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Abstract

We prove a.s. limit theorems corresponding to the classical Darling–Erd +os theorem for the maxima of
normalized partial sums of i.i.d. random variables. Our results yield the analogue of the a.s. central limit
theorem for the Darling–Erd +os max functional and its variants. Unlike in standard a.s. central limit theory,
our theorems involve nonlogarithmic averages.
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1. Introduction

Let X 1;X 2; . . . be i.i.d. r.v.’s with EX 1 ¼ 0;EX 2
1 ¼ 1 and let Sn ¼ X 1 þ � � � þ X n. By the

classical theorem of Darling and Erd +os (1956) we have, under slight additional moment
conditions,

ak max
1pjpk

Sjffiffi
j
p � bk

� �
�!
D

H, (1)
see front matter r 2005 Elsevier B.V. All rights reserved.
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where

ak ¼ ð2 log log kÞ1=2; bk ¼ ð2 log log kÞ1=2 þ
log log log k � log 4p

2ð2 log log kÞ1=2
ðkX3Þ (2)

and H is the distribution with distribution function e�e
�x

. Darling and Erd +os (1956) assumed
EjX 1j

3o1; Oodaira (1976) and Shorack (1979) weakened this to EjX 1j
2þdo1. An optimal

condition was given by Einmahl (1989).
The purpose of this paper is to study the asymptotic behavior of the more general functional

M
ðf Þ
k ¼ max

k=f ðkÞpjpk

Sjffiffi
j
p ,

where f : Rþ ! Rþ is a nondecreasing function with 1pf ðxÞpx. For f ðxÞ ! 1 the limit
distribution of M

ðf Þ
k is again the extremal distribution e�e

�x

. Indeed, relation (30) at the end of our
paper shows that

a
ðf Þ
k ðM

ðf Þ
k � b

ðf Þ
k Þ �!

D
H, (3)

where

a
ðf Þ
k ¼ ð2 log log f ðkÞÞ1=2

b
ðf Þ
k ¼ ð2 log log f ðkÞÞ1=2 þ

log log log f ðkÞ � log 4p

2ð2 log log f ðkÞÞ1=2
ð4Þ

with the same H as in (1). In the case f ðxÞ ¼ c (1pco1Þ we get a different behavior: in this case
M
ðf Þ
k remains bounded in probability and it follows easily from Donsker’s theorem that

M
ðf Þ
k �!

D
Gc, (5)

where Gc is the distribution of sup1=cptp1W ðtÞ=
ffiffi
t
p

, where W is a Wiener process. To see the
connection between (3) and (5), let us write (5) in the equivalent form

acðM
ðf Þ
k � bcÞ�!

D
Hc as k!1,

where HcðxÞ ¼ Gcðbc þ x=acÞ. The last relation shows that (3) remains valid in the extreme case
f ðxÞ ¼ c, but the limit H should be replaced by Hc. Using scaling and the Darling–Erd +os theorem
for the Wiener process, it is easy to see that limc!1HcðxÞ ¼ HðxÞ for all x. Thus, relation (3) is
formally the limit of (5) as c!1.
The previous remarks describe the distributional behavior of M

ðf Þ
k completely. The purpose of

the present paper is to prove almost sure versions of these results in the spirit of the a.s. central
limit theory. In the case f ðxÞ ¼ c an almost sure version of (5) was obtained by Antonini and
Weber (2004), who showed that

lim
N!1

1

log N

XN

k¼1

1

k
I max

k=cpjpk

Sjffiffi
j
p px

� �
¼ GcðxÞ a.s. for any x 2 R. (6)
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On the other hand, in the case f ðxÞ ¼ x it was proved by Berkes and Csáki (2001) that under the
additional moment condition EjX 1j

2þdo1 (d40) we have

lim
N!1

1

log log N

XN

k¼3

1

k log k
I ak max

1pjpk

Sjffiffi
j
p � bk

� �
px

� �
¼ e�e

�x

a.s. for any x 2 R. (7)

Note that in (6) and (7) we have different averaging processes; this is due to the fact that the
dependence of the sequence M

