ d−1/2

√
N,

where the implied constant depends only on f and the growth factor q (see e.g. [1,

Lemma 2.1]). Thus we have

∥
∥
∥
∥
∥

N∑

k=1

r(nσ(k)x)

∥
∥
∥
∥
∥
≪

√
εN.

By the orthogonality of the trigonometric system and Minkowski’s inequality we have

∥
∥
∥
∥
∥

N∑

k=1

f(nσ(k)x)

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥

N∑

k=1

p(nσ(k)x)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

N∑

k=1

r(nσ(k)x)

∥
∥
∥
∥
∥

≪










d∑

j=1

N∑

k=1

a2
j +

N∑

k1,k2=1

d∑

j1,j2=1
︸ ︷︷ ︸

(j1,k1)6=(j2,k2)

1(j1nσ(k1) = j2nσ(k2))










1/2

+
√

εN.

Since by condition D
(s)
2 the number of nontrivial solutions of j1nk1

− j2nk2
= 0 is

bounded by a constant (where we can choose the same constant for all finitely many

possible values of j1, j2), we get

(4.3)

∥
∥
∥
∥
∥

N∑

k=1

f(nσ(k)x)

∥
∥
∥
∥
∥
≤

√
N‖p‖ + O(

√
εN).
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A lower bound can be found in exactly the same way, and since the implied constant in

(4.3) does not depend on ε (and d, resp.), we obtain, utilizing (4.1),
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥

N∑

k=1

f(nσ(k)x)

∥
∥
∥
∥
∥
−

√
N‖f‖

∣
∣
∣
∣
∣
≪

√
εN,

where the constant implied by ≪ is independent of ε. Since ε can be chosen arbitrarily

small, this proves the lemma. �

The proof of Theorem 2.3 is implicit in our paper [2]. Let us say that an increasing

sequence (nk)k≥1 of positive integers satisfies Condition R∗∗ if for any p ≥ 2 the number

of nondegenerate solutions of the Diophantine equation

(4.4) ±nk1
± . . .± nkp

= 0, k1, . . . , kp ≥ 1

is at most C exp(pα) for some constants C, α > 0 (here a solution of (4.4) is called

nondegenerate if no subsum of the left hand side equals 0). As an analysis of the proof

of the main theorem in [2] shows, the proof uses only condition R∗∗, and by collecting

the terms in (4.4) with equal indices shows that condition R∗ implies condition R∗∗.

To prove the remark made at the end of Section 2, let ωk = (log k)α and let nk,

k = 1, 2, . . . be independent random variables such that nk is uniformly distributed over

the integers of the interval Ik = [a(k − 1)ωk−1 , akωk ]. Note that the length of Ik is at

least aωk(k − 1)ωk−1 ≥ aω1 for k = 2, 3, . . . and equals a for k = 1 and thus choosing a

large enough, each Ik contains at least one integer. We claim that, with probability 1,

the sequence (nk)k≥1 satisfies condition R∗. To see this, set ηk = 1
2ω

1/2
k , then

(4.5) (2k)η2
k+2ηk ≤ (2k)ωk/2 ≤ k−2|Ik| for k ≥ k0

since, as we noted, |Ik| ≥ aωk(k − 1)ωk−1 ≥ (k/2)ωk−1 for large k. Let k ≥ 1 and

consider the numbers of the form

(4.6) (a1ni1 + . . . + asnis
)/d

where 1 ≤ s ≤ ηk, 1 ≤ i1, . . . , is ≤ k − 1, a1, . . . as, d are nonzero integers with

|a1|, . . . , |as|, |d| ≤ ηk. Since the number of values in (4.6) is at most (2k)η2
k+2ηk , (4.5)

shows that the probability that nk equals any of these numbers is at most k−2. Thus

by the Borel-Cantelli lemma, with probability 1 for k ≥ k1, nk will be different from all

the numbers in (4.6) and thus the equation

a1ni1 + . . . + asnis
+ as+1nk = 0

has no solution with 1 ≤ s ≤ ηk, 1 ≤ i1 < . . . < is ≤ k − 1, 0 < |a1|, . . . , |as+1| ≤ ηk.

