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Abstract

We prove a.s. limit theorems corresponding to the classical Darling—Erdos theorem for the maxima of
normalized partial sums of i.i.d. random variables. Our results yield the analogue of the a.s. central limit
theorem for the Darling—Erd6s max functional and its variants. Unlike in standard a.s. central limit theory,
our theorems involve nonlogarithmic averages.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let X1,X,,... be i.id. r.v.’s with EX; =0,EX] =1 and let S, =X, +---+ X,. By the
classical theorem of Darling and Erdos (1956) we have, under slight additional moment
conditions,

Sj 9
dk(f?j&éikj;—ﬁk) — H, (1
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where

log log log k — log4n
2(21og log k)'/?

o = (2log log k)'%, B, = (2log log k)" + (k=3) 2)

and H is the distribution with distribution function e™® . Darling and Erdds (1956) assumed
E|X ]} <o0; Oodaira (1976) and Shorack (1979) weakened this to E|X|**°<oo. An optimal
condition was given by Einmahl (1989).

The purpose of this paper is to study the asymptotic behavior of the more general functional

S
Mg): max —L

KfR<i<k N
where f: R™ — R' is a nondecreasing function with 1<f(x)<x. For f(x) > oo the limit
distribution of M k(f) is again the extremal distribution e~ . Indeed, relation (30) at the end of our
paper shows that

dPm —p"y 5 H, 3)
where

al’ = 2log log f(k))'/?
log log log f(k) — log4n

2(2log log £ (k))'/?

with the same H as in (1). In the case f(x) = ¢ (1 <c<o0o) we get a different behavior: in this case
Mg) remains bounded in probability and it follows easily from Donsker’s theorem that

b = (21og log f (k)" +

“4)

M2 G, ()

where G, is the distribution of sup;,.<,<; W(?)/ V1, where W is a Wiener process. To see the
connection between (3) and (5), let us write (5) in the equivalent form

occ(Mg) — ﬁc)iHc as k — oo,

where H.(x) = G.(f, + x/a.). The last relation shows that (3) remains valid in the extreme case
f(x) = ¢, but the limit A should be replaced by H.. Using scaling and the Darling—Erdos theorem
for the Wiener process, it is easy to see that lim._, o H.(x) = H(x) for all x. Thus, relation (3) is
formally the limit of (5) as ¢ — o©.

The previous remarks describe the distributional behavior of M E(f) completely. The purpose of
the present paper is to prove almost sure versions of these results in the spirit of the a.s. central
limit theory. In the case f(x) = ¢ an almost sure version of (5) was obtained by Antonini and
Weber (2004), who showed that

: [N | S;
A}Enm Tog N kzz; %l{k/r}lga}ik j <x} = G(x) a.s. for any x € R. (6)
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On the other hand, in the case f(x) = x it was proved by Berkes and Csaki (2001) that under the
additional moment condition E|X|**° <oco (6>0) we have

1 1 S; .
g A < - - . .
1\} c log log NZ klog k { <1I<Ilja<xk i ﬁk) x} e a.s. forany x € R (7)

Note that in (6) and (7) we have different averaging processes; this is due to the fact that the
dependence of the sequence M for f(x) = x is much stronger than for f(x) = ¢ (as reflected by
the covariance estimates in Antomnl and Weber (2004) and Berkes and Csaki (2001)) and thus
the indicators in (7) require a stronger averaging method to converge a.s. Since (3) connects
the extremal cases (1) and (5), it is natural to expect that the a.s. version of (3) will involve
averaging processes which change continuously from logarithmic to loglog average as f changes
between f(x) = ¢ and f(x) = x. This is indeed the case, as the main results of our paper will show.
We will prove:

Theorem 1. Let X, X,,... be iid random variables with EX, =0, EX% =1 and
EX2(10g+|X1|) <oo, a>1. Let S, =X +---+ X, and let f: Rt — RY be a nondecreasing
function with 1<f(x)<x1/4 f(x) — +oo. Let