ðf Þ
k for f ðxÞ ¼ x is much stronger than for f ðxÞ ¼ c (as reflected by

the covariance estimates in Antonini and Weber (2004) and Berkes and Csáki (2001)) and thus
the indicators in (7) require a stronger averaging method to converge a.s. Since (3) connects
the extremal cases (1) and (5), it is natural to expect that the a.s. version of (3) will involve
averaging processes which change continuously from logarithmic to log log average as f changes
between f ðxÞ ¼ c and f ðxÞ ¼ x. This is indeed the case, as the main results of our paper will show.
We will prove:

Theorem 1. Let X 1;X 2; . . . be i.i.d. random variables with EX 1 ¼ 0, EX 2
1 ¼ 1 and

EX 2
1ðlogþjX 1jÞ

ao1, a41. Let Sn ¼ X 1 þ � � � þ X n and let f : Rþ ! Rþ be a nondecreasing
function with 1pf ðxÞpx1=4, f ðxÞ ! þ1. Let

Zk ¼ a
ðf Þ
k ðM

ðf Þ
k � b

ðf Þ
k Þ (8)

with a
ðf Þ
k ; b

ðf Þ
k defined in (4) and let ðcnÞ be a positive nondecreasing sequence satisfying cnþ1=cn ¼ Oð1Þ

and

cn=f ðnÞ3XAcn; cn=n1=6 is nonincreasing (9)

for some constant 0oAo1. (Here, and in the sequel, cj is meant as c½j� for nonintegral j.) Then for
any x 2 R we have

lim
N!1

1

DN

XN

k¼1

dkIfZkpxg ¼ e�e
�x

a.s. (10)

where

dn ¼ logðcnþ1=cnÞ; Dn ¼ log cnþ1. (11)

Theorem 2. Let X 1;X 2; . . . be independent r.v.’s with mean 0, variance 1 and uniformly bounded
ð2þ dÞth moments, where d40. Let Sn ¼ X 1 þ � � � þ X n and let f : Rþ ! Rþ be a nondecreasing

function with 1pf ðxÞpx, f ðxÞ ! þ1. Then (10) holds with dk ¼ 1=ðk log kÞ, DN ¼ log log N.

Theorem 1 covers the case of ‘‘small’’ f, while Theorem 2 covers the remaining cases by showing
that (10) always holds with log log averages. The novel feature of our theorems is the appearance
of nonstandard (i.e. nonlogarithmic) weights in (10); these are given indirectly through the
function f. In Section 2 we will give a detailed analysis of the weight sequences in our theorems.
The proofs of Theorems 1 and 2 will use an invariance argument: we will first show the

statement for the Wiener process and then obtain the general i.i.d. case by strong approximation.
Our main tool will be a general version of the a.s. central limit theorem for nonlinear functionals,
proved in Berkes and Csáki (2001). A consequence of the invariance method used in the proof is
that Theorems 1 and 2 remain valid for any (dependent) sequence ðX nÞ of random variables for
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which there exists a Wiener process fW ðtÞ; tX0g such thatXn

k¼1

X k ¼W ðnÞ þOðn1=2ðlog nÞ�bÞ a.s.

with some constant b41
2
. The class of such sequences ðX nÞ includes various types of mixing

sequences, martingale difference sequences, Markov chains, Gaussian processes, etc; see Philipp
and Stout (1975).
The results of our paper concern maxima of normalized partial sums of i.i.d. random variables

and the limit in (10) is an extremal distribution. It is worth comparing our results with known a.s.
limit theorems for extremal statistics of i.i.d. random variables. Fahrner and Stadtmüller (1998)
and Cheng et al. (1998) proved independently that if X 1;X 2; . . . are i.i.d. random variables,
Mn ¼ max ðX 1; . . . ;X nÞ and

ðMn � anÞ=bn �!
D

G

for some real sequences an; bn and a nondegenerate distribution function G, then we have

lim
N!1

1

log N

XN

k¼1

1

k
I

Mk � ak

bk

px

� �
¼ GðxÞ a.s. for any x 2 R.