By monotonicity, the equation

(4.7) a1ni1 + . . . + asnis
= 0, i1 < . . . < is
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has no solutions provided the number of terms is at most ηk, 0 < |a1|, . . . , |as| ≤ ηk and

is ≥ k. Thus the number of solutions of (4.7) where s ≤ ηk and 0 < |a1|, . . . , |as| ≤ ηk

is at most kηk ≪ exp(ηβ
k ) for some β > 0. Since the sequence [ηk] takes all sufficiently

large integers p, the sequence (nk)k≥1 satisfies condition R∗.

It remains now to prove Theorems 3.1 and 3.2, which will be done in the next two

sections of the paper.

§ 4.1. Proof of Theorem 3.1.

In this section we give the proof of Theorem 3.1. The proof of the main lemma

(Lemma 4.3) uses ideas of Révész [18]. We will need the following simple smoothing

inequality.

Lemma 4.2. Let P1, P2 be probability measures on R, and write p1, p2 for the

corresponding characteristic functions. Let P ∗
1 = P1 ⋆ H, P ∗

2 = P2 ⋆ H, where H is a

normal distribution with mean zero and variance τ2. Then for all y > 0, T > 0,

|P ∗
1 ([−y, y])− P ∗

2 ([−y, y])| ≤ y

∫

s∈[−T,T ]

|p1(s) − p2(s)| ds

+4y(τ−1 exp(−T 2τ2/2)).

Proof: Letting h(s) = exp(−τ2s2/2), the characteristic functions of P ∗
1 and P ∗

2

are p∗1 = p1h and p∗2 = p2h and thus for the densities ρ1 and ρ2 of P ∗
1 and P ∗

2 we have,

letting w(s) = p1(s) − p2(s),

|ρ1(u) − ρ2(u)| ≤ (2π)−1

∣
∣
∣
∣

∫

R

e−isu (p∗1(s) − p∗2(s)) ds

∣
∣
∣
∣

≤ (2π)−1

∫

s∈[−T,T ]

|w(s)|ds + (2π)−1 2

∫

s 6∈[−T,T ]

|h(s)|ds.

Thus

|P ∗
1 ([−y, y])− P ∗

2 ([−y, y])| ≤
∫

[−y,y]

|ρ1(u) − ρ2(u)|du

≤ y

∫

s∈[−T,T ]

|w(s)| ds + y

∫

s 6∈[−T,T ]

|h(s)| ds,

and the statement of the lemma follows from
∫

s 6∈[−T,T ]

|h(s)| ds = 2

∫ ∞

T

e−τ2s2/2 ds ≤ 4τ−1e−τ2T 2/2. �

Let f be a function satisfying (1.5) and (nk)k≥1 a sequence satisfying the Hadamard

gap condition (1.1) and condition D2, and let

p(x) =

d∑

j=1

(aj cos 2πjx + bj sin 2πjx)
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be the d-th partial sum of the Fourier series of f for some d ≥ 1. By condition D2 we

can find a number C1 (depending on d) such that for any a, b satisfying |a| ≤ d, |b| ≤ d

(4.8) # {k1, k2 ≥ 1 : ank1
− bnk2

= c} ≤ C1,

for all c ∈ Z. We set

γN =

∥
∥
∥
∥
∥

N∑

k=1

f(nσ(k)x)

∥
∥
∥
∥
∥

.

Lemma 4.3. There exists an N0, depending only on p, d and the constants im-

plied by condition D2 (but not on σ) such that for any N ≥ N0 there exists a set

A ⊂ {1, . . . , N} with #A ≥ N − N/(logN)1/2 such that

∣
∣
∣
∣
∣
E

(

exp

(

isN−1/2
∑

k∈A

p(nkx)

))

− e−s2δ2/2

∣
∣
∣
∣
∣
≤ 2N−1/8

for all s ∈ [−(log N)1/8, (log N)1/8], where

δ = N−1

∥
∥
∥
∥
∥

∑

k∈A

p(nσ(k)x)

∥
∥
∥
∥
∥

.