Zi = dD(u? — ) ®)

with a;, ,b(f) defined in (4) and let (c,) be a positive nondecreasing sequence satisfying c,+1/c, = O(1)
and

sy ZACn,  Cn /n'/® " is nonincreasing )

Jor some constant 0<A<1. (Here, and in the sequel, c; is meant as cy;) for nonintegral j.) Then for
any x € R we have

_ <yl —e ¢
ngnoo Z dil{Z,<x}=¢ a.s. (10)
where
dn = 1Og(cn+l/cn)a D, = 10g Cnt1- (11)
Theorem 2. Let X1, X>5,... be independent r.v.’s with mean 0, variance 1 and uniformly bounded

(2 + 8)th moments, where 6>0. Let S, = X1+ -+ X, and let f : RT — R* be a nondecreasing
Sfunction with 1 <f(x)<x, f(x) = 4o00. Then (10) holds with d;, = 1/(klog k), Dy = log log N.

Theorem 1 covers the case of ““‘small” f, while Theorem 2 covers the remaining cases by showing
that (10) always holds with loglog averages. The novel feature of our theorems is the appearance
of nonstandard (i.e. nonlogarithmic) weights in (10); these are given indirectly through the
function f. In Section 2 we will give a detailed analysis of the weight sequences in our theorems.

The proofs of Theorems 1 and 2 will use an invariance argument: we will first show the
statement for the Wiener process and then obtain the general i.i.d. case by strong approximation.
Our main tool will be a general version of the a.s. central limit theorem for nonlinear functionals,
proved in Berkes and Csaki (2001). A consequence of the invariance method used in the proof is
that Theorems 1 and 2 remain valid for any (dependent) sequence (X,,) of random variables for
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which there exists a Wiener process { W(t), =0} such that

n
> Xi=Wm+0@m(logn)’) as.
k=1
with some constant /3 >%. The class of such sequences (X,) includes various types of mixing
sequences, martingale difference sequences, Markov chains, Gaussian processes, etc; see Philipp
and Stout (1975).

The results of our paper concern maxima of normalized partial sums of i.i.d. random variables
and the limit in (10) is an extremal distribution. It is worth comparing our results with known a.s.
limit theorems for extremal statistics of i.i.d. random variables. Fahrner and Stadtmiiller (1998)
and Cheng et al. (1998) proved independently that if X, X,,... are i.i.d. random variables,
M, =max(X4,...,X,) and

5
My, —ay)/by, — G
for some real sequences a,, b, and a nondegenerate distribution function G, then we have

N

. 1 1 (M) —
ngnoo log N ; % I{kbikak <x} = G(x) a.s. for any x € R.

For additional strong limit theorems for the partial sums

"1 (M) —
Z - f( kb ak>
k=1 k

see e.g. Berkes and Horvath (2001), Fahrner (2001). Despite their formal similarity, there is a
fundamental difference between these results and the results of our paper: the Darling—Erdos type
functional M g) contains the maxima of the strongly dependent random variables S; /+/k and this
leads to a.s. limit theorems involving an essentially different, nonstandard averaging process
described in Theorem 1.

2. Analysis of the averaging sequences in Theorems 1 and 2

Theorem 1 above provides a large class of sequences (¢,) and thus a large class of averaging
methods for which the limit relation (10) holds. To clarify the meaning of the theorem, we recall a
few facts from analysis. Any sequence D = (di,d>,...) of positive numbers with Y d, = oo
defines a linear summation method (Riesz summation of order 1) as follows. Given a real
sequence (x;,), put

asz) = D;l Z dix; where D, = Z dy.