For additional strong limit theorems for the partial sumsXn

k¼1

1

k
f

Mk � ak

bk

� �
see e.g. Berkes and Horváth (2001), Fahrner (2001). Despite their formal similarity, there is a
fundamental difference between these results and the results of our paper: the Darling–Erd +os type
functional M

ðf Þ
k contains the maxima of the strongly dependent random variables Sk=

ffiffiffi
k
p

and this
leads to a.s. limit theorems involving an essentially different, nonstandard averaging process
described in Theorem 1.
2. Analysis of the averaging sequences in Theorems 1 and 2

Theorem 1 above provides a large class of sequences ðcnÞ and thus a large class of averaging
methods for which the limit relation (10) holds. To clarify the meaning of the theorem, we recall a
few facts from analysis. Any sequence D ¼ ðd1; d2; . . .Þ of positive numbers with

P
dn ¼ 1

defines a linear summation method (Riesz summation of order 1) as follows. Given a real
sequence ðxnÞ, put

sðDÞn ¼ D�1n

X
kpn

dkxk where Dn ¼
X
kpn

dk.

We say that ðxnÞ is D-summable if sðDÞn has a finite limit. By a classical theorem of Hardy (see e.g.
Chandrasekharan and Minakshisundaram, 1952, p. 35; see also pp. 37–38 for a more general
version due to Hirst), if two sequences D ¼ ðdnÞ and D� ¼ ðd�nÞ with partial sums Dn and D�n satisfy
D�n ¼ OðDnÞ then, under mild regularity conditions, the summation procedure defined by D� is
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stronger (i.e. more effective) than the procedure defined by D in the sense that if a sequence ðxnÞ is
D-summable then it is also D�-summable and to the same limit. Moreover, if Da

npD�npDb
n for

some 0oaob and sufficiently large n, then by a theorem of Zygmund (see also Chandrasekharan
and Minakshisundaram, 1952, p. 35) the summation procedures defined by D and D� are
equivalent, i.e. sðDÞn converges for some ðxnÞ iff sðD

�Þ
n does. Finally, if D�n ¼ OðDe

nÞ for all e40 then
the summation method defined by D� is strictly stronger than the method defined by D. For
example, logarithmic summation defined by dk ¼ 1=k is stronger than Cesàro (or ðC; 1ÞÞ
summation defined by dk ¼ 1 and is weaker than log log averaging defined by dk ¼ 1=ðk log kÞ; on
the other hand, all summation procedures defined by dk ¼ ðlog kÞa=k, a4� 1 are equivalent to
logarithmic summation.
The above remarks show that the faster the sequence Dn in (10) grows, the stronger the limit

theorem (10) becomes. Hence, given a function f satisfying the assumptions of Theorem 1, one
should choose the sequence Dn in (10) as large as possible to optimize Theorem 1. In what follows,
we will give a few examples for evaluating the weight sequence Dn in Theorem 1. Observe that
cnþ1=cn ¼ Oð1Þ implies Dn �Dn�1 ¼ Oð1Þ and thus the first relation of (9) can be written
equivalently as

Dn �Dn=f ðnÞ3 ¼ Oð1Þ. (12)

Examples. (a) If f ðxÞ ¼ Oðeðlog xÞaÞ, 0oao1, then (10) holds with Dn ¼ log n, i.e. with log
averages.
(b) If f ðxÞ ¼ xb, 0obp1

4
, then (10) holds with Dn ¼ log log n, and this is the optimal (i.e.

largest) choice, since (12) implies Dn ¼ Oðlog log nÞ. Thus in this case Theorem 1 yields log log
averages.
(c) If f ðxÞ ¼ elog x=ðlog log xÞ2oðxÞ where oðxÞ is nondecreasing and tends to þ1 so slowly that

o0ðxÞp1=ðx log xÞ, then (10) holds with Dn ¼ ðlog log nÞoðnÞ. The corresponding averaging process
in (10) lies strictly between the log and log log averages.