Proof. For the simplicity of writing we assume that

p(x) =

d∑

j=1

aj cos 2πjx

is an even function; the proof in the general case is similar. Let (νk)1≤k≤N denote the

sequence (nσ(k))1≤k≤N arranged in increasing order. Put

η = N−1/2
N∑

k=1

p(νkx)

and

∆ =
{

k ∈ {1, . . . , N} : k mod ⌈(log N)1/2 + logq(2d)⌉ 6∈ {0, . . . , ⌈logq(2d)⌉
}

∆(h) =

{

k ∈ ∆ :
k

⌈(log N)1/2 + logq 2d⌉ ∈ [h, h + 1)

}

, h ≥ 0,

A = {k ≥ 1 : σ(k) ∈ ∆},

α(s) =
∏

h≥0



1 + isN−1/2
∑

k∈∆(h)

p(νkx)



 .
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The sets ∆(h) are constructed in such a way that for k1 ∈ ∆(h1), k2 ∈ ∆(h2), where

h1 < h2, we have

(4.9) nk2
/nk1

> qk2−k1 ≥ q⌈logq(2d)⌉ ≥ 2d.

Using

(4.10) eix = (1 + ix)e−x2/2+w(x), |w(x)| ≤ |x|3

we get

eisη =
∏

h≥0

exp



isN−1/2
∑

k∈∆(h)

p(νkx)



(4.11)

= α(s) exp




−(2N)−1

∑

h≥0

s2




∑

k∈∆(h)

p(νkx)





2



(4.12)

× exp




∑

h≥0

w



isN−1/2
∑

k∈∆(h)

p(νkx)







 .(4.13)

We have

∑

h≥0




∑

k∈∆(h)

p(νkx)





2

(4.14)

=
∑

h≥0

∑

k1,k2∈∆(h)

d∑

j1,j2=1

aj1aj2

2
(cos(2π(j1νk1

+ j2νk2
)x) + cos(2π(j1νk1

− j2νk2
)x))

=
∑

h≥0

∑

k1,k2∈∆(h)

d∑

j1,j2=1

aj1aj2

2
(cos(2π(j1νk1

+ j2νk2
)x))

+
∑

h≥0

∑

k1,k2∈∆(h)

d∑

j1,j2=1
︸ ︷︷ ︸

j1νk1
−j2νk2

=0

aj1aj2

2

+
∑

h≥0

∑

k1,k2∈∆(h)

d∑

j1,j2=1
︸ ︷︷ ︸

j1νk1
−j2νk2

6=0

aj1aj2

2
(cos(2π(j1νk1

− j2νk2
)x))

= δ2N + β(x),(4.15)
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where

δ = N−1










∑

h≥0

∑

k1,k2∈∆(h)

d∑

j1,j2=1
︸ ︷︷ ︸

j1νk1
−j2νk2

=0

aj1aj2

2










1/2

and

β(x) =
∑

h≥0

∑

k1,k2∈∆(h)

d∑

j1,j2=1

aj1aj2

2
(cos(2π(j1νk1

+ j2νk2
)x))

+
∑

h≥0

∑

k1,k2∈∆(h)

d∑

j1,j2=1
︸ ︷︷ ︸

j1νk1
−j2νk2

6=0

aj1aj2

2
(cos(2π(j1νk1

− j2νk2
)x)) .

Note that

δ2 = N−1

∫ 1

0




∑

h≥0

∑

k∈∆(h)

p(νkx)





2

dx = N−1

∫ 1

0

(
∑

k∈∆

p(νkx)

)2

dx,

since by (4.9) the functions

∑

k∈∆(h1)

p(νkx) and
∑

k∈∆(h2)

p(νkx)

are orthogonal for h1 6= h2. From (4.11), (4.12), (4.13), (4.14) and (4.15) we conclude

eisη = α(s) exp



−s2

2

(

δ2 +
β

N

)

+
∑

h≥0

w



isN−1/2
∑

k∈∆(h)

p(νkx)









and, writing

w∗(s, x) = w



isN−1/2
∑

k∈∆(h)

p(νkx)