k<n k<n

We say that (x,) is D-summable if ¢®) has a finite limit. By a classical theorem of Hardy (see e.g.
Chandrasekharan and Minakshisundaram, 1952, p. 35; see also pp. 37-38 for a more general
version due to Hirst), if two sequences D = (d,) and D* = (d}) with partial sums D, and D} satisfy
D} = O(D,) then, under mild regularity conditions, the summation procedure defined by D* is
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stronger (i.e. more effective) than the procedure defined by D in the sense that if a sequence (x;,) is
D-summable then it is also D*-summable and to the same limit. Moreover, if D*< D} <D? for
some 0 <o < ff and sufficiently large n, then by a theorem of Zygmund (see also Chandrasekharan
and Minakshisundaram, 1952, p. 35) the summation procedures defined by D and D* are
equivalent, i.e. ¢ converges for some (x,) iff ¢ does. Finally, if D} = O(D?) for all ¢ >0 then
the summation method defined by D* is strictly stronger than the method defined by D. For
example, logarithmic summation defined by dy = 1/k is stronger than Cesaro (or (C,1))
summation defined by dx = 1 and is weaker than loglog averaging defined by d; = 1/(klog k); on
the other hand, all summation procedures defined by dy = (log k)*/k, a> — 1 are equivalent to
logarithmic summation.

The above remarks show that the faster the sequence D, in (10) grows, the stronger the limit
theorem (10) becomes. Hence, given a function f satisfying the assumptions of Theorem 1, one
should choose the sequence D,, in (10) as large as possible to optimize Theorem 1. In what follows,
we will give a few examples for evaluating the weight sequence D, in Theorem 1. Observe that
Cuy1/cn = O(1) implies D, — D,_; = O(1) and thus the first relation of (9) can be written
equivalently as

Dy =D, = O(1). (12)

Examples. (a) If f(x) = O(e™e¥"), 0<o<1, then (10) holds with D, =log n, i.e. with log
averages.

(b) If f(x) = xP, O<ﬁ<%, then (10) holds with D, =log log n, and this is the optimal (i.c.
largest) choice, since (12) implies D,, = O(log log n). Thus in this case Theorem 1 yields loglog
averages.

(c) If f(x) = elog x/loglog ™™ where (x) is nondecreasing and tends to 400 so slowly that
o'(x)<1/(xlog x), then (10) holds with D, = (log log n)®™. The corresponding averaging process
in (10) lies strictly between the log and loglog averages.

2m(x)

The above examples show that the transition from log to loglog averages in Theorem 1 takes
place in a very narrow strip, namely for functions f(x) = ¢'°¢ */¥™_where (x) tends to +oco very
slowly. For the functions in (a) we still have log averages, while in (b) we have loglog averages; (c)
describes an intermediate situation. Actually, (b) describes the worst possible case: as Theorem 2
shows, relation (10) is always valid with loglog averages. (Accordingly, for any function f in
Theorem 1, relation (12) is satisfied with D, = log log n.)

To verify the examples, we first show that in case (a) relation (9) holds with ¢, = exp((log n)' ™),
or, what is the same, relation (12) holds with D, = (log(n + 1)) ™. (Actually, we can work with
D, = (log n)'*, since by Zygmund’s theorem quoted above, this means no difference in (10).) By
the mean value theorem we get for large n

n
Sy’

Thus Theorem 1 holds with D, = (log n)' ™ in (10) and hence by Zygmund’s theorem, relation
(10) holds also with log averages. In case (b), (12) becomes

D, — D,; = 0(1)

Dy = Dy <(1 = 2)l0g ) 3o fm (1 = s)log Vi) *3log nf = O1)
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with y = 1 — 3 and by induction it is easy to see that this implies D, < Clog log n, provided Cis
large enough. Finally to get (c) let us note that for the function fin (c) and D, = (log log n)*™,
the left side of (12) can be bounded by I, + I, where

n > w(n)
n)’ ’

I, = (log log n)*™ — <10g log 7
n w(n) n w("/f'(”)s)
— [ log lo .
n)3> ( : gf(n)3>

= |logl
<°g T
_ 3log f(m)\| _ ~(logf(n)
-1 =) o (oer) "

Clearly

log log n — log log

o
Sy

and thus by the mean value theorem and the definition of f we get

h:oc%ﬂmmwmy%mwmv=om.