The above examples show that the transition from log to log log averages in Theorem 1 takes
place in a very narrow strip, namely for functions f ðxÞ ¼ elog x=cðxÞ, where cðxÞ tends to þ1 very
slowly. For the functions in (a) we still have log averages, while in (b) we have log log averages; (c)
describes an intermediate situation. Actually, (b) describes the worst possible case: as Theorem 2
shows, relation (10) is always valid with log log averages. (Accordingly, for any function f in
Theorem 1, relation (12) is satisfied with Dn ¼ log log n.)
To verify the examples, we first show that in case (a) relation (9) holds with cn ¼ expððlog nÞ1�aÞ,

or, what is the same, relation (12) holds with Dn ¼ ðlogðnþ 1ÞÞ1�a. (Actually, we can work with
Dn ¼ ðlog nÞ1�a, since by Zygmund’s theorem quoted above, this means no difference in (10).) By
the mean value theorem we get for large n

Dn �Dn=f ðnÞ3pð1� aÞ log
n

f ðnÞ3

� ��a
3 log f ðnÞpð1� aÞðlog

ffiffiffi
n
p
Þ
�a3ðlog nÞa ¼ Oð1Þ.

Thus Theorem 1 holds with Dn ¼ ðlog nÞ1�a in (10) and hence by Zygmund’s theorem, relation
(10) holds also with log averages. In case (b), (12) becomes

Dn �Dng ¼ Oð1Þ
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with g ¼ 1� 3b and by induction it is easy to see that this implies DnpC log log n, provided C is
large enough. Finally to get (c) let us note that for the function f in (c) and Dn ¼ ðlog log nÞoðnÞ,
the left side of (12) can be bounded by I1 þ I2 where

I1 ¼ ðlog log nÞoðnÞ � log log
n

f ðnÞ3

� �oðnÞ

,

I2 ¼ log log
n

f ðnÞ3

� �oðnÞ

� log log
n

f ðnÞ3

� �oðn=f ðnÞ3Þ

.

Clearly

log log n� log log
n

f ðnÞ3

���� ���� ¼ log 1�
3 log f ðnÞ

log n

� ����� ���� ¼ O
log f ðnÞ

log n

� �
(13)

and thus by the mean value theorem and the definition of f we get

I1 ¼ O
log f ðnÞ

log n
oðnÞðlog log nÞoðnÞ�1

� �
¼ Oð1Þ.

Another application of the mean value theorem yields

I2p oðnÞ � oðn=f ðnÞ3Þ
�� ��ðlog log nÞoðnÞ log log log n

and here we have, using o0ðxÞp1=ðx log xÞ and (13),

oðnÞ � oðn=f ðnÞ3Þ
�� ��pZ n

n=f ðnÞ3

1

x log x
dx ¼ log log n� log log

n

f ðnÞ3
¼ O

log f ðnÞ

log n

� �
.

Thus

I2pO
log f ðnÞ

log n
ðlog log nÞoðnÞ log log log n

� �
¼ O

1

ðlog log nÞ2oðnÞ
ðlog log nÞoðnÞ log log log n

� �
¼ Oð1Þ

completing the proof of Example (c).
3. Proof of the theorems

We will deduce Theorems 1 and 2 from a general version of the a.s. central limit theorem for
nonlinear functionals (‘‘universal ASCLT’’), proved in Berkes and Csáki (2001). We formulate
here a special case of Theorem 5 of Berkes and Csáki (2001) for the Wiener process, which will
suffice for our purposes.

Theorem 3. Let W be a Wiener process and let x1; x2; . . . be random variables such that xk is
measurable with respect to sfW ðtÞ; 0ptpkg. Assume that xk�!

D
G for some distribution function

G. Assume further that for each 1pkol there exists a random variable xk;l measurable with respect
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to sfW ðt0Þ �W ðtÞ : kptpt0plg such that

Eðjxl � xk;lj ^ 1ÞpCðck=clÞ
b (14)

for some constants C40, b40 and a positive, nondecreasing sequence ðcnÞ with cn !1,
cnþ1=cn ¼ Oð1Þ. Put

dk ¼ logðckþ1=ckÞ; Dn ¼
X
kpn

dk. (15)

Then

lim
N!1

1

DN

X
kpN

dkIfxkpxg ¼ GðxÞ a.s. for any x 2 CG, (16)

where CG denotes the set of continuity points of G.