 ,

(4.10) implies

|w∗(s, x)| ≤

∣
∣
∣
∣
∣
∣

sN−1/2
∑

k∈∆(h)

p(νkx)

∣
∣
∣
∣
∣
∣

3

(4.16)

≤ |s|3 ‖p‖3
∞ (log N)3/2 N−3/2.(4.17)
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We note that

|α(s)| ≤
∏

h≥0




1 + N−1s2




∑

k∈∆(h)

p(νkx)





2





1/2

(4.18)

≤ exp




(2N)−1

∑

h≥0

s2




∑

k∈∆(h)

p(νkx)





2





≤ exp

(
s2

2

(

δ2 +
β(x)

N

))

(4.19)

and obtain, for ϕ(s) = Eeisη, using Eα(s) = 1 and (4.18), (4.19),
∣
∣
∣ϕ(s) − e−s2δ2/2

∣
∣
∣

=

∣
∣
∣
∣
E

(

α(s) exp

(

−s2

2

(

δ2 +
β(x)

N

)

+ w∗(s, x)

))

− e−s2δ2/2

∣
∣
∣
∣

=

∣
∣
∣
∣
E

(

α(s)

(

exp

(

−s2

2

(

δ2 +
β(x)

N

)

+ w∗(s, x)

)

− e−s2δ2/2

))∣
∣
∣
∣

≤
∣
∣
∣
∣
E

(

|α(s)|
∣
∣
∣
∣
exp

(

−s2

2

(

δ2 +
β(x)

N

)

+ w∗(s, x)

)

− e−s2δ2/2

∣
∣
∣
∣

)∣
∣
∣
∣

≤E

∣
∣
∣ew∗(s,x) − 1

∣
∣
∣+ E

∣
∣
∣
∣
exp

(
s2

2

β(x)

N

)

− 1

∣
∣
∣
∣
.

If |s| ≤ (log N)−1/8, then by (4.16) and (4.17)

‖p‖3
∞ (log N)15/8 N−3/2 ≤ N−1 for N ≥ N1

with N1 depending only on p, and hence
∣
∣
∣ew∗(s,x) − 1

∣
∣
∣ ≤ 2N−1, for N ≥ N1.

On the other hand, the function β(x) is a sum of at most

2
∑

h≥0

d2
∣
∣
∣∆(h)

∣
∣
∣

2

≤ 2d2N(log N)1/2

trigonometric functions, and the coefficient of each of this summands is bounded by

max1≤j≤d a2
j/2 ≤ C2, where C2 depends only on p and d. Since by assumption (nk)k≥1

satisfies condition D2, there can be at most 4d2C1 summands giving the same frequency

(the constant C1 is defined in (4.8)). This means, writing β(x) in the form

β(x) =

∞∑

j=1

cj cos 2πjx
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we have

(4.20) |cj | ≤ 4d2C1C2, j ≥ 1, and ‖β‖∞ ≤
∞∑

j=1

|cj | ≤ 2C2d
2N
√

log N

Therefore

‖β‖2 =

∞∑

j=1

c2
j/2 ≤ max

j≥1
|cj |

∞∑

j=1

|cj| ≤ (4d2C1C2)
2 2C2d

2N
√

log N,

and

P(|β| > N2/3) ≤ N−1/4 for N ≥ N2,

where N2 depends only on p, d, C1. Hence by (4.20)

E

∣
∣
∣
∣
exp

(
s2

2

β(x)

N

)

− 1

∣
∣
∣
∣

≤
∣
∣
∣
∣
exp

(
s2

2

‖β‖∞
N

)

− 1

∣
∣
∣
∣
N−1/4 +

∣
∣
∣
∣
exp

(
s2

2

N2/3

N

)

− 1

∣
∣
∣
∣
,

and, assuming

|s| ≤ (log N)1/8,

we get

E

∣
∣
∣
∣
exp

(
s2

2

β(x)

N

)

− 1

∣
∣
∣
∣

≤
∣
∣
∣exp

(

C2d
2(log N)5/8

)

− 1
∣
∣
∣N−1/4 +

∣
∣
∣
∣
exp

(
(log N)1/8N2/3

N

)