Another application of the mean value theorem yields
I, < ‘a)(n) - w(n/f(n)3)](log log n)”™ log log log n

and here we have, using @'(x)<1/(xlog x) and (13),

o) — o/ (1)) < / )

1
dx = log log n — log log " ;= O< ng(n)>‘
oy Xlog x f(n) log n
Thus

b<OC?fM)

(log log n)”™ log log log n)

1
=0 ((loglogn)z("(”) (log log n)”™ log log log n>

=0(1)
completing the proof of Example (c).

3. Proof of the theorems

We will deduce Theorems 1 and 2 from a general version of the a.s. central limit theorem for
nonlinear functionals (‘“‘universal ASCLT”), proved in Berkes and Csaki (2001). We formulate
here a special case of Theorem 5 of Berkes and Csaki (2001) for the Wiener process, which will
suffice for our purposes.

Theorem 3. Let W be a Wiener process and let &, &, . .. begrandom variables such that & is
measurable with respect to a{W(t), 0<t<k}. Assume that &, —> G for some distribution function
G. Assume further that for each 1<k <l there exists a random variable ;. ; measurable with respect
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to a{W()— W) : k<t<t <} such that

E(1¢ — &l A DS Cler/e))f (14)

for some constants C>0, >0 and a positive, nondecreasing sequence (c,) with ¢, — 00,
Cor1/cn = O(1). Put

dy =log(cky1/e), Dn="Y  di. (15)
k<n
Then
th — Z dil{é,<x} = G(x) a.s. for any x € Cg, (16)

where Cg denotes the set of continuity points of G.

We turn now to the proof of the theorems. As a first step, we prove the results in the Wiener
case, i.e. when the definition of M k(f is replaced by

4G
M}(f) = sup —(),
kify<i<k N1

where W is a Wiener process.
Assume first that fand ¢, satisfy the assumptions of Theorem 1 and define

Wt
Z; = a%f) sup Ui b(f)
lf(h<t<I N

() WO-wh _p )
dV sup  HOP0_p0) if k<10
Zy=9 (hv(bszsz . : )

(17)

0 otherwise.

We claim that
E(Z; - Ziy| AD<Blafe) (k<D (18)
with some constant B. Indeed, if k<//f (1), then

EIZ - 7 1<d’ \/l/fL()' <d TN FTI<f ONRTI< /D < e e

for />, by (4) and the second relation of (9). If k>1/f (1)*, then by the first relation of (9) we have

s G’ S 4

c ¢
and therefore (18) will hold in this case, too. Thus (18) is verified for /> /y; increasing the constant
B if necessary, it will hold for all />1.
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Let T be a r.v. with distribution function e~ . The Darling-Erdds theorem for the Wiener
process states that

Wit )
ocn<sup &— ,,)iT, (19)
1<t<n t
where a,, 5, are defined in (2). By the scaling property of the Wiener process we have
Wit Wit
sup we )é sup v
k/f(ky<t<k \ﬁ I<i<f (k) \/Z

and since oy = af’, Py, = b7, relation (19) implies Z 2, T. Hence applying Theorem 3 with
&e=25, &y = Zk ; we get Theorem 1 for the Wiener process.

Assume now that f satisfies the conditions of Theorem 2 and introduce the quantities Z, and

Zkl defined similarly as Z7 and Z7; in (17), just with //f(/) replaced everywhere by (//f())) v A2,
where

A; = exp(log [/ exp(+/log log 1)) (1=3).
We show that
E(1Z} = Zial A D)< D(er/e) (k<) (20)

with some constant D, where

ey = exp(%\/log log n>. (21

To prove (20) we first observe that the stationarity and Markov property of the Ornstein—Uh-
lenbeck process e~"/2 W (e’) imply