We turn now to the proof of the theorems. As a first step, we prove the results in the Wiener
case, i.e. when the definition of M

ðf Þ
k is replaced by

M
ðf Þ
k ¼ sup

k=f ðkÞptpk

W ðtÞffiffi
t
p ,

where W is a Wiener process.
Assume first that f and cn satisfy the assumptions of Theorem 1 and define

Z�l ¼ a
ðf Þ
l sup

l=f ðlÞptpl

W ðtÞffiffi
t
p � b

ðf Þ
l

 !
,

Z�k;l ¼
a
ðf Þ
l sup

l=f ðlÞptpl

W ðtÞ�W ðkÞffiffi
t
p � b

ðf Þ
l

 !
if kpl=f ðlÞ

0 otherwise:

8>><>>: ð17Þ

We claim that

EðjZ�l � Z�k;lj ^ 1ÞpBðck=clÞ ðkplÞ (18)

with some constant B. Indeed, if kpl=f ðlÞ3, then

EjZ�l � Z�k;l jpa
ðf Þ
l

EjW ðkÞjffiffiffiffiffiffiffiffiffiffiffiffi
l=f ðlÞ

p pa
ðf Þ
l

ffiffiffiffiffiffiffiffi
f ðlÞ

p ffiffiffiffiffiffiffi
k=l

p
pf ðlÞ

ffiffiffiffiffiffiffi
k=l

p
pðk=lÞ1=6pck=cl

for lXl0 by (4) and the second relation of (9). If k4l=f ðlÞ3, then by the first relation of (9) we have

ck

cl

X

cl=f ðlÞ3

cl

XA

and therefore (18) will hold in this case, too. Thus (18) is verified for lXl0; increasing the constant
B if necessary, it will hold for all lX1.
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Let T be a r.v. with distribution function e�e
�x

. The Darling–Erd +os theorem for the Wiener
process states that

an sup
1ptpn

W ðtÞffiffi
t
p � bn

� �
�!
D

T , (19)

where an;bn are defined in (2). By the scaling property of the Wiener process we have

sup
k=f ðkÞptpk

W ðtÞffiffi
t
p ¼

D
sup

1ptpf ðkÞ

W ðtÞffiffi
t
p

and since af ðnÞ ¼ aðf Þn , bf ðnÞ ¼ bðf Þn , relation (19) implies Z�n�!
D

T . Hence applying Theorem 3 with
xk ¼ Z�k, xk;l ¼ Z�k;l we get Theorem 1 for the Wiener process.
Assume now that f satisfies the conditions of Theorem 2 and introduce the quantities bZl andbZk;l defined similarly as Z�l and Z�k;l in (17), just with l=f ðlÞ replaced everywhere by ðl=f ðlÞÞ _ A2

l ,
where

Al ¼ expðlog l= expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log l

p
ÞÞ ðlX3Þ.

We show that

EðjZ�l �
bZk;lj ^ 1ÞpDðck=clÞ ðkplÞ (20)

with some constant D, where

cn ¼ exp 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p� �
. (21)

To prove (20) we first observe that the stationarity and Markov property of the Ornstein–Uh-
lenbeck process e�t=2W ðetÞ imply

P sup
1ptpT

W ðtÞffiffi
t
p ¼ sup

1ptpT 0

W ðtÞffiffi
t
p

( )
¼

log T

log T 0
for any T 0XT41. (22)

Now Z�l a bZl can hold only if l=f ðlÞoA2
l and the sup of W ðtÞ=

ffiffi
t
p

over the interval ½l=f ðlÞ; l� is
reached somewhere in ½l=f ðlÞ;A2

l �, which implies that the sup of W ðtÞ=
ffiffi
t
p

over ½1; l� is reached
somewhere in ½1;A2

l �. Thus by (22) we have

PðZ�l a bZlÞp
log A2

l

log l
¼

2

c2l

and thus to prove (20) it suffices to show that

Eðj bZl � bZk;lj ^ 1Þpck=cl ðkplÞ. (23)