− 1

∣
∣
∣
∣

≤N1/8 for N ≥ N3,

where N3 depends on d, p, C1. Combining these estimates, we have

(4.21) |ϕ(s) − es2δ2/2| ≤ 2N−1/8 for N ≥ N4

where N4 also depends on p, d, C1. This proves Lemma 4.3. �

Proof of Theorem 3.1. Let y and ε > 0 be given. We choose d > ε−2 and write p and

r, respectively, for the d-th partial sum and d-th remainder term of the Fourier series

of f . Assume that N ≥ N0 with the N0 in Lemma 4.3, and let A be the set in Lemma

4.3. By Lemma 4.3 we have

|ϕN (s) − es2δ2
N /2| ≤ 2N−1/8,
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where

ϕN (s) = EeisηN , ηN =
∑

k∈A

p(nσ(k)x),

δ2
N = N−1

∫ 1

0

(
∑

k∈A

p(nσ(k)x)

)2

dx.

We recall that

γ2
N = N−1

∫ 1

0

(
N∑

k=1

f(nσ(k)x)

)2

dx.

By (4.2) we have

(4.22)

∥
∥
∥
∥
∥

N∑

k=1

r(nσ(k)x)

∥
∥
∥
∥
∥
≤ C4d

−1/2
√

N,

where C4 depends on f, q. By Minkowski’s inequality, and using (4.22) for our choice

of d > ε−2,

γN

√
N ≤

∥
∥
∥
∥
∥

N∑

k=1

p(nσ(k)x)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

N∑

k=1

r(nσ(k)x)

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥

N∑

k=1

p(nσ(k)x)

∥
∥
∥
∥
∥

+ C4εN
1/2,

and, since
∥
∥
∥
∑N

k=1 p(nσ(k)x)
∥
∥
∥ ≤ C5

√
N (for C5 depending on f, q, again by [1, Lemma

2.1]), we obtain

γ2
N ≤ N−1

∥
∥
∥
∥
∥

N∑

k=1

p(nσ(k)x)

∥
∥
∥
∥
∥

2

+ C6ε

(C6 depends on f, q). Since N − #A ≤ N/
√

log N we have

γ2
N − δ2

N ≤C6ε + 2N−1

∫ 1

0

∑

k1,k2∈{1,...,N}, k2 6∈∆

p(νk1
x)p(νk2

x) dx

≤C6ε + 2N−1‖p‖2
∑

k2∈{1,...,N},k2 6∈∆

#{k1 ∈ {1, . . . , N} : k1/k2 ∈ [1/d, d]}

≤C6ε + 2N−1‖p‖2N(log N)−1/2⌈logq 2d⌉
≤C7ε for N ≥ N5,

where C7 depends on f, q, p, d and N5 depends on p, q, d. We assume s ≤ ε−1/2, and, in

view of (4.21), we arrive at

|ϕ(s) − es2γ2
N /2| ≤ 2N−1/8 + |es2γ2

N/2 − es2σ2
N /2| ≤ C8ε
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for N ≥ N6, where N6 and C8 depend on y, f, q, p, d. We use Lemma 4.2 with

p1(s) = ϕ(s), p2(s) = es2γ2
N /2, T = ε−1/2, τ = ε1/3

to get (using the notation from this lemma) for all y > 0

|P ∗
1 ([−y, y])− P ∗

2 ([−y, y])| ≤ y

∫

s∈[−T,T ]

C8ε ds + 4yε−1/3e−ε−1/3/2

for sufficiently large N (depending on f, q, p, d), provided ε is sufficiently small, which

we can assume. Thus, if P1, P2 are the measures corresponding to p1, p2, we get, using

(4.22),

P

(

N−1/2
N∑

k=1

f(nσ(k)x) ∈ [−y, y]

)

≤ P1([−y − ε1/6, y + ε1/6]) + P

(

N−1/2
N∑

k=1

r(nσ(k)x) 6∈ [−ε1/6, ε1/6]

)