40 /40) log T )
P sup —=%= su = forany T'>T>1. 22
{1<IET Vi K,ST/ Jt log T' y (22)

Now Z*;«éZ; can hold only if l/f(l)<A2 and the sup of W(r)/+/t over the interval [l/f(l) [] is
reached somewhere in [//f(]), A? 7], which implies that the sup of W(#)//t over [1,1] is reached
somewhere in [1, A2 7]. Thus by (22) we have

log 47 2

log! ¢

P(Z} #Z))<

and thus to prove (20) it suffices to show that
E(Z = Zil AD<e/er (k<) (23)

Now if k<A, then 2;(,[ is defined by the upper line of the definition (concerning the case
k<I/f()v A%) and thus

E|Z) — Z4| <a§f)E| W(k)l/A; <a§f) k/A3 <a§f)/\/ A
<(2log log )'/?/\/4,< exp(—+/log < 1/c1<cx/cr,
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for =1y, verifying (23) and thus (20). If k> A4;, then
Cik = €Xp (% m>
= exp(4(log log / — v/log Tog )'/*) > exp(4(v/log Tog I = 1)) > §

and therefore (20) holds in this case, too, provided D> 3. We thus verified (20) for />/y; as in the
previous case, the inequality will hold for all />1 if we suitably increase D. Applying Theorem 3
with & = Z3, & = Zi,; we get the validity of (10)—-(11) in the Wiener case with the sequence ¢,
defined by (21), i.e. we showed that

W(l) (f) _a—X
lim — di 14 a sup ————b" |<xp=¢° as. forall x. (24)
N—oo D N % Z { kif(k)<t<k NG k
Here
1/2

D, = log ¢,y ~(log log n)

and thus Zygmund’s theorem implies that this averaging procedure is equivalent to log log
averaging. This completes the proof of Theorem 2 in the Wiener case.

Let now the sequence (X,,) and the function f'satisfy the conditions of Theorem 1 or Theorem 2.
Using Theorem 2 of Einmahl (1987) in the case of Theorem 1 and Theorem 4.4 of Strassen (1967)
in the case of Theorem 2, it follows that one can define the sequence (X,,), together with a Wiener
process W, on a suitable probability space such that

S, — W(n) = 0(n'*(log n)™) as. (25)
for some f >%. Letting T = (k/f(k)) v log f(k), the last relation clearly implies

S W (i
(f)( max — — max (Z)> — 0 a.s. (26)
Ty <i<k \/' Ti<i<k /i

From well-known properties of the Wiener process (see e.g. Csorgd and Révész, 1981) it follows

that
W W) —0 (log n) s,
n<i<n+l \/7 \/_ \/ﬁ
and thus from (26) we can infer
S; 40
ag) max — — sup L — 0 a.s. 27)
<isk i mo<i<k Vi

On the other hand, the LIL implies

sup W—(t)‘ = O((log log logf(k))l/z) a.s.

1<1< log f(k)
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and thus

Wt
at sup &— bg) — —00 a.s. (28)

I<i<log fiky 1

Hence (24) remains valid if we extend the sup only for T <t<k. Also, an elementary argument
shows that changing the r.v. in the indicator in (24) by o(1) does not effect the validity of (24), and
thus in view of (27) it follows that (24) holds if supy g <,<i(W(?) /+/1) is replaced by
maxy, <i<k(Si/ V/i). Finally, the last maximum can be replaced by

max_ (S;/v/i),

k/f(k)<i<k

as it follows from the analogue of (28) for the (X,). This completes the proof Theorems 1 and 2.
In conclusion we note that, as we proved above,

Wit g
Z; = ag) sup v _ bg) 2T , (29)
kifto<i<k 1

where T is a r.v. with distribution function e~¢ . Repeating the invariance argument in the
previous paragraph, we get from (29)

0 Si_ 0\ 2 p 30
“ <k/f(r£)a<>§<k N ) — (30)

as claimed in the Introduction.
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