Now if kpAl, then bZk;l is defined by the upper line of the definition (concerning the case
kpl=f ðlÞ _ A2

l ) and thus

Ej bZl � bZk;ljpa
ðf Þ
l EjW ðkÞj=Alpa

ðf Þ
l

ffiffiffiffiffiffiffiffiffiffiffi
k=A2

l

q
pa
ðf Þ
l =

ffiffiffiffiffi
Al

p
pð2 log log lÞ1=2=

ffiffiffiffiffi
Al

p
p expð�

ffiffiffiffiffiffiffiffiffiffi
log l

p
Þp1=clpck=cl,
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for lXl0, verifying (23) and thus (20). If k4Al , then

ckX exp 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log Al

p� �
¼ exp 1

2
ðlog log l �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log l

p
Þ
1=2

� �
X exp 1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log l

p
� 1Þ

� �
X

cl

3

and therefore (20) holds in this case, too, provided DX3. We thus verified (20) for lXl0; as in the
previous case, the inequality will hold for all lX1 if we suitably increase D. Applying Theorem 3
with xk ¼ Z�k, xk;l ¼

bZk;l we get the validity of (10)–(11) in the Wiener case with the sequence cn

defined by (21), i.e. we showed that

lim
N!1

1

DN

XN

k¼3

dkI a
ðf Þ
k sup

k=f ðkÞptpk

W ðtÞffiffi
t
p � b

ðf Þ
k

 !
px

( )
¼ e�e

�x

a.s. for all x. ð24Þ

Here

Dn ¼ log cnþ1�
1
2
ðlog log nÞ1=2

and thus Zygmund’s theorem implies that this averaging procedure is equivalent to log log
averaging. This completes the proof of Theorem 2 in the Wiener case.
Let now the sequence ðX nÞ and the function f satisfy the conditions of Theorem 1 or Theorem 2.

Using Theorem 2 of Einmahl (1987) in the case of Theorem 1 and Theorem 4.4 of Strassen (1967)
in the case of Theorem 2, it follows that one can define the sequence ðX nÞ, together with a Wiener
process W, on a suitable probability space such that

Sn �W ðnÞ ¼ Oðn1=2ðlog nÞ�bÞ a.s. (25)

for some b41
2
. Letting Tk ¼ ðk=f ðkÞÞ _ log f ðkÞ, the last relation clearly implies

a
ðf Þ
k max

Tkpipk

Siffiffi
i
p � max

Tkpipk

W ðiÞffiffi
i
p

� �
! 0 a.s. (26)

From well-known properties of the Wiener process (see e.g. Csörg +o and Révész, 1981) it follows
that

sup
nptpnþ1

W ðtÞffiffi
t
p �

W ðnÞffiffiffi
n
p

���� ���� ¼ O
log nffiffiffi

n
p

� �
a.s.

and thus from (26) we can infer

a
ðf Þ
k max

Tkpipk

Siffiffi
i
p � sup

Tkptpk

W ðtÞffiffi
t
p

 !
! 0 a.s. (27)

On the other hand, the LIL implies

sup
1ptp log f ðkÞ

W ðtÞffiffi
t
p

���� ���� ¼ Oððlog log log f ðkÞÞ1=2Þ a.s.
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and thus

a
ðf Þ
k sup

1ptp log f ðkÞ

W ðtÞffiffi
t
p � b

ðf Þ
k

 !
!�1 a.s. (28)

Hence (24) remains valid if we extend the sup only for Tkptpk. Also, an elementary argument
shows that changing the r.v. in the indicator in (24) by oð1Þ does not effect the validity of (24), and
thus in view of (27) it follows that (24) holds if supk=f ðkÞptpkðW ðtÞ=

ffiffi
t
p
Þ is replaced by

maxTkpipkðSi=
ffiffi
i
p
Þ. Finally, the last maximum can be replaced by

max
k=f ðkÞpipk

ðSi=
ffiffi
i
p
Þ,

as it follows from the analogue of (28) for the ðX nÞ. This completes the proof Theorems 1 and 2.
In conclusion we note that, as we proved above,

Z�k ¼ a
ðf Þ
k sup

k=f ðkÞptpk

W ðtÞffiffi
t
p � b

ðf Þ
k

 !
�!
D

T , (29)

where T is a r.v. with distribution function e�e
�x

. Repeating the invariance argument in the
previous paragraph, we get from (29)

a
ðf Þ
k max

k=f ðkÞpipk

Siffiffi
i
p � b

ðf Þ
k

� �
�!
D

T (30)

as claimed in the Introduction.
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