≤ P ∗
1 ([−y − 2ε1/6, y + 2ε1/6]) + H(R\[−ε1/6, ε1/6]) + C4ε

2/3

≤ P ∗
2 ([−y − 2ε1/6, y + 2ε1/6]) + 2C8(y + 2ε1/6)ε1/2

+ 4(y + 2ε1/6)ε−1/3e−ε−1/3/2 +
2√

2πτ2

∫ ∞

ε1/6

e−u2/(2τ2) du + C4ε
2/3

≤ P2([−y − 3ε1/6, y + 3ε1/6]) + 2C8(y + 2ε1/6)ε1/2

+ 4(y + 2ε1/6)ε−1/3e−ε−1/3/2 +
4√

2πτ2

∫ ∞

ε1/6

e−u2/(2τ2) du + C4ε
2/3

≤ P2([−y, y])

+
2

√

2πγ2
N

∫ y+3ε1/6

y

e−u2/(2γ2
N ) du(4.23)

+ 2C8(y + 2ε1/6)ε1/2 + 4(y + 2ε1/6)ε−1/3e−ε−1/3/2(4.24)

+
4√

2πε2/3

∫ ∞

ε1/6

e−u2/(2ε2/3) du + C4ε
2/3(4.25)

It is clear that for γN → 0 the limit distribution of N−1/2
∑N

k=1 f(nσ(k)x) is the distri-

bution concentrated at 0. Now assume

γN → γ as N → ∞ for some γ > 0.

Then lim infN→∞ γN > 0, and since ε can be chosen arbitrarily, the value of (4.23),

(4.25) and (4.24) can also be made arbitrarily small. This means that for any given

ε̂ > 0 and sufficiently large N

P

(

x : N−1/2
N∑

k=1

f(nσ(k)x) ∈ [−y, y]

)

(4.26)
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≤ 1
√

2πγ2
N

∫ x

−x

e−u2/(2γ2
N ) du + ε̂

≤ 1
√

2πγ2

∫ x

−x

e−u2/(2γ2) du + 2ε̂.

In the same way we can get a lower bound for (4.26), proving the first part of Theorem

3.1. On the other hand, the sequence γN is bounded since (nk)k≥1 is lacunary and thus

if γN is not convergent, it has at least two accumulation points γ(1) 6= γ(2). Thus there

exist two subsequences of N along which N−1/2
∑N

k=1 f(nσ(k)x) converges to different

distributions N (0, γ(1)), N (0, γ(2)) (one of them may be the measure concentrated at

0, in case γ(1) = 0 or γ(2) = 0). But then N−1/2
∑N

k=1 f(nσ(k)x) does not have a single

limit distribution as N → ∞.

§ 4.2. Proof of Theorem 3.2.

In this section we prove Theorem 3.2 stating that the Diophantine condition D2

in Theorem 3.1 is best possible. In other words we show that if a lacunary sequence

(nk)k≥1 does not satisfy condition D2, then there exist a trigonometric polynomial f

satisfying (1.5) and a permutation σ : N → N such that

N−1/2
N∑

k=1

f(nσ(k)x)

has a non-Gaussian limiting distribution.

Let (nk)k≥1 be given, and assume that condition D2 does not hold for this sequence.

Then there exist integers 0 < a ≤ b and a sequence (cℓ)ℓ≥1 of different positive integers

such that

# {k1, k2 ∈ N : ank1
− bnk2

= cℓ} → ∞ as ℓ → ∞.

Throughout this section we will assume that a < b; the case a = b can be handled in a

similar way, with some minor changes.

We divide the set of positive integers into consecutive blocks ∆1, ∆2, . . . , ∆m, . . .

of lenghts 221

, 222

, . . . , 22m

, . . . ; we will write |∆m| for the number of elements of a block

∆m. We can find integers cm, m ≥ 1 and a permutation σ : N → N such that the

following holds:

σ(k + 1) > σ(k), k ≥ 1

σ(2k) > 2b σ(2k − 1), k ≥ 1

anσ(2k) − bnσ(2k−1) = cm, 2k, 2k − 1 ∈ ∆m, m ≥ 1.(4.27)
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Let

f(x) = cos 2πax + cos 2πbx.

To show that

N−1/2
N∑

k=1

f(nσ(k)x)

does not converge to a Gaussian distribution, we will show that

∑

k∈∆m
f(nσ(k)x)

√

|∆m|

has a non-Gaussian limit distribution as m → ∞. Since the lengths of the block ∆m

dominates |∆1| + · · · + |∆m−1|, this means that

∑M
m=1

∑

k∈∆m
f(nσ(k)x)

√
∑M

m=1 |∆m|

also has a non-Gaussian limiting distribution.

Lemma 4.4.
∣
∣
∣
∣
∣
E

(

exp

(

is
∑

k∈∆m
f(nσ(k)x)

√

|∆m|

))

− E

(

e−s2(1+cos 2πx)/2
)
∣
∣
∣
∣
∣
≪ |∆m|−1/8,

for all s ∈ [−(log |∆m|)1/8,−(log |∆m|)1/8].

Proof. We write (νk)k≥1 for (nσ(k))k≥1 and define

ηm =

∑

k∈∆m
f(νkx)

√

|∆m|
.

For different k1, k2, for which 2k1 − 1, 2k2 − 1 ∈ ∆m, the functions

1 +
is (f(ν2k1−1x) + f(ν2k1

x))√
2

and 1 +
is (f(ν2k2−1x) + f(ν2k2

x))√
2

are orthogonal. This means, writing

αm(s) =
∏

k≥1: 2k−1∈∆m

(

1 +
is (f(ν2k−1x) + f(ν2kx))

√

2|∆m|

)

,

we have

E

(

αm(s)
)

= 1.
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Using again (4.10), we get

eisηm =
∏

k≥1: 2k−1∈∆m

exp

(

is (f(ν2k−1x) + f(ν2kx))
√

2|∆m|

)

= αm(s) exp




∑

k≥1: 2k−1∈∆m

−s2 (f(ν2k−1x) + f(ν2kx))
2

2|∆m|



 Wm(s),

where

Wm(s) = exp




∑

k≥1: 2k−1∈∆m

w

(

is (f(ν2k−1x) + f(ν2kx))
√

2|∆m|

)

 .

By (4.27) we have

∑

k≥1: 2k−1∈∆m

(f(ν2k−1x) + f(ν2kx))
2

=
∑

k≥1: 2k−1∈∆m

(cos 2πaν2k−1x + cos 2πbν2k−1x + cos 2πaν2kx + cos 2πbν2kx)
2

= |∆m| +




∑

k≥1: 2k−1∈∆m

cos 2π(aν2k − bν2k1
)x

2



+ Rm(x)

= |∆m| +




∑

k≥1: 2k−1∈∆m

cos 2πcmx

2



+ Rm(x)

= |∆m|
(

1 +
cos 2πcmx

4

)

+ Rm(x),

where Rm(x) is a sum of cosine functions with coefficients 1/2 and frequencies

aν2k−1, bν2k−1, aν2k, bν2k, aν2k−1 ± bν2k−1, aν2k−1 ± aν2k, aν2k−1 ± bν2k,

bν2k−1 + aν2k, bν2k−1 ± bν2k, aν2k ± bν2k,

where k runs through the set {k ≥ 1 : 2k − 1 ∈ ∆m}. If we write

R(1)
m (x) =

1

2

∑

k≥1: 2k−1∈∆m

cos 2πaν2k−1x,

R(2)
m (x) =

1

2

∑

k≥1: 2k−1∈∆m

cos 2πbν2k−1x,

...

R(14)
m (x) =

1

2

∑

k≥1: 2k−1∈∆m

cos 2π(aν2k + bν2k)x,
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R(15)
m (x) =

1

2

∑

k≥1: 2k−1∈∆m

cos 2π(aν2k − bν2k)x,

the function Rm(x) can be split into 15 lacunary cosine series, each consisting of ∆m/2

elements. Observing

|αm(s)| ≤
∏

k≥1: 2k−1∈∆m

(

1 +
4s2

2|∆m|

)1/2

≤ es2/2(4.28)

and, in view of (4.10),

|Wm(s) − 1| ≤

∣
∣
∣
∣
∣
∣

exp




|∆m|

2

∣
∣
∣
∣
∣

2s
√

2|∆m|

∣
∣
∣
∣
∣

3


− 1

∣
∣
∣
∣
∣
∣

≤ e4|∆m|−1/2 − 1

≤ 8

|∆m|1/2
.

We have
∣
∣
∣
∣
Eeisηm − E exp

(

−s2

2

(

1 +
cos 2πx

4

))∣
∣
∣
∣

(4.29)

=

∣
∣
∣
∣
E

(

αm(s) exp

(

−s2

2

(

1 +
cos 2πcmx

4

))

exp

(−s2Rm(x)

2|∆m|

)

Wm(s)

)

−E exp

(

−s2

2

(

1 +
cos 2πcmx

4

))∣
∣
∣
∣

≤
∣
∣
∣
∣
E

(

αm(s) exp

(

−s2

2

(

1 +
cos 2πcmx

4

))

×(4.30)

×
(

exp

(−s2Rm(x)

2|∆m|

)

Wm(s) − 1

))∣
∣
∣
∣

(4.31)

+

∣
∣
∣
∣
E

(

(αm(s) − 1) exp

(

−s2

2

(

1 +
cos 2πcmx

4

)))∣
∣
∣
∣

(4.32)

In view of (4.28), the term in lines (4.30), (4.31) is at most

max
x∈(0,1)

(

exp

(

−s2 cos 2πcmx

8

))

E

∣
∣
∣
∣
exp

(−s2Rm(x)

2|∆m|

)

Wm(s) − 1

∣
∣
∣
∣

≤ es2/8
E

∣
∣
∣
∣
exp

(−s2Rm(x)

2|∆m|

)

Wm(s) − 1

∣
∣
∣
∣
.(4.33)

It is easy to see that

‖Rm‖ ≤ 15|∆m|
and therefore

P

{

|Rm| ≥ 15|∆m|2/3
}

≤ ∆−1/3
m .



On permutations of lacunary series 23

Thus

E

∣
∣
∣
∣
exp

(−s2Rm(x)

2|∆m|

)

Wm(s) − 1

∣
∣
∣
∣

(4.34)

≤
(

1 +
15s2

|∆m|1/3

)(

1 +
8

|∆m|1/2

)

− 1 +
15s2|∆m|
4|∆m|4/3

≪ s2|∆m|−1/3,(4.35)

where the implied constant does not depend on m, s.

The function αm(s) is a sum of the constant term 1 plus at most 22|∆m| cosine

functions with coefficients at most 1 (provided |s| ≤ |∆m|1/2) and frequencies at least

24|∆m|. Thus (4.32) is at most

22|∆m|2−4|∆m| max
x∈(0,1)

∣
∣
∣
∣

d

dx
exp

(

−s2

2

(

1 +
cos 2πcmx

4

))∣
∣
∣
∣

≤ 2−2|∆m| e5s2/8 πs2cm

4
.(4.36)

Combining (4.33), (4.34), (4.35) and (4.36) we see that (4.29) is at most

≪ es2/8s2|∆m|−1/3 + 2−2|∆m| e5s2/8 πs2cm

4
.

In particular, since we assumed |s| ≤ (log |∆m|)1/8, we get that the expression (4.29) is

at most

≪ |∆m|−1/8,

proving Lemma 4.4.

Proof of Theorem 3.2. The proof of Theorem 3.2 can be obtained from Lemma 4.4 like

the proof of Theorem 3.1 was obtained from Lemma 4.3 in Section 4.1. The normed

partial sums

|∆m|−1/2
∑

k∈∆m

f(nσ(k)x)

have a limiting distribution which is non-Gaussian, and since the set ∆m is much larger

than the union of the sets ∆1, . . . , ∆m−1, the same distribution is the limit distribution

of

N−1/2
N∑

k=1

f(nσ(k)x).

This proves Theorem 3.2.
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Tôhoku Math. J. (2), 24:319–329, 1972.

[22] A. Zygmund. Trigonometric series. Vol. I, II. Cambridge Mathematical Library. Cam-

bridge University Press, Cambridge, third edition, 2002.


